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ABSTRACT 

There are several mechanical models to describe the DNA phenomenology. In this work the DNA denaturation is stu- 
died under thermodynamical and dynamical point of view using the well known Peyrard-Bishop model. The thermody-
namics analysis using the transfer integral operator method is briefly reviewed. In particular, the lattice size is discussed 
and a conjecture about the minimum energy to denaturation is proposed. In terms of the dynamical aspects of the model, 
the equations of motion for the system are integrated and the results determine the energy density where the denatura- 
tion occurs. The behavior of the lattice near the phase transition is analyzed. The relation between the thermodynamical 
and dynamical results is discussed. 
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1. Introduction 

The DNA molecule contains the genetic information and 
it is responsible for the transmission of hereditariness [1]. 
Since the discovery of its double helix structure done by 
Watson and Crick [2], researchers of several areas of 
science concentrated their attention to understand stru- 
ctural and functional aspects of this complex molecule. 
In the transcription and replication phenomena of DNA 
the ribbons separation in the double helix is an important 
effect, because it is necessary to expose the nitrogen 
bases to the solution. This means that large amplitudes 
and highly located motions are necessary and the dyna- 
mic of the molecule should be nonlinear. 

Several models have been proposed to describe the 
DNA [3]. One of these is the Peyrard-Bishop (PB) model, 
proposed at 1989 to study DNA denaturation using sta- 
tistical mechanics [4]. The original model consists of a 
pair of one dimensional lattice of harmonic oscillators; 
the adjacent oscillators of each lattice are bonded by a 
nonlinear Morse potential mimicking the hydrogen bond 
of the real molecule. The main feature of this model is to 
describe the separation of the double strand in terms of 
the average stretching of the base pairs. 

The PB model and some variations [5-7] have been 
used to study the dynamics [8-10] and the thermodyna- 
mics [11-13] of DNA. From the dynamical point of view, 
there are studies about localized energy modes [14] that 
were identified as precursors of the denaturation and 
transcription process. These modes could also prescribe  

the dynamic of DNA in room temperature, in which large 
amplitude and highly localized motions had been experi- 
mentally verified [15,16]. From the thermodynamical 
point of view, the original model describes quantitatively 
the expected results for the DNA denaturation tempe- 
rature. Recently, it has been discussed modifications in 
the original model in order to include a more abrupt 
phase transition [17]. 

In this work, we analyze the thermodynamical and 
dynamical aspects of the PB model and relate these two 
approaches. In the literature the study of nonlinear lat- 
tices is done for a different number of oscillators [8,18, 
19]. Besides that, other works discuss the possibility of 
phase transition to finite lattices [20,21]. The main ob- 
jective of the paper is to suggest a criterion to fix the mi- 
nimum size of the lattice. In order to get this result, we 
use the transfer integral operator method [22] and calcu- 
late the error committed in the partition function of the 
system. Thermodynamic results also lead to conjecture a 
minimum energy per base pair for occurrence of the 
lattice phase transition. This threshold energy can also be 
verified from dynamical results. We propose that the 
phase transition can be dynamically observed by follow- 
ing the time evolution of the position of the oscillators 
for different energies. 

2. The Peyrard-Bishop Model 

In the Peyrard-Bishop original model each strand of the 
macromolecule is represented by a harmonic lattice and  
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the interaction between them is described by a nonlinear 
potential. The three-dimensional aspects of the helicoi- 
dally structure are not considered and only the motions 
perpendicular to the strands are analyzed [4]. The nu- 
cleotides positions are denoted by ju  and jv , respec- 
tively, with . For simplicity, we assume 
that the chains are homogeneous, i.e., all masses and all 
elastics constants are equal. 

1, 2, ,j   N

The Hamiltonian of the model for a homogeneous 
chain is expressed as: 
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(1) 
The last term in Equation (1) correspond to the Morse 

potential used to describe the hydrogen bonds, the pa- 
rameters D and a are related, respectively, with the depth 
and width of the potential well, k is the elastic constant of 
the harmonic potential used to simulate the stacking in- 
teraction and m is the mass. The Hamiltonian (1) can be  

uncoupled by introducing new variables 
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
 . The PBH  Hamiltonian can be  

written as the sum of two terms, one of them depending 
only on x variable representing a chain of harmonic os-
cillators and it is not important for our analysis here. On 
the other hand, the Hamiltonian dependent on y variable 
can be written as 
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This Hamiltonian represents a chain of harmonic os-
cillators with the additional on site Morse potential that 
carries the nonlinearity of the model.  

3. Thermodynamical Analysis 

The thermodynamic analysis of the system is described 
by the partition function Z expressed in terms of the 
variable representing the average stretching of the base 
pairs ( ), i.e., ny
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    (3) 

where N is the number of base pairs in the chain,  
1

Bk T
  , Bk  is the Boltzmann constant, T is the tem- 

perature and  1,n nH y y   is the uncoupled Hamiltonian 
of the model, given by Equation (2). 

The transfer integral operator method [22] is used to 
determine the thermodynamical properties from the par- 
tition function. This method allows relating the partition 
function with eigenfunctions n  and eigenvalues n  
given by the following pseudo-Schrödinger equation: 
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where  iV y  is the Morse potential. From the solutions 
of Equation (4), the partition function can be obtained by  
the sum  exp n

n

Z N  . However, in the thermo- 

dynamical limit in which the number of particles is very 
large ( ), the partition function is dominated by 
the ground state. For this reason, the analysis of the 
problem is usually limited to determine the energy eigen- 
function and eigenvalue for the ground state. 

N 

The characterization of the phase transition for DNA 
molecule is done following the dependence of an order 
parameter with the temperature of the system. Usually, 
the order parameter is the average stretching of base pairs 
(<y>) [4,11]. 

The eigenfunctions that are solution of the pseudo- 
Schrödinger Equation (4) can be characterized as a pro- 
bability density. In this way, the average stretching of the 
base pairs can be obtained from the equality: 
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There are several methods that can be used to deter- 
mine the solutions of Equation (4), for example, the La- 
place transforms [23] and by using the factorization me- 
thod [24]. Then, the eigenenergy and eigenfunction for 
the ground state of Morse potential are known (see, for 
example, references [4,11]): 
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where the condition  1/2 1

2
d kD

a

   
 

  must be ob- 

served in order to exist bond states. 
From the ground state eigenfunction given by (6), the 

average stretching of base pairs can be found by using 
Equation (5). To this end it is necessary to fix the pa- 
rameters which characterize the model. Following the 
reference [25], the better parameters for Morse potential 
to adjust to DNA are D = 0.03 eV and a = 2.81 Å–1 and 
the elastic constant to the harmonic potential is k = 0.06 
eV·Å–2. Using these parameters, the behavior of <y> with 
temperature has an increase in the average stretching of 
the base pairs, indicating the thermal denaturation of the 
DNA molecule in the temperature range from 300 to 350 
K. 

Other approach to determine the melting temperature 
can be made by noting that the eigenfunction obtained 
from Equation (4) must be quadratically integrable. Then, 
it is possible to determine from the eigenfunction (6) a 
critical temperature of the phase transition ( C ). The 
eigenfunction (6) is quadratically integrable only if d is 
higher than 0.5. For d lower or equal 0.5 the system does 
not have a discrete bond states and the square of the 
wave function integrated in all space diverges. Then, the 
critical temperature  is obtained from  and 
it is given by 

T

0.5CT d

2
C

B

kD
T

ak
                (8) 

Substituting the parameters D, a, k and the Boltzmann 
constant, 58.617 10Bk   eV K

 



, in Equation (8) the 
value of the critical temperature is, approximately, 350 K. 
The reference [1] indicates that the denaturation tempe- 
rature of the DNA molecule varies in the range 318 to 
372 K, depending on the nucleotides composition of the 
chain. In this way, the obtained critical temperature is 
consistent with experimental results. 

The thermodynamical treatment of the Peyrard-Bishop 
model to DNA was realized assuming a very large num- 
ber of oscillators in the chain. In this limit, the excited 
states to the Morse potential were disregard. If the num- 
ber of oscillators is not large, it is necessary to estimate 
the numerical error in this approach. The partition func- 
tion (3), written in terms of the eigenvalues of Equation 
(4), can be rearranged in the following form: 

 
   
    

0 1

0 1 0

exp

exp exp

exp 1 exp

nZ N

N N

N N



 

   

 

   

    






  (9) 

Then, the first order error in the partition function is 
 1 0exp N    . It is important to note that the se- 

ries (9) must be convergent otherwise the thermodynamic 

limit could not be valid to none value of the particles 
number N. So the higher terms in (9) are always lower 
than the first one. In order to estimate the value of N, we 
should know the difference between the energy eigen- 
values 1  and 0 . This estimative can be done re- 
membering that the Morse potential permits bond states  

to the values of 
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the temperature equal to 300 K, the value obtained to 
1
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d
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 is approximately 0.08. This means that there is  

only one bond state inside the potential well at this tem- 
perature, the ground state. Increasing the temperature 
above 350 K even the ground state will be out of the po- 
tential well. On the other hand, a discrete first excited 
state appears only for temperature lower than 150 K. 

Thus, for the temperature range of interest, the first 
excited state is in the continuum part of the spectrum. In 
this case, the difference between the ground state and the 
first energy level of the continuum spectrum can be esti- 
mated as the value of the depth of the well, D, minus the 
value of the ground state energy, 0 , i.e.,  

1 0 0D     

N

  . Consequently, the error by disre- 
garding the first state above the ground state is 
exp( )   . From the used parameters and consider- 
ing the size of the chain equal to 21 oscillators, the error 
in the partition function by disregarding the second term 
in the expansion (9) at 300 K is lower than 10–5. This 
result indicates that a chain with 21 oscillators can be 
considered as being sufficiently large to disregard the 
states above the ground state. This procedure can be ado- 
pted to control the error in terms of the lattice size. It is 
important to observe that for the system close the de- 
naturation temperature, the eigenvalue 0  is close the 
top of the potential well, i.e.,   becomes minor. Then, 
the continuum levels of the spectrum become more and 
more important to the description of the system.  

Considering the above arguments, the characterization 
of the phase transition of the DNA molecule by the 
thermodynamical formalism can be done admitting that 
all the base pairs have sufficient energy to break the 
Morse potential, i.e., when the oscillators have energy 
above the potential well. In this way, when the energy of 
each base pair is equal to or higher than D, the wave 
function is no more quadratically integrable and the 
phase transition occurs. An alternative way to analyze 
this relation between the melting process and the energy 
of each base pair is to note that the energy density of the 
lattice can be related with the melting temperature by the  

relation B

E

N
k T . As the critical temperature obtained  
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is 350 K, we can predict that the energy density neces- 

sary to denaturation is 0.03 
E

eV oscillator
N
 . One  

observes that this value is the same that was used to the 
depth of the potential well D which reinforce the previ- 
ous arguments. Summarizing, from this analysis, the de- 
naturation occurs when the energy per oscillator is at 
least equal to the depth of the Morse potential well. 

4. Dynamical Study of the Model 

In this section the dynamical results for the Peyrard- 
Bishop model are discussed. The numerical calculation 
can be simplified if we introduce dimensionless variables:  

2j ja y   and 

1
2 2

2
Da

t
m


 

  
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. The Hamiltonian (2)  

can be rewritten as a function of a single parameter: 
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24

k
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  and 2yH DH . So the 

equations of motion are given by: 

   1 1 2 exp 2 exp  j j j j j jC              (11) 

We integrate the equations of motion using the tenth 
order Runge-Kutta Nystrom method [26]. The initial 
condition is such that only the central oscillator of the 
chain is excited and all its energy is kinetic. Then, at time 

 all oscillators are in their equilibrium position and 
at rest with the exception of the central oscillator that has 
an initial velocity. The periodic boundary conditions is 
used, i.e., 0

0t 

N   and 1 1N   . Following the previ- 
ous discussion (Section 3), the number of oscillators used 
to perform the simulation is 21. 

In Section 3, we conjecture that the denaturation hap- 
pens if each oscillator shares an energy corresponding to 
the depth of the Morse potential well, D. By using the 
dimensionless variables, as writing in (10), this depth is 
tracked back to the value 0.5. In order to characterize the 
denaturation, we follow the position value (y) of each 
oscillator and its Morse potential energy as a function of 
the time. We consider that the chain reaches the denatu- 
ration when all the oscillators get the Morse potential 
equal to or larger than 0.5. In this case all the hydrogen 
bonds should be broken and the double strand should be 
separated. Figure 1 shows the position y of all the oscil- 
lators superposed as a function of the time. In this simu- 
lation it is used  and the energy density is 
0.7857. Thus, in Figure 1 there are 21 curves superposed, 
there is one curve for each site of the lattice. When all the 
oscillators acquire energy of the Morse potential equiva-  

21N 

 
(a) 

 
(b) 

Figure 1. (a) Position of each of the oscillators superposed 
as a function of the time; (b) A zoon in the region where the 

onsite potential is broken down. N = 21 and 0.7857
E

N
 . 

 
lent to the depth of the well, the positions of all oscilla- 
tors begin to rise constantly, so the chain starts a uniform 
translation motion. Once y represents the separation of a 
base pair, this behavior characterizes qualitatively the 
broken of the hydrogen bonds and consequently the 
DNA denaturation. 

Another result obtained from the dynamics is related 
with the behavior of the chain before the phase transition 
of the lattice. Following the time evolution of the energy 
of Morse for each oscillator we observe the behavior of 
the hydrogen bond in the denaturation process. A co- 
operative effect in this process is observed. Specifically, 
it is noted that when one hydrogen bond is broken it in- 
duces a broken of some neighbour hydrogen bonds form- 
ing “bubbles” in the lattice. This occurs in different parts 
of the chain and these regions grow up until the complete 
separation of the lattices, i.e., the denaturation occurs. 
This behavior is shown in the Figure 2 where the tem- 
poral evolution of the hydrogen bond break of each os- 
cillator can be observed. In this figure the site bonded is  
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Figure 2. Hydrogen bond of each oscillator in function of 
the time. Black color represents the formed bonds, while 
white color represents the broken bond. N = 21 and 

0.881
E

N
 . 

 
represented by black color and the broken hydrogen bond 
is indicated by the white color. 

Finally we analyze the energy density in the model. 
Then we simulate different energy densities and verify 
the necessary time to denaturation. This result is pre- 
sented in Figure 3. We note that small values of the en- 
ergy density correspond to high values of time to obtain 
the denaturation. The results suggest also that an asymp- 
totic behavior could be achieved for energy density near 
0.5, which is the well depth, in accordance with the 
thermodynamic results. Others initial conditions were 
tested and the results are qualitatively in agreement with 
these. 

5. Conclusions 

In this work we studied the thermodynamic and dynamic 
properties of the one dimensional model to study the DNA 
macromolecule. The thermodynamical analysis inferred 
that a chain of 21 oscillators should be sufficient large to 
analyze the behavior of the system for room temperatures 
(300 K), once that the error in the partition function is 
about 10–5 when despising the excited states of the 
Schrödinger-type Equation (4). It is important to observe 
that, if the system is near the denaturation temperature, 
the thermodynamic results indicate that it is necessary a 
large chain to describe its properties, otherwise the error 
in the partition function becomes significant.  

It is suggested a dynamical approach to analyze the 
thermal denaturation by studying the stretching of the 
base pairs (y) for each oscillator on the lattice. This ana- 
lysis permits to observe that the formation of bubbles is  

 

Figure 3. Energy density of the system as a function of the 
necessary time to occur denaturation. N = 21. 
 
part of the melting process. The minimum energy density 
needed to the denaturation is related with the energy of 
the potential well, i.e., it is necessary that all oscillators 
of the chain get energy higher than the parameter D of 
the Morse potential to get the melting. The dynamical 
calculations of the model, in a lattice of 21 oscillators, 
show that the denaturation occurs when the energy densi- 
ties tends to the value of D. However, for the obtained 
results the energy is always higher than that indicated 
from thermodynamics analysis. Two causes can be iden- 
tified to this behavior, first the energy in the dynamic si- 
mulation are not localized only in the Morse potential, 
part of it can be localized in the harmonic potentials. 
Other cause is related with the fact that the thermody- 
namics results indicate that near the denaturation tem- 
perature it is necessary a larger chain to describe the sys- 
tem. Nevertheless the behavior of the chain is in agree- 
ment with the DNA phenomenology and both formalisms 
converge to the same result. 
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