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Abstract 
 
The surface instability of Kelvin-Helmholtz type bounded above by a porous layer and below by a rigid sur- 
face is investigated using linear stability analysis. Here we adopt the theory based on electrohydrodynamic as 
well as Stokes and lubrication approximations. We replace the effect of boundary layer with Beavers and 
Joseph slip condition. Here we have studied the combined effect of electric and magnetic fields on Kel- 
vin-Helmholtz instability (KHI) in a fluid layer bounded above by a porous layer and below by a rigid sur- 
face. The dispersion relation is obtained using suitable boundary and surface conditions and results are de- 
picted graphically. Also the ratio Gm is numerically computed for different values of We and M given in the 
Table 1. From this it is clear that the combined effect of electric and magnetic fields with porous layer are 
more effective than the effect of compressibility in reducing the growth rate of RTI. Also, these results 
shows that with a proper choice of magnetic field it is possible to control the growth rate of Electrohydrody- 
namic KHI (EKHI) and hence can be restored the symmetry of IFE target. 
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1. Introduction 
 
KHI occurs when we consider the character of the equi- 
librium of a stratified heterogeneous fluid in which dif- 
ferent layers are in relative motion. The most important 
case is when two superposed fluids flow one over the 
other with a relative horizontal velocity, the instability of 
the plane interface between the two fluids when it occurs 
in this instance, is known as “Kelvin-Helmholtz Instabil- 
ity”. The KHI of a Newtonian incompressible fluid in a 
composite layer bounded by a densely packed fluid satu- 
rated porous lining on one side and another side by an 
impermeable rigid surface is investigated in this paper. 
This can occur when velocity shear is present at the in- 
terface within a continuous fluid or when there is suffi- 
cient velocity difference across the interface between two 
fluids. The stability analysis can be used to predict the 
onset of instability and transition from laminar to turbu- 
lent flow in fluids of different densities moving at various  

speeds. Helmholtz [1] studied the dynamics of two fluids 
of different densities when a small disturbance such as a 
wave is introduced at the boundary connecting the fluids. 
If surface tension can be ignored, and for some short 
enough wavelengths, two fluids in parallel motion with 
different velocities and densities yielded an interface that 
is unstable for all speeds. The existence of surface ten- 
sion stabilizes the short wavelength instability however, 
and theory then predicts stability until a velocity thresh- 
old is reached. The theory with surface tension included 
broadly predicts the onset of wave-formation in the im- 
portant case of wind-over-water. Also the study of this 
instability becomes applicable to inertial confinement 
fusion and plasma-Beryllium interface. The KHI in a 
composite layer differs from the KHI in two fluid layers. 
The KHI arises when two uniform fluids, separated by a 
horizontal boundary, are in relative motion. Because of 
its relevance to astrophysical, geophysical and laboratory 
situations, this problem has been analyzed by several  
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authors (Shore [2], Chandrasekhar [3]). Without surface 
tension, this streaming is unstable no matter how small 
the velocity difference between the layers may be. It was 
shown by Kelvin [4,5] that the surface tension will suppress 
the instability if the difference in velocity is sufficiently 
small. From an industrial view point, the momentum 
transfer and the KHI in composite region provides impe- 
tus for effective design of porous bearings in lubrication 
process, particularly in the slider bearings and in the ef- 
fective design of target in inertial fusion energy (IFE). 
Because of these importances the KHI is investigated in 
this paper using the linear stability analysis. Chandrase- 
khar [3] gave an introduction to classical KHI. He discussed 
the effects of surface tension, variable density, streaming 
velocity, rotation and applications of magnetic field on 
the instability behaviour. The experimental observation 
of KHI has been given by Francis [6]. The effect of rota- 
tion and a general oblique magnetic field on the KHI has 
been studied by Sharma and Srivastava [7]. The study of 
electrohydrodynamic (EHD) KHI of free surface charges, 
separating two semi-infinite dielectric fluids and influ- 
enced by an electric field, has been discussed by Mel- 
cher [8]. The main difference between KH and RT insta- 
bilities in inclusion of , which is a non-linear 
term, in the perturbation equations. 

 .V V

Elhefnawy [9] studied the non-linear KHI problem un- 
der the influence of an oblique electric field by employ- 
ing the method of multiple scales. He combined the cases 
of normal and tangential fields. He found that the nonli- 
near effects may be stabilized or destabilized depending 
on both density and dielectric constant. Mehta and Bhatia 
[10] investigated KHI of two viscous, superposed, rotating 
and conducting fluids. Singh and Khare [11] have invest- 
tigated the stability of two semi-infinite homogenous gra- 
vitating streams of infinite conductivity under uniform 
horizontal magnetic field and uniform rotation. Bhatia 
and Hazarika [12] discussed this stability problem for 
superposed viscous gravitating fluids. The importance of 
the KHI problem has been demonstrated by Benjamin 
and Bridges [13] who have given an excellent reappraisal 
of the classic KHI problem in hydrodynamics. They have 
shown that the problem admits of a canonical Hamilto- 
nian formulation and obtained several new results. More 
recently Sharma and Kumar [14] have studied the RTI of 
two superposed conducting Walter’s B' electroviscoe- 
lastic fluids in hydromagnetics while Allah [15] has in- 
vestigated the effects of magnetic field and heat and mass 
transfer on the KHI of superposed fluids. To our knowl- 
edge KHI in a composite layer namely a thin fluid layer 
bounded by a porous layer has not been given any atten- 
tion in spite of its importance in IFE. 

We also note that the flow through porous medium has 
been of considerable importance in recent years particu- 
larly among geophysical fluid dynamicists and petroleum 

engineers. The physical properties of comets, meteorites 
and interplanetary dust strongly suggest the significance 
of the effects of porosity in astrophysical context (see 
McDonnel [16] and Rudraiah and Srimani [17]). Sunil 
and Chand [18] have investigated the effects of perme- 
ability of the porous medium on different stability prob- 
lems. In this paper the flow in the porous layer is gov- 
erned by the Darcy equation and that in a thin fluid film 
is governed by Navier-Stokes equation. Following Bab- 
chin et al., [19] and Rudraiah et al., [20], a simple theory 
based on Stokes and lubrication approximations is used 
in this study by replacing the effect of the boundary layer 
with a Beavers and Joseph [21] slip condition, with the 
primary objective of using porous layer to suppress the 
growth rate of KHI. In the above studies the fluid has 
been considered to be Newtonian. The electrohydrody- 
namic Kelvin-Helmholtz instability of the interface be- 
tween two uniform superposed Rivlin-Ericksen viscoe- 
lastic dielectric fluid-particle mixtures in porous medium 
is investigated by El-Sayed [22]. El-Dib and Matoog [23] 
have studied the Electrorheological Kelvin-Helmholtz 
instability of a fluid sheet. This work deals with the gra- 
vitational stability of an electrified Maxwellian fluid sheet 
shearing under the influence of a vertical periodic elec- 
tric field. The field produces surface charges on the in- 
terfaces of the fluid sheet. Due to the rather complicated 
nature of the problem a mathematical simplification is con- 
sidered where the weak effects of viscoelastic fluids are 
taken into account. Khalil Elcoot [24] has studied the new 
analytical approximation forms for non-linear instability 
of electric porous media. In this work, we have examined 
the effects of stability of the normal electric field on the 
porous media, in view of the non- linear theory. The main 
purpose is to discuss a modulation instability of a finite 
wavetrain solution by using the method of multiple scales 
perturbation, and comparing the results with the linear 
instability theory. Non-linear electrohydrodynamic Kel- 
vin-Helmholtz instability (EKHI) was developed in the 
parallel flow of two statically stable fluids through po- 
rous media for Darcian and non-Darcian flows. The in- 
terface separating two semi-infinite dielectric fluids were 
influenced by a normal electric field in the absence of 
surface charges. The objective of this paper is to predict 
the combined effects of electric and magnetic fields on 
electrohydrodynamic KHI with porous layer. 
 
2. Mathematical Formulation 
 
The physical configuration is shown in Figure 1. We 
consider a thin target shell in the form of a thin film of 
unperturbed thickness h (Region 1) filled with an income- 
pressible, viscous, poorly electrically conducting light 
fluid of density f  bounded below by a rigid surface at 
y = 0 and above by an incompressible, viscous poorly  

Copyright © 2011 SciRes.                                                                                 WJM 



 269N. RUDRAIAH  ET  AL.

 

Figure 1. Physical configuration. 
 
conducting heavy fluid of density p  saturating a dense 
nanostructured porous layer of large extent compared to 
the shell thickness h. Also, the electrodes are embedded 
at the rigid surface y = 0 as well as at the interface y = h 
and there by an electric field is generated in fluid-porous 
medium composite system in addition with transverse 
magnetic field. The fluid in the thin film is set in motion 
by acceleration normal to the interface. The small per- 
turbations are amplified when acceleration is directed 
from the lighter fluid in the thin film to the heavier fluid 
in the porous lining. KHI can occur when there is suffi-
cient velocity difference across the interface between two 
fluids. To investigate this KHI, we consider a rectangular 
coordinate system (x, y) with the x-axis parallel to the 
film and y-axis normal to it. The perturbed interface 
 , x t  is along the y direction. 
The basic equations for clear fluid layer (region 1) and 

those for porous layer (region 2) are as given below: 
Region-1: 

0 q                (2.1) 

   2
0.f f ep E

t
             

q
q q q J H (2.2) 
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
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
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0     E E          (2.4b) 
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 0 1 h C C     0           (2.4d) 

Region-2: 
k p

Q
x


 


              (2.5) 

where the fluid velocity, E the electric field, H 

the magnetic field, J the current density, 

 ,u vq 

  the electri- 
cal conductivity, e  the density of charges, e  the die- 
lectric constant, k the permeability of the porous medium, 
  the electric potential, p the pressure, C the concen- 
tration, 0  magnetic permeability, 0  the electrical con- 
ductivity at the reference concentration C0,  ,0,0QQ  
the uniform Darcy velocity, h is the volumetric expan- 
sion coefficient of  ,   the fluid viscosity and   
the fluid density. 

The electrical conductivity  varies with concentra- 
tion C of DT as in Equation (2.4d). Then assuming neg- 
ligible advection of concentration, we have 

2

2

d

d

C

y
               (2.4f) =0

with 
C = C0 at y = 0           (2.4g) 

C = C1 at y = h.          (2.4h) 

Solving Equation (2.4f) using the above conditions and 
substituting the solution so obtained in Equation (2.4d), 
we get 

   1 1yy e  0 0             (2.4i) 

where  = hC and C = C1 – C0. We assume the fre- 
quency of charge distribution is smaller than the corre- 
sponding relaxation frequency of the electric field, and 
hence the time derivative of e  is negligible compared 
to  E   in Equation (2.3). From this, we get 

2 2

2 2x y

  
0

y

  
 

          (2.5) 

The above equation has to be solved subject to the 
boundary conditions 

0

x
v

h
at 0y              (2.6a) 

 0
0 at

x x
v y h

h


           (2.6b) 

where 0  is the applied electric potential. These condi- 
tions arise due to embedded electrodes at y = 0 and y = h 
and permits a linear variation of

v

 with x. 
The basic equations are simplified using the following 

Stokes and lubrication and electrohydrodynamic appro- 
ximations (See Rudraiah et al. [20]):  

1) The electrical conductivity of the liquid, , is negli- 
gibly small, i.e., 1  .  

2) The film thickness h is much smaller than the thick- 
ness H of the dense fluid above the film. That is 

h H  
3) The surface elevation  is assumed to be small 

compared to film thickness h. That is  

h   
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4) The Strauhal number S, a measure of the local accel- 
eration to inertial acceleration in Equation (2.2), is negli- 
gibly small. 

That is  

1
L

S
T U

   

where U L  is the characteristic velocity, v the ki- 
nematic viscosity, L    the characteristic length 
and 3 2T h  the characteristic time. 

Under these approximations Equations (2.1) and (2.2) 
for fluid in the film, after making dimensionless using 

2
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,
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

(2.7) 

become (after neglecting the asterisks for simplicity). 
Region 1: 

0
u v

x y

 
 
 

                     (2.8) 

2
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2
0 e x

p u
We E M u

x y
 

   
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0 e y

p
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y


 


                (2.10) 

where 2
0eWe v h3   is the electric number and  

0 0 f fM H h    is the Hartmann number. 

Region 2: 

2

1

p

p
Q

x


 


            (2.11) 

where p h k   is the porous parameter. 
Substituting the Equation (2.7) in Equation (2.5) and 

in the boundary conditions (2.6), we obtain 
2

2
0

yy

  
 


           (2.12) 

with boundary conditions 

at 0x y                  (2.13) 

0 at 1x x y                (2.14) 

The solution of Equation (2.12), using the above 
boundary conditions, is 

0 1
1

yx
x

e


 
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
e         (2.15) 

Equation (2.4a), using Equation (2.15), becomes 
2

0

1
y

e

x
e

e




 
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
          (2.16) 

and hence 

 
2

0

1

y

e x e

x e
E

x e





 





  

 
       (2.17) 

3. Dispersion Relation 
 
To find the dispersion relation, first we have to find the 
velocity distribution from Equation (2.9) using the fol- 
lowing boundary and surface conditions: 

at 0u 0 y               (3.1) 

p p B

u
u Q

y
  

  


 at y = 1 

where 

Bu u  at y = 1 

v
t





 at y = 1           (3.3) 

2

2

1
(1 )p We

B x

 
   


 at y = 1      (3.4) 

Here 2B h   is the Bond number and  , ,x y t   
is the elevation of the interface. 

The solution of (2.9) subject to the above conditions is 

 

   

2
5 4
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3
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2
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After integrating Equation (2.8) with respect to y be- 
tween y = 0 and 1 and using Equation (3.5), we get 

 
2 4

22 4

1
(1) 1v We

Bx x

   
      

      (3.6) 

where  
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2 3

4

Sin 1 Cosa M hM a hM

a M

  
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Then Equation (3.3), using Equations (3.6) and (3.4), 
becomes 
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 
2 4

22 4

1
1 We

t Bx x

    
       

 


     (3.7) 

To investigate the growth rate, n, of the periodic per-
turbation of the interface, we look for solution of Equa-
tion (3.7) in the form 

   expy i x nt              (3.8) 

where is the wave number and    y  
 

is the ampli- 
tude of perturbation of the interface. 

Substituting Equation (3.8) into (3.7), we obtain the 
dispersion relation in the form 

 
2

2
21n We

B

 
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 

         (3.9) 

The positive or negative sign in the second term in 
Equation (3.9) will depends on whether voltage difference 
is applied in the same direction of the gravity or opposite 
direction. So that the Equation (3.9) takes the form 

2 2
2(1 )n We

B
    

 
         (3.10) 

From Equation (3.10) we can obtain the results as par- 
tic

ducting region bounded 
by

ular cases for suitable choice of the parameters in 
Equation (3.10) as given below. 

Case 1: KHI in a poorly con
 porous layer and absence of magnetic field (i.e., M = 

0), 0 and 0p We   , Equation (3.10) reduces to 
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Case 2: KHI in magnetohydrodynamics (MHD) with-
out electric field bounded by porous layer. In this case, 

0, 0 and 0pM We   , Equation (3.10) reduces to 
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Case 3: KHI in the magnetohydrodynamics (MHD) 
case in the absence of porous layer. In this case, 

0, 0 and 0pM We   , Equation (3.10) reduces to 

 
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Also, Equation (3.10) can be expressed as 
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Setting n = 0 in Equation (3.10), we obtain the cut-off 
w


avenumber, ct  in the form 

1B Wct e             (3.15) 
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rrespond

are different from zero. 
, nm, is The co ing maximum growth rate

2

2(1 )B We
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Similarly, using (1 ) 2m B We , we obtain 

12bm

B
n                  (3.18) 

and hence 

 2

23 1m
m
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n
G Wn     e        (3.19) 

To know the reduction in growth rate of the IFE target, 
the analytical expression for Gm is computed for different 
values of We by fixing 4p   and 0.1p   and the 
results are tabulated in Ta  given by 
Equation (3.10) is also computed numerically for differ- 
ent values of parameters and the results are presented 
graphically in Figures 2-5. 
 

ble 1. The gro

. Results and Discussion 

 this study we have shown the surface instability of KH 

 

wth rate

4
 

2
51n We

B


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 
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where 

In
type in a fluid layer bounded above by a porous layer and 
below by a rigid surface is affected by the combined effect 
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Gm 
centage of reduction 

Variation of value Fixed values 

Table 1. Reduction in growth rate for different values of We 
and M. 

Per
in growth rate 

0.638 64% M = 10–2 

0.636 64% M = 10–1 

p = 0.1, p = 4, 

We

p = 0.1, p = 4, 

0.497 50% M = 100 

0.313 31% M= 2 

0.163 16% M = 5 

We = 0.25 

0.916 91%  = 0.1 

0.636 64% We = 0.25 

0.283 28% We =0.5 

0.070 7% We = 0.75 

0 0 We = 1 

M = 0.1 
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Figure 2. Growth rate, n versus the wavenumber, fo

.

  r 

different values of electric parameter We when ap = 0 1, p 

= 4, B = 0.02 and M = 5. 
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Figure 3: Growth rate, n versus the wavenumber,  for dif
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= 0.02 and We = 0.25. 
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Figure 4. Growth rate, n versus the wavenumber,  for dif-
ferent values of Bond number B when p = 0.1, p = 4, M = 5
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and We = 0.25. 
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Figure 5.Growth rate, n versus the wavenumber,  for dif- 
ferent values of porous parameter p when p = 0.1, B = 0.02

 
iven by Equation (3.10) is so general that we obtained 

ds in a fluid layer bounded above 
by

ef

can be restored the symmetry of IFE target. 


, 

M = 5 and We = 0.25. 
 
of electric and magnetic fields. The dispersion relation 
g
the three cases. The Equation (3.19) is numerically com- 
puted for different values of We and M and results are 
tabulated in Table 1. 

From this table, it is clear that combined effect of elec- 
tric and magnetic fiel

 a porous layer and below by rigid surface are more 
effective than the effect of compressibility in reducing 
the growth rate of KHI. In particular for We = 1, com-
plete symmetry can be maintained because nm = 0 and 
hence Gm = 0 for We = 1. Also from this table we con-
clude that the reduction of growth rate is considerable 
when the Hartmann number M is small. For example 
64% reduction in nm compared to bmn  for M = 10–1, 
50% reduction when M = 1, 31% reduction when M = 2 
and 16% reduction when M = 5 as d ined in Table 1. 
These shows that with a proper choice of magnetic field 
it is possible to control the growth rate of KHI and hence 
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The growth rate n given by the relation (3.10) is nu- 
merically computed for different values We, M, B and 

p . The results are depicted in the Figures 2 to 5 of 
gr

in t

owth rate n versus the wave number,  . From Figure 
2 we found that the growth rate decreases with increase 

he values of We = 0, 0.25, 0.5, 0.75 and 1. It is clear 
that the growth rate decreases with increase in the elec- 
tric energy compared to in absence of electric field. Also, 
Figure 3 shows that the increase in the Hartmann number 
M decreases the growth rate in the range of M = 2, 4, 6, 8, 
10. From this we conclude that the increase in M makes 
the system more stable towards stability and hence stabi- 
lizes the system. From Figure 4, it is observe that the 
growth rate increases with increase in the Bond number 
in the range of 0.04 to 0.01. The Bond number B being 
the reciprocal of surface tension implies that an increase 
in surface tension decreases the growth rate and hence 
makes the interface more stable. Finally, from Figure 5 
we found that as p  increases from 4 to 100 the growth 
rate decreases and move towards neutral stability. We 
conclude that an increase in p  also stabilizes the EKHI 
due to the resistance offered by the solid particles of the 
porous layer to the fluid. 
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