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Abstract 
 
In this paper, a simple nonlinear Maxwell model consisting of a nonlinear spring connected in series with a 
nonlinear dashpot obeying a power-law with constant material parameters, for representing successfully the 
time-dependent properties of a variety of viscoelastic materials, is proposed. Numerical examples are per-
formed to illustrate the sensitivity of the model to material parameters. 
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1. Introduction 
 
To better understanding mechanical responses of materi-
als subjected to deformations or forces, theoretical mod-
els are required. These models provide important ana-
lytical tools for predicting and simulating material func-
tions. When a material is subjected to deformations, the 
resulting stress is related to the strain by a mathematical 
relationship known as the constitutive law. This constitu-
tive equation can, thus, provide usefulness in determin-
ing rheological properties of materials. Since viscoelastic 
materials exhibit both combined viscous and elastic ma-
terial behaviors, their constitutive equation must mathe-
matically relate stress, strain and their time derivatives. 
For this purpose, these constitutive equations are often 
determined from combinations of springs and dashpots 
arranged in series and/or parallel [1]. Since mechanical 
responses of viscoelastic materials are in general nonlin-
ear, the well-known established linear theory of viscoe-
lasticity must be reasonably replaced by nonlinear theo-
ries. But, nonlinear models are more difficult to formu-
late than linear theories, because these models lead often 
to solve nonlinear differential equations that are gener-
ally non-integrable. In this perspective, several models of 
different complexities have been proposed to describe 
viscoelastic material functions [2]. To take into account 
nonlinear viscoelastic material properties, it is needed to 
modify the simple classical Maxwell and Voigt models 

or their different combinations for including nonlinear 
terms. Many successful predictive models are shown to 
be based on the extension of classical linear rheological 
models to finite deformations [3] and “in press” [4-8]. 
The modifications consist to introduce nonlinear elastic 
springs and/or nonlinear dashpots in the classical linear 
models. Another way is to consider that the materials 
functions depend on the magnitude of the stress, strain or 
the strain rate. The resulting model according to Alfrey 
and Doty [1], is interesting since, it evaluates the mate-
rial properties in terms of differential equations that can 
be solved for a wide variety of transient conditions. In 
viscoelasticity theory, there are only a few theoretical 
models formulated with constant-value material coeffi-
cients [3]. Thus, constant coefficients nonlinear rheolo- 
gical models are required. Following this viewpoint, Corr 
et al. [3] extending the Maxwell fluid model to finite 
deformations, constructed a Riccati differential equation 
that is useful to describe the strain stiffening and soften-
ing response of some viscoelastic materials. Recently, 
Monsia “in press” [4] utilizing a power series expansion 
method that consisted in an extended Voigt model to 
large deformations taking into consideration the inertia 
term, developed a hyperlogistic equation which repre-
sents successfully the time- dependent mechanical prop-
erties, that is to say, the strain stiffening and softening 
behavior, of a variety of viscoelastic materials. Recently 
again, Monsia “in press” [5] using a second-order elastic 
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spring in series with a classical Voigt element, which is 
an extended form of the standard linear solid to finite 
strains, formulated a hyperlogistic-type equation to re-
produce the nonlinear time-dependent stress response of 
some viscoelastic materials. More recently, Monsia “in 
press” [6] developed a single differential constitutive 
equation derived from a standard nonlinear solid model 
consisting of a polynomial elastic spring in series with a 
classical Voigt element for the prediction of time-   
dependent nonlinear stress of a class of viscoelastic ma-
terials. More recently again, Monsia “in press” [7] for-
mulated a nonlinear four-parameter rheological Voigt 
model consisting of a nonlinear Voigt element in series 
with a classical linear Voigt element with constant mate-
rial coefficients for representing the nonlinear stiffening 
response of the initial low-load portion and the softening, 
that is to say, the S-shaped mechanical behavior of some 
viscoelastic materials. Very lately, Monsia “in press” [8] 
generalized successfully the previous model “in press” [7] 
by replacing the second-order elastic spring present in 
the nonlinear Voigt element by a polynomial elastic 
spring. The model “in press” [8] was shown to be able to 
predict accurately the nonlinear stiffening response of the 
initial low-load portion and the softening behavior of a 
variety of viscoelastic materials. 

In this study, a simple nonlinear Maxwell model (Fig-
ure 1) consisting of a nonlinear spring connected in series 
with a nonlinear dashpot obeying a power-law with con-
stant material parameters, for representing successfully the 
time-dependent properties of a variety of viscoelastic ma-
terials, is proposed. Under a linear strain-path control the 
constitutive law gives a mathematical description of the 
stress versus time relationship as a hyperlogistic function, 
which appears powerful to repre- sent any S-shaped curve. 
The model can then correctly reproduce the strain stiffen-
ing and softening responses noted in some viscoelastic 
materials at large strains. Numerical examples are per-
formed to illustrate the sensitivity of the model to material 
coefficients and the validity of the model. In particular the 
model is shown to be very sensitive to the magnitude of 
the rate of application of the strain. 
 

 

Figure 1. The proposed rheological model. 

2. Mechanical Model 
 
2.1. Theoretical Formulation 
 
In this part we describe the theoretical rheological model 
and derive the governing differential equation including 
the nonlinear restoring force and damping effects. Most 
viscoelastic materials are highly influenced by the non-
linear elastic and viscous damping terms so that, their 
rheological material properties are nonlinear time- 
dependent. For this, a best description of these materials 
must proceed from the use of nonlinear theories. To 
build our proposed viscoelastic model, we start from the 
classical linear Maxwell model [1] in which we replace 
the linear elastic spring with a nonlinear elastic spring 
(with stiffness E) obeying a power-law and also the lin-
ear dashpot with a nonlinear dashpot (with viscosity η) 
obeying a power-law as shown in Figure 1. Thus, the 
mechanical properties of the considered material are di-
vided into two parts: a nonlinear elastic element which 
captures the nonlinear pure elastic behavior of the mate-
rial at equilibrium, acting in series with a nonlinear 
damping element capturing the time dependent history 
response of the material. From the mathematical point of 
view, the nonlinear stiffness and the nonlinear damping 
terms are included in a model in order to loss the linearity 
in the differential constitutive equation that represents the 
dynamic properties of the mechanical system studied. Due 
to the fact that the elements are in series the total stress  
σ  and the total strain ε  can be written as  

1
1

2

1 2

m

n

Eσ ε

σ ηε
ε ε ε

 =

 =
 = +


&                       (1) 

where 1ε  and 2ε  are the strains of the nonlinear 
spring and the nonlinear dashpot, respectively. η is the 
viscosity module, and E is the elasticity module. The dot 
denotes the time derivative and, m and n are nonlinearity 
parameters. By differentiations with respect to time and 
making appropriate substitutions, one can deduce from 
Equation (1) the constitutive differential equation  
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m nmE
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Equation (2) represents mathematically in the single 
differential form the relation between the total stress σ  
induced in the material under a strain history ε . This 
equation is a first-order nonlinear ordinary differential 
equation in σ for a given strain history ε  when the 
numbers m and n are identically different from the number 



M. D. MONSIA 
 

Copyright © 2011 SciRes.                                                                              WJM 

160 

one. 
 
2.2. Dimensionalization 
 
If M , L  and T  denote the mass, length and time di-
mension, respectively, the dimension of the stress varies 
as 1 2ML T− − . The strain ε  is a dimensionless quantity. 
Therefore, in Equation (2) the coefficient E possesses the 
same dimension with the stress σ , that of η varies as  

1 2
1

n
nML T

−
− . 

 
2.3. Solutions Using a Linear Strain-Path Control 

We derive in this section the hyperlogistic-type solution 
allowing the description of the time-dependent stress 
induced in the material studied. For this, we consider that 
the material under consideration is subjected to a linear 
strain-path control, that is to say 

( )t tε α=                      (3) 

where α  is the rate of application of the strain. 
Thus, Equation (2) becomes 

1

1/
1 m n

m
m nmE

σ
σ σ α

η

−

+ =&           (4) 

In order to solve Equation (4) we proceed to the fol-
lowing change of variable  

1
my σ=                       (5) 

or  
myσ =                        (6) 

Differentiating Equation (5) with respect to time yields  
11 m

my
m

σ σ
−

=& &                     (7) 

Substituting these relationships (Equation (6) and (7)) 
into Equation (4), the resulting equation becomes 

1
1m

mn m
n

Ey y Eα
η

+ =&               (8) 

Equation (8) is also a first-order ordinary differential 
equation in y, which can be solved analytically with the 
suitable boundary conditions of the mechanical problem 
considered in hyper-exponential or hyperlogistic-type 
function for special values of the exponent mn.  

2.3.1. Case A: 1mn =  
In this particular case where 1m

n
= , Equation (8) be-

comes a simple linear first-order ordinary differential 
equation  

n
n

n

Ey y Eα
η

+ =&                   (9) 

which can be easily solved analytically using the initial 
condition 

0t = , ( ) oy t y=  
Thus, we can obtain as solution 

( ) ( )exp
n

n n
o n

Ey t y tαη αη
η

 
= + − − 

 
        (10) 

From the Equation (6) we may deduce taking into ac-
count the Equation (10) the stress versus time as 

( ) ( )
1

exp
n n

n n
o n

Et y tσ αη αη
η

  
= + − −  

   
     (11) 

Equation (11) gives the time variation of the stress in 
the viscoelastic material studied. It models the time- de-
pendent stress as a hyper-exponential function showing 
that the initial stress is different from zero. Moreover, 
Equation (11) predicts a stress that asymptotically ap-
proaches a maximum value with increasing time. 

2.3.2. Case B: 2mn =  
In this particular case where 2m

n
=  , Equation (8) be-

comes a first-order Riccati nonlinear ordinary differential 
equation [3] and “in press” [4-8]. 
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which can be easily solved analytically using the initial 
condition 
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 (13) 
We can deduce from Equation (6) taking into considera-
tion the above Equation (13) the stress versus time  
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Equation (14) describes the time variation of the stress 
in the viscoelastic material studied as a hyperlogistic-type 
function, which is powerful to reproduce any S-shaped 
curve [9,10].  
 
3. Numerical Results and Discussion  
 
In this part some numerical examples concerning the 
time-dependent stress are presented to illustrate the ability 
of the model to reproduce the mechanical response of the 
viscoelastic material studied. The dependence of the stress 
versus time curve on the material parameters is also dis-
cussed.  
 
3.1. Case A: = 1mn   
 
Figure 2 exhibits the typical time-dependent stress curve 
with an increasing until a peak asymptotical value, ob-
tained from Equation (11) with the value of coeffi-
cients 1α = , 1η = , 1E = , 3n = , 0.01oy = . It can be 
seen from Figure 2 that the model is capable to represent 
mathematically and accurately the typical exponential 
stiffening of some viscoelastic materials, for example, 
soft living tissues and soils, as shown in [3] and “in press” 
[4-8]. The model predicts a mechanical response in which 
the slope, after reaching its maximum value at the in-
flexion point, declines gradually with increase time until 
the failure point at which the slope reduces to zero.  

Figure 3(a), (b), (c), (d) and (e) shows the effect of 
material parameters on the time-stress response. The 
effects of these parameters are studied by varying one 
coefficient while keeping the other four constant. Figure 
3(a) illustrates how the rate of application of the strain α  
affects the maximum value of the stress. The graph shows 
that an increasing α , increases the maximum stress and 
the slope, and has no significant effect on the time re-
quired to  

reach the maximum stress and on the initial value of the 
stress. The red color corresponds to 1α = , the blue to 

2α = , and the green to 3α = . The other parameters are 
1η = , 1E = , 3n = , 0.01oy = . 

In Figure 3(b) is shown the dependence of the stress on 
the viscosity coefficient η. An increase η , increases the 
peak stress and the time needed to reach it. The slope 
increases also. But an increasing η, has no important 
effect on the initial value of the stress. The red color 
corresponds to 1η = , the blue to 2η = , and the green to 

3η = . The other parameters are 1α = , 1E = , 3n = , 
0.01oy = . 

The stress curves at various values of the elasticity 
module E for the material under study are shown in Fig-
ure 3(c). An increasing E, greatly and fast increases the 
value of the stress on the time period considered. The 
slope increases with increase E. The red color corresponds 
to 1E = , the blue to 2E = , and the green to 3E = . The 
other parameters are 1α = , 1η = , 3n = , 0.01oy = . 

Figure 3(d) shows the sensitivity of the stress-time 
curve to the nonlinearity parameter n. An increasing 
nonlinearity parameter n, has a high effect on the stress 
value in the time period considered. Indeed, an increasing 
n, significantly and fast increases the value of the stress 
and also the initial value of the stress increases with in-
crease n. The red color corresponds to 3n = , the blue to 

5n = , and the green to 7n = . The other parameters are 
1α = , 1η = , 1E = , 0.01oy = . 

We observe from Figure 3(e) that an increasing initial 
value oy , has a significant effect on the stress value in the 
time period considered. In fact, an increase oy , increases 
significantly and fast the stress value and also the initial 
value of the stress. An increasing oy , reduces the slope. 
The stress becomes constant, that is to say,  

1
n n csteσ αη = =   

or 
 

 
Figure 2. Typical stress-time plotting exhibiting a maximum asymptotical value. 
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(c) 
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(d) 

 
(e) 

Figure 3. (a). Stress versus time curves at various values of the strain rate; (b). Stress-time curves with different values of the 
viscosity module; (c). Stress versus time curves showing the effect of the elasticity module E; (d). Stress versus time curves 
with different values of the nonlinearity parameter n; (e). Stress-time curves for three different values of oy . 
 

cstey no ==
1

σ  

with  
n

oy αη=  

and the slope reduces to zero. The red color corre-
sponds to 0.01oy = , the blue to 0.1oy = , and the green 
to 0.5oy = . The other parameters are 1α = , 1η = , 

1E = , 3n = . 

3.2. Case B: = 2mn  

Figure 4 exhibits the typical time-dependent stress curve 
with an increasing until a peak asymptotical value, ob-
tained from Equation (14) with the value of coefficients 

1α = , 1η = , 1E = , 1n = , 0.01oy = . It can be ob-
served from Figure 4 that the model is able to represent 

accurately the typical time-dependent stress curve of a 
variety of viscoelastic materials, as mentioned above, for 
example, soft living tissues and soils, as shown in [3] and 
“in press” [4-8]. The stress versus time curve is nonlinear, 
with a nonlinear beginning initial portion, and illustrates 
then the sigmoid mechanical behavior of the viscoelastic 
material considered. The plotting showing a nonlinear 
sigmoid behavior indicates, consequently, the  
material stiffening followed by softening. The model 
predicts a mechanical response in which the slope, after 
reaching its maximum value at the inflexion point, de-
clines gradually with increase time until the failure point 
at which the slope reduces to zero. 

In Figure 5(a) is shown the dependence of the stress 
versus time curve on the strain rate α . The graph indi-
cates that the peak stress increases with increasing α . 
The slope increases also with increase the rate of appli-
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cation of the strain. But, an increasingα , has no impor-
tant effect on the time required to attain the peak stress. 
The red color corresponds to 1α = , the blue to 2α = , 

and the green to 3α = . The other parameters are 1η = , 
1E = , 3n = , 0.01oy = . 

Figure 5(b) illustrates how the viscosity coefficient η 
 
 

 
Figure 4. Typical stress versus time curve exhibiting a maximum asymptotical value. 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 
(e) 

Figure 5. (a). Stress-time curves at various values of the rate of application of the strain α . (b). Stress versus time curves at 
three different values of the coefficient of viscosity η. (c). Stress-time curves for various values of the elasticity module E. (d). 
Stress-time curves showing the effect of the nonlinearity parameter n; (e). Stress versus time curves for three different values 

oy . 
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affects the maximum value of the stress. The graph 
shows that an increasing η, increases the maximum stress 
and increases also the time needed to attain the maxi-
mum stress. The red color corresponds to 1η = , the blue 
to 2η = , and the green to 3η = . The other parameters 
are 1α = , 1E = , 3n = , 0.01oy = . 

It can be observed from Figure 5(c) the dependence of 
the stress on the elasticity module E. An increase E, has a 
great influence on the stress value. Indeed, it increases 
fast in the early periods of time. Then, this influence de-
creases as time tends to infinity, and the curves tend to-
wards the same asymptotic value of the stress. The slope 
increases with increase E. The red color corresponds to 

1E = , the blue to 2E = , and the green to 3E = . The 
other parameters are 1α = , 1η = , 3n = , 0.01oy = . 

The stress curves at various values of the nonlinearity 
parameter n for the material under consideration are 
shown in Figure 5(d). An increasing n, has a high effect 
on the stress value. In fact, the stress increases fast in the 
early periods of time. Then, this effect decreases as time 
tends to infinity, and the curves tend towards the same 
asymptotic value of the stress. The nonlinearity of the 
initial portion of curves becomes less important with 
increasing n. The red color corresponds to 1n = , the blue 
to 3n = , and the green to 5n = . The other parameters 
are 1α = , 1η = , 1E = , 0.01oy = . 

We observe from Figure 5(e) that an increasing initial 
value oy , has an important effect on the stress value. 
Indeed, the stress increases fast in the early periods of 
time. Then, this influence decreases as time tends to in-
finity, and the curves tend towards the same asymptotic 
value of the stress. Moreover, an increasing oy , in-
creases the initial value of the stress. The red color cor-
responds to 0.01oy = , the blue to 0.1oy = , and the 
green to 0.5oy = . The other parameters are 1α = , 

1η = , 1E = , 3n = . 
The previous numerical examples show that theoreti-

cal models are important tools for the prediction and si-
mulation of viscoelastic behavior of materials. In this 
work, a simple nonlinear viscoelastic model is presented. 
The present model has been developed following two 
working hypothesis. The first postulates that the material 
properties can be divided into a nonlinear pure elastic 
component obeying a power-law and acting in series 
with a nonlinear damping element obeying a power-law 
and capturing the time-dependent deviation from the 
equilibrium state. The second hypothesis assumes that 
the material is subjected to a linear strain-path control. 
Under these restrictions, the model predicted the time- 
dependent stress induced in the material as a hyperlogis-
tic-type function, which is able to reproduce any S-shaped 
curve as shown by numerical examples. These predicted 
results by the proposed model are in very agreement with 

those published in the literature. The proposed model is an 
extension of the classical Maxwell model to large de-
formations by means of two parameters m and n. It ap-
peared evident that for 1m =  and 1n = , the present 
model reduces to the well-known Maxwell model. Con-
sequently, these parameters assure the role of nonlinearity 
coefficients. 

 
4. Conclusions  

 
A complete characterization of viscoelastic materials is 

very difficult to perform, due to the fact that the me-
chanical response of these materials is time-dependent 
and history-dependent, and moreover, their stress-strain 
curve is nonlinear. Following this viewpoint, nonlinear 
theoretical models are necessary to better predict and 
understand the time-dependent behavior of materials. For 
this purpose, a nonlinear generalized Maxwell model has 
been developed. The model allowed, according to the 
obtained results, describing mathematically and accu-
rately the nonlinear time-dependent stress in some vis-
coelastic materials, as a hyperlogistic-type function, that 
is powerful to represent any sigmoid curve. The present 
model, in particular, is shown to be very sensitive to the 
magnitude of the strain rate. Altogether, more experi-
mental results and practical tests are needed to further 
validate the feasibility of this model. 
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