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Abstract 
 
In the present paper, the boundary layer flow of Walters Liquid B Model over a stretching plate has been 
considered to solve heat flow problem with variable conductivity. First, using similarity transformation, the 
velocity components have been obtained. Then, the heat flow problem has been considered in two ways: 1) 
prescribed surface temperature (PST), and 2) prescribed stretching plate heat flux (PHF) in case of variable 
conductivity. Due to variable conductivity, temperature profile has its two part- one mean temperature and 
other temperature profile induced due to variable conductivity. The related results have been discussed with 
the help of graphs. 
 
Keywords: Boundary Layer Flow, Similarity Solution, Variable Thermal Conductivity, Prandtl Number 

1. Introduction 
 
Due to number of applications in industrial manufacturing 
process, the problem of boundary layer flow past a stret-
ching plate has attracted considerable attention of re-
searchers during the past few decades. Examples of such 
technological process are hot rolling, wire drawing, glass- 
fiber and paper production. In the process of drawing 
artificial fibers the polymer solution emerges from orifice 
with a speed which increases from almost zero at the ori-
fice up to a plateau value at which it remains constant. 
The moving fiber, which is of great technical importance, 
is governed by the rate at which the fiber is cooled and 
this, in turn affects the final properties of the yarn. A 
number of works are presently available that follow the 
pioneering classical work of Sakiadis [1], F. K. Tsou, E. 
M. Sparrow, R. J. Goldstein [2] and Crane[3]. The fol-
lowing Table lists some relevant works that pertain to 
cooling liquids, i.e., heat transfer for stretching surface: 
 

Author/s 
Type of vis-

co-elastic fluid 
Remarks 

K. R. Rajagopal, T. Y. Na, A. S. 
Gupta [4] 

Second order fluid Not heat transfer

K. R. Rajagopal, T. Y. Na, A. S. 
Gupta [5] 

Second order fluid Not heat transfer

N. M. Bujurke, S. N. Biradar, P. 
S. Hiremath [6] 

Second order fluid Heat transfer 

B. S. Dhanpat, A. S. Gupta [7] Second order fluid Heat transfer 

N. Ahmad, G. S. Patel and  
B. Siddappa [8] 

Walter’s liquid B Heat transfer 

D. Rollins, K. Vajravelu [9] Second order fluid Heat transfer 

N. Ahmad, G. S. Patel,  
B. Siddappa [10] 

Walter’s liquid B Heat transfer 

S. P. Lawrence, N. B. Roa [11] Second order fluid Heat transfer 

M. I. Char [12] Second order fluid Heat transfer 

A. Naseem [13] Walter’s liquid B Heat transfer 

N. Ahmad [14] Walter’s liquid B Heat transfer 

D. Kelly, K. Vjravelu,  
L. Andrews [15] 

Walters’ liquid B Heat transfer 

N. Ahmad, K. Marwah [16] Walter’s liquid B Heat transfer 

N. Ahmad, K. Marwah [17] Walter’s liquid B Heat transfer 

A. M. subhas, A. Joshi,  
R. M. Sonth [18] 

Walter’s liquid B Heat transfer 

R. M. Sonth, S. K. Khan,  
A. M. Subhas [19] 

Walter’s liquid B Heat transfer 

Siddheshwar, Mahabaleswar 
[20] 

Walter’s liquid B Heat transfer 

M. Subhas Abel, P. G. Sidd-
heshwar, Mahantesh 
M. Nandeppanavar [21] 

Walter’s liquid B Heat transfer 
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There are liquid metals whose thermal conductivity var-
ies with temperature in an approximately linear manner 
in the range from 0˚ F to 400˚ F. In 1996, T. C. Chiam 
[22] considered heat transfer problem with variable 
thermal conductivity in stagnation-point flow towards 
stretching sheet. N. Ahmad and K. Marwah [16,17] also 
studied boundary layer flow of Walters Liquid B Model 
with heat transfer for linear stretching plate with variable 
thermal conductivity numerically. 

In almost all the flow problems over stretching sheet 
with heat transfer referred so far where closed form solu-
tion is obtained, the thermal conductivity of liquid has 
been taken constant. In this paper, we try to solve the 
boundary layer flow of Walters Liquid B Model over a 
stretching plate and heat transfer with variable thermal 
conductivity in the following two cases: 

1) prescribed surface temperature (PST), and 2) pre-
scribed stretching plate heat flux (PHF). The temperature  

field has been obtained in each case and the effect on it, 
of Visco-elasticity and Prandtl number has been dis-
cussed graphically.  
 
2. Mathematical Formation and Solution  
 
The problem considered here is the steady boundary 
layer flow due to a moving flat plate in a quiescent Wal-
ters Liquid B Model. The flow is two dimensional where 
x-axis is along the plane of moving plate and y-axis is 
normal to it, respectively. We assume that the surface is 
moving continuously with the velocity  w wu U x  in 
the positive x-direction. Under these assumptions, the 
boundary layer along moving plate is governed by the 
equations: 

0
u v

x dy

 
 


                (1) 

2 3 3 2

02 2 3 2

u u u u u u u u u
u v k u v

2

x y xx x y y y


y x y

         
      

          
                      (2) 

where u, the horizontal velocity component; v, the verti-
cal velocity component;  , the kinematic viscosity; k0, 
the coefficient of visco-elasticity The relevant boundary 
conditions are: 

0, , 0, 0

, 0
wy u u mx v m

y u

    

 
 

Introducing the dimensionless variables 

,  ,  ,  
y uh x v

y u x v
h h

h

 
     

the Equations (1) and (2) reduce to 

0
u u

x y

 
 

 
                 (3) 

2 3 3 2

12 2 3 2

u u u u u u u u u
u v k u v

2

x y xy x y y y y x y

         
      
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                      (4) 

where k1=
0
2

k

h
, 

with boundary conditions 

0, , 0, 0

, 0

y u mx v m

y u

   
 

            (5) 

where bar has been dropped for convenience. 
Setting the similarity solution of the form  u mxf y , 

we have 

 v mf y                  (6) 

Putting u and v in the Equation (2), we have 

                2 2
1

1
2 ( ) ivf y f y f y f y k f y f y f y f y f y

m
                        (7) 

which is non-linear differential equation of order three. 
The boundary conditions (5) reduce to 

0, 1, 0y f f                  (8) 

,y f    0                  (9) 

Boundary conditions suggest that the velocity function 
may be of the form  where r is complex 
number with positive real part. Thus, 

  e ryf y  

 1 e rym
v

r
    

Now, from the Equation (7), we get 

1

1

1
r

k
m




.  

Therefore, the velocity components become as follows: 

e and 1 ery rym
u mx v

r
              (8) 

 
3. Heat Transfer Problem 
 
In absence of viscous dissipation and heat generation, the 
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energy equation for two dimensional heat flow is given 
by 

P

T T T
C u v k

x y y y


     
        





T

          (9) 

subject to boundary conditions 

0,

,
Py T T

y T 

 
 

              (10) 

where TP is plate temperature, T is temperature of sur-
rounding fluid, CP is specific heat at constant pressure 
and k is thermal conductivity. 
 
3.1. Case A: Prescribed Power Law Surface  

Temperature (PST) 
 
Let the surface temperature be of the form  

2

0, p

x
y T T T A

l
      
 

 

while the temperature out side the dynamic region be 
. Now, we define the dimensionless tem-

perature by 
,y T    T

 
p

T T

T T
  







 

where .ry  . 
For liquid metals, it has been found that the thermal 

conductivity varies with temperature in an approximately 
linear manner in the range from 0˚ F to 400˚ F. There-  

fore, we assume k as 1k k    where Pk k

k
 




 .  

Now, substituting u and v and changing the independent 
variable y to ry  , we have 

   2
2

Pr
1 e 0

m

r
                (11) 

with boundary conditions  

0, 1                  (12) 

, 0                  (13) 

From Equation (11), we note that the heat transfer 
takes place in two parts, that is, one part of heat transfer 
is due to temperature difference and the other part is due 
to variable thermal conductivity. We denote the first part 
by m and second by v. Thus, equating the terms inde-
pendent of  and the terms involving , we have 

 2

Pr
1 e 0m

m

r
     



          (14) 

 0 1, 0 asm m             (15) 

and 
2 0v v v                     (16) 

 0 1v  , 0v   as           (17) 

The solution of the Equation (14) is 

 

 

2

2
0
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exp e d
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exp e d

m

m

r

m

r







 


 







   



   
 






        (18) 

Equation (17) is a non-linear differential equation of 
order two. Let the solution of this equation be of the 
form 

   1v

     

Putting this solution in the Equation (18), we have 

22  0                 (19) 

The roots of this equation are 0 and 1/2. Therefore, 

  1v A B                 (20) 

The general solution (20) of the Equation (16) is real 
only when 0 1 

0

. Therefore, the heat transfer due to 
variable thermal conductively takes place within the dy-
namic region 1  . Hence, the boundary conditions 
(17) may be presented as 

0, 1

1, 0
v

v

 
 
 

 
               (21) 

The solution (20) finally reduces to 

   
1

21v      0,1           (22) 

 
3.2. Case B: Prescribed Power Law Surface Heat 

Flux (PHF Case) 
 
The power law heat flux on the surface of stretching 
plate is considered to be a quadratic power of x in the 
form 

2
T x

k D
y l

       
 at           (23) 0y 

T T , as            (24) y 

where D is a constant, k is the thermal conductivity. Now 
we define dimensionless temperature  g   by 

  ,
p

T T
g

T T
 







             (25) 

where 
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 when   0 1g   

and ry  . 
Writing the Equation (11) in terms of  g  , we get 

the following differential equation 

     2
2

Pr 1 e 0
m

g g gg
r

        g   (26) 

together with boundary conditions: 

1 at 0

0 as

g

g




   
 

             (27) 

Equating the terms independent of   and the terms 
involving  from Equation (26), we get the following 
two boundary value problems: 



     2
Pr 1 0m

m
g e g

r
    m        (28a) 

 0 1mg    ,  as 0mg         (28b) 

and, 

     2 0v v vg g g              (29a) 

 0 1vg    ,  as 0vg         (29b) 

The solution of the Equation (28a) together with 
boundary conditions (28b) is given by 

   2
Pr

2
exp Pr e d

m

r
m

m
g e

r




 


    
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  (30) 

The general solution of the Equation (29a) is 

  1vg C D                (31) 

where C and D are arbitrary constants to be determined. 
Here, we observe that the dynamic region for this tem- 
perature field is 0 1   as it was in PST case. There- 
fore, the boundary conditions may be taken as 

1 at 0

0 as 1
v

v

g

g




   

 
              (32) 

Hence finally the solution becomes 

  2 1vg                  (32) 

 
4. Discussion and Results 
 
A boundary layer flow of visco-elastic fluid (Walters 
Liquid B Model) over a stretching plate and heat transfer 
has been analyzed through out this paper. The boundary 
layer equations of momentum and heat transfer have 
been solved analytically. Two different analytical ex-
pressions have been obtained for dimensionless tem-

perature fields for two general cases of boundary condi-
tions namely 1) PST case, and 2) PHF respectively. The 
equation governing the induced temperature field due to 
variable thermal conductivity has been solved with modi-
fied boundary conditions in both the cases PST and PHF 
The related results have been discussed in the subsequent 
paragraphs in detail. 

Figure 1 is a graph drawn for mean temperature field 
 m   versus   in PST case taking different values of 

visco-elastic parameter 0 . It is observed that the tem-
perature 

k
 m   at the surface of stretching plate is in-

variant with respect to physical parameters. Further, we 
observe that as we move away the stretching plate within 
dynamic region, the temperature field increases as visco- 
elastic parameter 0  increases. Physically, when 0  
increases, the fluid absorbs more heat which causes the 
increase of temperature. 

k k

Figure 2 exhibits variation pattern of mean tempera-
ture field qm(h) with regard to Prandtl number Pr in PST 
case. We notice that as Prandtl number Pr increases, the 
mean temperature decreases. 

Figure 3 exhibits the variation pattern of induced 
temperature field qv in PST case. This temperature field 
is independent of k0 and Pr. We see that the induced 
temperature decreases as we move away the plate. The 
variation pattern is represented by a parabolic curve 
having focus at h = 1. qv decreases as we move away the 
stretching plate and it becomes almost zero at h = 1 
which end upper edge of boundary layer thickness. 

Figure 4 is the graph of mean temperature field 
 mg   versus   in PHF case. Here we observe that 

this temperature field attains the maximum value at the 
surface of stretching plate which is more than PST case. 
The reason of this maximum value is that the direction of 
heat flow is from fluid to stretching plate. Temperature 
field is approaching to zero asymptotically. The variation 
pattern is almost same as in PST case. 
 

 

Figure 1. Mean temperature θm(η) for different values of 
visco-elastic parameter k1 in PST case. 
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Figure 2. Effect of Prandtl number Pr mean temperature 
field θm(η) keeping visco-elasticity k1 = 0.4 fixed in PST 
case. 
 

 

Figure 3. Variation pattern of θv within dynamic region [0,1) 
PST case. 
 

 

Figure 4. Mean temperature gm(η) for different values of 
visco-elastic parameter k1 in PHF case. 

 

Figure 5. variation pattern of mean temperature gm(η) for 
different values of Prandtl number Pr for k1= 0.4 in PHF 
case. 
 

Figure 5 shows the graph of  mg   versus   for 
the different values of Prandtl number Pr in PHF case. It 
has been observed that as Pr increases, temperature field 
decreases absolutely. Temperature field is tending to 
zero asymptotically. 

Equation (32) represents the temperature field induced 
by variable thermal conductivity in PHF case. The ge-
ometry of this equation is parabola having focus at h = 1. 
This temperature field is independent of k1 and Pr. We 
see that the induced temperature decreases as we move 
away the plate. It varies from maximum at the plate to 
zero at the upper end of boundary layer.  

Putting k0 = 0, we get the results due to Naseem Ah-
mad, Z. U. Siddiqui and M. K. Mishra [23]. 
 
5. Conclusion 
 
The boundary layer flow of Walters Liquid B over linear 
stretching plate has been studied together with heat 
transfer with variable thermal conductivity. The heat 
transfer has been studied by considering two cases: PST 
and PHS. The effect of visco-elasticity k0 has been 
looked upon in the Figures 1 and 2. This paper is an ex-
tension of the work due to Naseem Ahmad, Z. U. Sid-
diqui and M. K. Mishra [23]. 
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