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Abstract 
 
This paper discusses the generalized play hysteresis operator in connection with the KdV equation. Results 
from the nonlinear semigroup theory are applied to assure the existence and uniqueness. The KdV equation 
with hysteresis is reduced to a system of differential inclusions and solved. 
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1. Introduction 
 
The word hysteresis originates in the Greek word 
hysterein, which is translated as to be behind or to come 
later. The related Greek word hysteresis means short- 
coming or lag in arrival. Ewing in 1885 [1] defined 
hysteresis as follows: When there are two quantities M 
and N such that cyclic variations of N cause cyclic 
variations of M, then if the changes of M lag behind 
those of N, we may say that there is hysteresis in the 
relation of M and N. This definition gives an idea of 
what hysteresis is. The hysteresis is coupling to PDEs 
with hysteresis, which arise in many fields such plasticity, 
dynamics with friction, ferromagnetism, ferroelectricity, 
superconductivity, adsorption and desorption, biology, 
chemistry and economics. 

We note that the phenomenon is similar to the standard 
approach within continuum mechanics related to the 
sixth Hilbert problem [2]. Hilbert’s sixth problem is to 
axiomatize those branches of science in which mathe- 
matics is prevalent. It occurs on the list of Hilbert’s 
problems given out in 1900. The explicit statement is the 
Mathematical Treatment of the Axioms of Physics. The 
investigations on the foundations of geometry suggest 
the problem: To treat in the same manner, by means of 
axioms, those physical sciences in which already today 
mathematics plays an important part; in the first rank 
are the theory of probabilities and mechanics. 

In the 1970s, Krasnoselskiı and Pokrovskiı studied the 
concept of hysteresis operator, acting in spaces of time 
dependent functions [2]. Further researches were devel-
oped in a series of monographies dedicated to the hys-
teresis in connection with PDEs and applicative prob-

lems [3-5]. A useful survey can be found in [6]. Nonlin-
ear semigroup theory in a Hilbert space was developed 
by Kōmura [7] and extended to Banach spaces by Cran-
dal and Liggett [8] and Barbu [9]. Nonlinear semigroup 
theory represents a widely used tool for solving nonlin-
ear PDEs. A survey of basic relevant results from a 
nonlinear semigroup theory, formulated generally in a 
Banach space is presented in [10,11]. 

Several models of mechanical and magnetic hysteresis 
may be represented via analogical models, namely the 
rheological models in mechanics, circuital models in 
electromagnetism, by arranging elementary components 
in series and/or in parallel [12-14]. These models consist 
of a family of elements, which can be interpreted as rep- 
resenting the mesoscopic structure of a composite mate- 
rial. Therefore, the procedure known as homogenization 
may be applied to provide an averaged representation of 
the system [15]. 

In this paper, the generalized play operator is analyzed 
in connection with the KdV equation. The problem is 
reduced to a system of differential inclusions and solved. 
This work is in the framework of the Visintin researches 
on models of hysteresis phenomena and on related PDEs 
[5,6,16-19]. 
 
2. Hysteresis Operators 
 
In order to simplify the meaning of the hysteresis, let us 
consider a system whose the state is characterized by two 
scalar variables, the input function  and the output 
function 

 u t
 w t , confined to a set . 2RL   0,t T  . 

The function  w t  depends on the previous evolution 
of  u t  (memory effect) and on the initial state , 0w
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such as 

      
     

0

0 0

, ,  0,

0 , ,  , 0 ,

w t A u w t t T

u w L A u w w

  

  0
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

           (1) 

where  0,A u w  is a memory operator defined in a Ba-
nach space of time-dependent functions for any fixed 

. The memory operator is causal: for 0w  1 0, ,u w  
 with 1 2  in  , 2 0u w u u 0,T , then   1 0,A u w t   

 ,  2 0A u w t . Most typical hysteresis phenomena ex-
hibit not purely rate-independent memory and as conse-
quence, the rate-dependent effects are superposed to 
hysteresis. In the memory rate-dependent case, the hys-
teresis operator is not invariant with reference to any 
increasing diffeomorphism    : 0, 0,TT  , i.e.  

 , (w A0 0 ),u wA u    ,  0,t T  . 

In the following we present the generalized play op-
erator  defined in the sense of 
Visintin (Figure 1). Let 

 0: , :w A u w R R 
 u t

R
 be any continuous, 

piecewise linear function on , linear on  1,i it t , 
 We define  by 1,2i  ,  w t    0w t,A u

        

           

0

0

1

1

min 0 , max 0 ,  

          for  0  and  ,

min , max ,  

          for  ( , ), 1,2, ,

l r

l i r i i

i i

w t u u w

t w R

w t u t u t w t

t t t i

 

  





 



  


(2) 

where , :l r R R    are maximal monotone, possible 
multivalued functions with 

   inf sup ,  r lu u u   R

w

          (3) 

Note that  only if   00w       00 0r lu w u   . 
The classical play operator can be obtained from the 
general play operator by choosing 

   ,l ru u r u u r     ,            (4) 

with  a parameter,  a continuous input func-
tion on 

0r 


 u t
0,T  and  0w r, r  an initial state. Figure 

2 presents the play operator with threshold . 
r

r
The hysteresis relationship with the PDEs can be writ- 

ten as [10]. 

          0, , ,   in  w x t A u x w x t Q T    0, , (5) 

where  is a bounded subset of . The generalized 
play operator discussed in this paper is dissipative, in the 
sense that 

 nR

 I A x x    for 0  , where I is 
the identity mapping. 

The PDEs with hysteresis can be transformed into 
systems of differential inclusions. The generalized play 
operator can be defined as a solution in the Sobolev 
space ,  of a variational in- 
clusion of the type. 

 1,1 0,W T 1,1 0,w W T

     , 0,   in  0, ,  0tw u w T w w  .          (6) 

The norm in  1,1 0,W T is defined as 

   
1 1

,
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d
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

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The rate- independent differential inclusion is 
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   (7) 

If r  and l  are Lipschitz-continuous, then the gen- 
eralized play operator transforms   1,1, 0, 0u v W T 

 1,1 0,w W T
R  

into the unique function  such that 
 0w  is the projection of v into    0 , 0r lu u     

and (7) is satisfied. The operator can be extended to 
  0 0,C T R , and it is equivalent to a variational in- 

equality [20]. 
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Figure 1. The generalized play operator. 
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Figure 2. The play operator with threshold r. 
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We present here one example of PDE with hysteresis 
[10] 

 ,
  in  ,

t
u w u f Q              (8) 

related to a generalized play operator (3) by (6), is for- 
mally equivalent to [5,10] 

 , ,,  0,  ,   in  ,t tu u f w u w           (9) 

where   is defined by (7) and comma represents the 
differentiation with respect to the specified variable. The 
Cauchy problem for (9) coupled with homogeneous 
Dirichlet boundary conditions as 

 , 1 0  in  ,  0   in  ,tF U AU Q U U       (10) 

where 

   
   1

, ,  ,0 ,

, ,  .

T T

T

U u w F f

AU u U   

 

      R
     (11) 

At the end of this section some results of the nonlinear 
semigroup theory are presented in the spirit of [10]. Let 
B be a Banach space, A nonlinear and multivalued hys-
teresis operator  :A D A B B   is accretive if 

 1 2 1 2 1 2 ,  0.
B B

u u u u v v         (12) 

Definition 2. Let B be a Banach space, the hysteresis 
operator A is called m-accretive if ,  Rg I A B 

0  . 
Suppose that the derivative in the evolution equation 

can be approximated by a backward-difference quotient 
of step size  and f by a step functions 0h  h

kf . We 
have 

 1
0 0,  1, 2, ,  ,

h h
h hk k

k k

u u hf A u k u u
h


     (13) 

   ,   for  1 .h h
k ku t u kh t k h              (14) 

The scheme (13) is uniquely solved recursively and 
the Crandall-Liggett theorem holds: 

Theorem 1. (Crandall-Liggett) [8]: If A is m-accretive, 
 and  1 0, ,f L T B  0u D A  and hf f  in  1 0, ,L T B

 0, ,T B
 0, ,T B

, 
then  uniformly as  and . hu u 0h  u C

1f LTheorem 2: If A is m-accretive,  and 
 0u D A , then the Cauchy problem 

    , ,  0 .t 0f u A u t u u          (15) 

has one and only one integral solution u. For 0f  , we 
have , where   0u S t u  S t



 is a nonlinear semi- 
group of contractions generated by the operator A. If f 
has bounded variation in 0,T  and  A0 , then 
the integral solution is Lipschitz continuous. 

u D

Definition 3. The function u is an integral solution of 
(15) in the sense of Benilan if 1)  : 0,u T  B  is con-
tinuous; 2)    u t D A  for any  0,t T ; and 3) 

  00u u  and 

   

      2

1

2 2

2 1

2 2

02 lim d .
2

B B

t
BB

t

u t v u t v

u v f z u v


   




  

    
 

 

(16) 

 
3. The KdV Equation with Hysteresis 
 
Amplitude equations governing the non-linear resonant 
interaction of equatorial baroclinic and barotropic Rossby 
waves were derived by Majda and Biello [21,22] and 
used as a model for long range interactions between the 
tropical and mid-latitude troposphere. Exploiting the fact 
that some of the Rossby waves can resonantly interact, 
Majda and Biello [23] developed a small amplitude the-
ory of nearly dispersionless, long equatorial Rossby 
waves. The analytic solitary wave solutions can be con-
structed with the functional form of the KdV soliton. 
These results inspire us to analyse the KdV equation 
from the point of view of the hysteresis of waves. 

The KdV equation with hysteresis can be written un-
der the form 

       
   

     
 

      
     

, , ,

0 ,

0

, , 6 ,

in  , 0, ,

, , , ,

lim , 0,

, , , ,  ,

,0   in  0, ,

t xxx x

x

t

q x t q x t q x t q x t

Q T

q x t u x t w x t

u x t

w x t A u x t w w u w

w x w x T




 

   

 



 



,

,

   (17) 

where  ,u w  is defined by (7). The hysteresis relation 
(5) representing a generalized play is also valid. 

For 0w  , the exact solution of (17) is obtained by 
choosing the solution under the form    ,u x t z x t  . 
The exact solution is a solitary wave  

   2, sech
2 2

u x t x t
 

 
  

  
 

[24]. In order to have a real solution the quantity   
must be a positive number. For 0   the solitary wave 
moves to the right, and the amplitude of the solitary 
wave is proportional to the speed which is indicated by 
the value of  . Thus larger amplitude solitary waves 
move with a higher speed than smaller amplitude waves. 

To solve (17) we use the Lax formalism [25]. Equa- 
tion (17) can be described by two operators depending of 
the hysteresis operator   0, ,A A u x t w  

     ,  4 3 .xx xxx x xL A q M A q q           (18) 
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
The operator  characterizes the spectral problem  L A

    , , , , ,L A x t x t           (19) 

and the operator  M A
( , ,

 characterizes the t-evolution of 
the wavefunction )x t   

     , , , , , .t x t M A x t           (20) 

The compatibility of (19) and (20) when   is not 
dependent of t implies the Lax equation  , M ,L Lt

The algebraic properties which derive from the exis- 
tence of the operator 

. 

 L A
 

 refer to the existence of a 
recursor operator A , and the existence of Bäcklung 
and Darboux transformations [24,25]. 

Starting from (19), we can look for operators  jM A  
such that to have satisfied 

, ,tL L M  .j               (21) 

Consider the following set of operator equations 

     , ,  ,L M V A L M V A   
  ,     (22) 

where V and  are scalar functions for the operators M 
and 

V
M


. Taking account the structure of the operator 
, we have L A

          ,M A L A M A F A x G A      (23) 

where F and G are scalar functions of A and its deriva- 
tive and of V defined by (22). 

From Equations (22) and (23) it results th V  can 
be expressed as a recursor operator 

at 
 A  on the func- 

tion V and depending on the hysteresis operator A 

           , ,

1 1
, , , , ,

4 2xx x
x

V x t V x t q x t V x t q x t V y t y


      , d .  

(24) 

By using (24), the problem (17) becomes 

        
 

   
       

, ,

0 ,

0

 in  , 0, ,

lim , 0,

, ,  , ,

,0 sin  in  0, ,

t x

x

t

u w A u w Q T

u x t

w A u w w u w

w x w x kx T




       



 

 

(25) 

where  is defined by (7). In the spirit of Visin-
tin [5], the problem (25) is formally equivalent to a sys-
tem of differential inclusions 

 ,u w 

T



     
 

 
     

, ,

,

0

 in  , 0, ,

lim , 0,

0,  , ,

,0 sin  in  ,

t x

x

t

u A u A Q

u x t

w u w

w x w x kx Q



  


       



  

 

 (26) 

where  is defined by (7).  ,u w
Figure 3 illustrates the hysteretic solution of the pro- 

blem (26) for 3k  ,  0,7t ,  40, 40x  . For 
6t   the curve is a helix, then the solution exhibits sev-

eral hysteretic loops for . The transition from a helix 
into the hysteresis loops is greatly aided by the excitation 
history expressed as a superposition of solitary waves. The 
transition instantaneously occurs as in the case of the cli-
matologically appropriate mean winds and shears. 

6t 

For , an intriguing aspect of the interaction ap-
pears by splitting of the hysteresis loop into two distinc-
tive branches. Figure 4 presents these two branches for 

20t 

 20t ,100 ,  30,30x  . The solution varies between 
two hysteresis branches depending of the excitation his-
tory. Such branches, the splitting and formation of a 
double-sides comblike hysteresis loops have been ob-
served experimentally [26]. 
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Figure 3. The hysteretic solution w(x,t) of the problem (26) 
t  [0, 7]. 
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Figure 4. The hysteretic solution w(x,t) of the problem (26) 
t  [20, 100]. 
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4. Conclusions 
 
This paper is aimed to outline some of the basic elements 
of the hysteresis operators in connection with PDEs. The 
construction of the KdV equation with hysteresis is just 
an example of a more general method developed by 
Visintin [5,6]. The KdV equation with hysteresis is re-
duced to a system of differential inclusions and solved. 
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