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Abstract 
There are concepts that are accepted in our daily life, but are not trivial in 
physics. One of them is the cluster property that means there exist no rela-
tions between two events which are sufficiently separated. In a paper recently 
published by the author, it has been pointed out that this cluster property vi-
olates in the correlation function of the spin operator for the spin 1/2 XXZ 
antiferromagnet on the square lattice. In this paper, we investigate the spin 
1/2 Heisenberg antiferromagnet on the square lattice, which has SU(2) sym-
metry. In order to study the cluster property, we need to calculate the ground 
state accurately. For this purpose, we employ the effective model based on the 
magnetization of the sub-lattices. Then we can define the quasi-degenerate 
states to calculate the ground state. Including two kinds of interactions which 
break SU(2) symmetry into the Hamiltonian, we obtain the ground state 
quantitatively. We find that two kinds of spin correlation functions due to 
degenerate states are not zero when the lattice size is large but finite. The 
magnitude of one of them is the same as the one previously found in the XXZ 
antiferromagnet, while another one is much larger when the additional inte-
raction is strong. We then conclude that in Heisenberg antiferromagnet cor-
relation functions violate the cluster property and the magnitude of the viola-
tion qualitatively differs from the one in the XXZ antiferromagnet. 
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1. Introduction 

Entanglement forces us to abandon the classical concept about locality [1] [2] 
[3]. Although there are many criticisms of abandoning the concept [4], experi-
ments strongly support entanglement required by quantum mechanics [5]. Since 
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Deutsch [6] presented the concept of quantum computer [7], a huge number of 
researchers apply entanglement to quantum information [8] [9] [10]. 

Entanglement found in many-body systems is a quite interesting subject [11] 
[12] in terms of the quantum phase transition [13] [14] [15] [16], because the 
correlation must be found even at the long distance where the whole system 
changes entirely. The entangled correlation at infinity distance implies the viola-
tion of the cluster decomposition [17] or the cluster property [18], which is a 
fundamental concept of physics that there is no relation between two events that 
occur infinitely apart from each other. Therefore, we find active studies on the 
cluster property in the many-body systems [19] [20] and in quantum field theory 
[21] [22], including QCD [23] [24].  

In the previous paper [25], we have investigated the cluster property of spin 
1/2 XXZ antiferromagnet on the square lattice. For this antiferromagnet, the 
ground state realizes semi-classical Neel order [26], in other words, spontaneous 
symmetry breaking (SSB) [17] [27] of U(1) symmetry [28] [29] [30] [31] [32]. In 
the previous study, we supposed that the lattice size is very large but finite. On 
this condition, we clarified that the essential property of SSB is the existence of 
the quasi-degenerate states between which the expectation value of the local op-
erator is not zero. Introducing an additional interaction that explicitly breaks the 
symmetry, we determined the ground state definitely using the quasi-degenerate 
states. Then we found that the correlation function in the ground state violated 
the cluster property and the magnitude of the violation depended on the 
strength of the symmetry breaking interaction. 

In this paper, we investigate the violation of cluster property for Heisenberg 
quantum spin on the square lattice, whose continuous symmetry is SU(2). SSB in 
this system can be explained by the effective model which realizes the magneti-
zation of the sub-lattices [26]. By this model, we can present a definite descrip-
tion of the quasi-degenerate states. Here we should note that the quasi-degenerate 
states are the essential ingredients of SSB, as stressed in the previous work [25].  

On the square lattice of size N, we can divide the whole lattice into two 
sub-lattices, which are called A sub-lattice and B sub-lattice. The semi-classical 
order of this spin system implies that the magnitude of the total spin on each 
sub-lattice is the order of N. Therefore, we can denote the state of spin system on 
a sub-lattice by its magnitude and its z-component. 

On the finite lattice, the researchers studying this system have shown that the 
energy depends only on the spin magnitude of the whole lattice. Therefore the 
ground state as well as the energy can be determined by the effective Hamilto-
nian [26] that contains the squared total spin. By this effective Hamiltonian 

ˆ
effH  and the set of the quasi-degenerate state, we can make a complete descrip-

tion for the ground state even if we include the additional interactions. 
In order to obtain the ground state uniquely on the finite lattice we introduce 

two additional interactions 1̂V  and 2̂V . The former interaction eliminates the 
degeneracy on the z-component of the total spin, and the latter induces the 
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non-zero expectation value of the spin operator in the ground state. Then we 
will consider the Hamiltonian , 1 2

ˆ ˆ ˆ ˆ
eff V effH H V V≡ + +  and calculate the spin cor-

relation functions due to the quasi-degenerate states. We conclude that these 
functions violate the cluster property in Heisenberg antiferromagnet and their 
magnitudes are much larger than the largest magnitude in XXZ model. This 
large correlation function encourages us to search for the violation of the cluster 
property in experiments. 

Contents of this paper are as follows. In the next section we introduce the 
model studied in this paper, which is the spin 1/2 Heisenberg antiferromagnet 
on the square lattice, and define two sub-lattices. In Section 3 we give the effec-
tive Hamiltonian ˆ

effH  by which we calculate the ground state in terms of states 
that are eigen states of the sub-lattice magnetizations. In order to confirm the 
validity of ˆ

effH  we present numerical results which are calculated by the exact 
diagonalization on the quite small lattices. Using ˆ

effH  we show that the ground 
state is described by the associated Legendre polynomial when the lattice size is 
large [33]. In Section 4 we define the additional interactions 1̂V  and 2̂V  which 
explicitly break SU(2) symmetry. Then we calculate the matrix elements of these 
interactions by the eigen states of the sub-lattice magnetizations. 

In Section 5, we calculate the ground state when the Hamiltonian contains the 
symmetry breaking interactions in addition to the effective Hamiltonian. We 
give the Hamiltonian in the continuous approximation which is reliable when 
the lattice size is large. Then obtaining the two-dimensional partial differential 
equation and solving it, we find the ground state. Also we discuss the conditions 
for our method to be reasonable. In Section 6, we calculate the correlation func-
tions due to the degenerate states. Here one should notice that we have two kinds 
of the correlation functions because there are two kinds of Nambu-Goldstone mode 
in SU(2) symmetry. In Section 7, we employ linear spin wave theory [28] to cal-
culate the correlation functions due to Nambu-Goldstone mode, which keep the 
cluster property. The violation of the cluster property due to the degenerate 
states, therefore, could be observable only when the former is smaller than the 
latter. 

In Section 8, we discuss, using the correlation functions presented in Sections 6 
and 7, the violation of the cluster property in the correlation functions due to the 
degenerate states. Then we numerically estimate the violation when the lattice 
size N is 1020 = (1010)2. This size is determined by considering that the molecular 
distance is the order of 10−10 m and the length of the macroscopic material is the 
order of 1 m. From our results we conclude that in Heisenberg antiferromagnet 
correlation functions due to the degenerate states violate the cluster property, 
and that the magnitude of the violation qualitatively differs from that in XXZ 
antiferromagnet. The final section is devoted to summary and discussion. 

2. Heisenberg Antiferromagnet on Square Lattice 

The model we study here is the spin 1/2 Heisenberg antiferromagnet on the 
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square lattice. A site with a symbol i is defined by a pair of integers ( ),x yi i , by 
which positions are given on the x yL L×  square lattice. 

, 0,1,2, , 1, 0,1,2, , 1.x y x x x y yi i i L i L i L≡ + = − = −          (1) 

The lattice size N is given by x yN L L= . The Hamiltonian Ĥ  in our study is 
given by 

( ),

ˆ ˆˆ
i j

i j
H S S= ⋅∑

 

                         (2) 

Here ˆ
iS


 is the spin operator at the site i and ( ),i j  denotes the nearest 
neighbor pair on the square lattice. In order to make ˆ z

iS  a diagonal matrix, the 
basis state is defined by 1 2, , , Ns s s  where ˆ z

i i i iS s s s=  with 1 2is =  or 
−1/2. When we represent the state ( ) ( )1 2 1 2i ii i

β γ+ + −  at each site by the 
vector [ ]T,i iβ γ , the spin operators with x-, y- and z-components are given by 
the Pauli matrix lσ , 

ˆ ˆ ˆ2, 2, 2.x y y x z z
i i iS S Sσ σ σ= − = =                (3) 

The reason for this assignment is that in the analysis by linear spin wave 
theory [28] we would like to use the real matrix element on ˆ y

iS  [25]. 
Since the Hamiltonian (2) has the SU(2) symmetry, the total spin operators 

commute with Ĥ , 

ˆ ˆ ˆˆ , 0, , , , .i
i

H S S S x y zα α α α  = = =  ∑                 (4) 

Therefore the energy eigen state of Ĥ  with the energy eigen value ,J ME  
has also the quantum numbers J and M of SU(2) symmetry for the whole lattice.  

( ) ( )

, , ,

2

, ,

, ,

ˆ ,

ˆ 1 ,

ˆ .

J M J M J M

J M J M

z
J M J M

H E

S J J

S M

ψ ψ

ψ ψ

ψ ψ

=

= +

=



                    (5) 

For this antiferromagnet on the square lattice we divide the whole lattice into 
two kinds of sub-lattices, which are called A sub-lattice and B sub-lattice. In or-
der to give a definition of A sub-lattice (B sub-lattice), we use integers xi  and 

yi  for the site i  to introduce a symbol iP  

( ) 0 for A sub-lattice
mod ,2

1 for B sub-latticei x y

i
P i i

i
∈

≡ + =  ∈
            (6) 

Using iP  we introduce the spin operators on each sub-lattice, 

( )

( )
( )

U sub-lattice

1 1ˆ ˆ ˆ ,
2

1 U A

1 U B

iP
U

U i i
i i

U

S S Sα α αε

ε

∈

+ −
≡ =

+ == 
− =

∑ ∑
.             (7) 

The eigen state of ( )2
ˆ
US


 and ˆ z
US  will be used in the next section to con-

struct ,J Mψ  in (5). 
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3. Effective Hamiltonian 

The model we study is based on the one where the spin system on each sub-lattice 
is ferromagnet [26] and is formulated by 

( ) ( )
2

, ,
ˆ 1 .U J M J M U US J JΨ = Ψ +


                (8) 

We can insist that AJ  is the order of the size N, because the semi-classical 
order is found in the Heisenberg antiferromagnet. Note that we have B AJ J=  
by the translational symmetry of Ĥ . 

The effective Hamiltonian [26] is 

( )2

0
0

1 ˆˆ .
2effH E S

Nχ
≡ +



                      (9) 

Here 0E  is the lowest energy with 0J =  and 0χ  is the uniform suscepti-
bility. The energy eigen values of the state ,J MΨ  are given by 

, , ,
ˆ ,eff J M J M J MH EΨ = Ψ  

( ) ( ), 0
0

1
,

2J M J
J J

E E E N
Nχ
+

= + ≡                  (10) 

0,1,2, , , 1, ,0,1, , 1, .J M J J J J= = − − + −    

Before proceeding to study ,J MΨ , let us make numerical calculation by the 
exact diagonalization on the quite small lattices, so that we can confirm the as-
sumptions for ˆ

effH . First, we calculate the energy ( )JE N  on lattices of size N 
= 20, 26, 32 and 36 to examine the energy postulate in (10). The results are 
shown in Figure 1, where we find the remarkable agreement between our data 
and the postulate. Next, we calculate the squared magnitude of the ferromagnet 
on A sub-lattice with the lattice size N, which is given by 

( ) ( )2
2

, ,
ˆ, .A J M A J MS J N S≡ Ψ Ψ


                (11) 

when the large ferromagnet is realized on A sub-lattice ( )2 ,AS J N  should be 
proportional to 2N  with little dependence on J. Figure 2 plots ( )2 ,AS J N , 
which we obtain by the exact diagonalization on lattices of size N = 20, 26, 32 
and 36 for J = 0 − 8, versus ( )1J J + . In this figure we see that ( )2 ,AS J N  
scarcely depend on ( )1J J +  as is expected. Also our data show that 

( ) ( )22 0, 2AS J N N=  are 0.258, 0.234, 0.219 and 0.210 for N = 20, 26, 32 and 36, 
respectively. Thus we see the little dependence of this quantity on N, which is 
consistent with (8). Sandvik [34] made the extensive study on this dependence to 
obtain the value on the infinitely large lattice accurately. 

In order to construct ,J MΨ  we use a state ,U UJ M , which is the eigen 

state of ( )2
ˆ
US


 and ˆ z
US , defined on the U sub-lattice, 

( ) ( )
2

ˆ , , 1 ,U U U U U U US J M J M J J= +


 

ˆ , , ,z
U U U U U US J M J M M=  
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( ) ( )ˆ , , 1 1 1 ,U U U U U U U U U US J M J M J J M Mε± = ± + − ±   

ˆ ˆ ˆ .y x
U U US S iS± ≡                          (12) 

 

 
Figure 1. The energy ( )JE N  defined in (10) for the spin 1/2 Heisenberg antiferromag-

net on the square lattice. In the horizontal axis we show ( )1J J + . These results are cal-

culated by the exact diagonalization on N = 20, 26, 32 and 36 lattices. The solid lines are 
results of the least square fit. 
 

 
Figure 2. The expectation value ( )2 ,AS J N  defined by (11) for the spin 1/2 Heisenberg 

antiferromagnet on the square lattice. In the horizontal axis we show ( )1J J + . These 

results are calculated by the exact diagonalization on N = 20, 26, 32 and 36 lattices. The 
solid lines are results of the least square fit. 
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Here Uε  is defined in (7). Note that 

( ) ( ) ( )2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 .z z

A B A B A B A BS S S S S S S S S+ − − += + + + +
  

           (13) 

Then the eigen state of ˆ
effH  should be the solution of the following equation 

( ) ( ) ( )
2 2

, ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 .z z

A B A B A B A B J M J MS S S S S S S S J J+ − − + 
+ + + + Ψ = Ψ + 

 

 

  (14) 

In general the eigen state ,J MΨ  can be represented by a linear combination 
of products of ,A AJ M  and ,B BJ M , 

( ), , , , : , , , .
A B

J M A A B B A A B B
M M M

J M J M C J M J M J M
+ =

Ψ = ∑   (15) 

As described in textbooks on quantum mechanics, ( ), : , , ,A A B BC J M J M J M  
is the Clebsch-Gordan coefficient and it is obtained by algebraic calculations. 

In our study ( )A BJ J=  is quite large, which is ( )O N . In addition we as-
sume that AJ J  because there exists the suppression factor ( ) ( )01 2J J χ+  
in the Hamiltonian. We do not impose, however, any restriction on the relation 
of 2J  and 2M . In this case 2

AM  and 2
BM  are ( )2

AO J , which will be unders-
tood in the following discussion. Since 2 2

AM J  is quite small in our assumption 
we approximate the equation of the Clebsh-Gordan coefficients by neglecting 
the terms of 2 2

AM J . The calculation of these coefficients in this approximation 
has been extensively studied by Sprung, van Dijk, Martorell and Criger [33], 
which we follow here. For a fixed M we introduce a variable Z defined by 

2, 2, 2.A A BZ M M M Z M M Z M≡ − = + = − +          (16) 

Here Z is an integer when M is an even integer, while Z is a half-integer when 
M is an odd integer. For a fixed ( )A BJ J=  we can use Z  to represent 

,J MΨ . Let us start with, instead of (15), 

, .J M Z
Z

Z ψΨ = ∑                        (17) 

Here Zψ  denotes the coefficient for the state Z . The non-zero off-diagonal 
matrix element in the calculation is 

( ) ( ) ( ) ( )

ˆ ˆ1
ˆ ˆ, 1 , 1 , ,

1 1 1 1 .

Z A B

A A B B A B A A B B

A B A A A A B B B B

a Z S S Z

J M J M S S J M J M

J J M M J J M Mε ε

+ −

+ −

≡ +

= + −

= + − + + − −

   (18) 

Since the matrix element is real we also have 
*

1
ˆ ˆ ˆ ˆ1 1 .Z A B A Ba Z S S Z Z S S Z+ − − +

− = − = −               (19) 

For ˆ ˆz z
A BS S , we obtain the diagonal matrix element 

2
2

ˆ ˆ

ˆ ˆ, , , ,

.
4

z z
Z A B

z z
A A B B A B A A B B

A B

b Z S S Z

J M J M S S J M J M

MM M Z

≡

=

= = − +

          (20) 
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Then the eigen equation for ,J MΨ  led from (14) is 

( ){ }
( )

12 1 1 1 2

1 .

A A Z Z Z Z
Z

Z
Z

Z J J Z a Z a Z b

Z J J

ψ

ψ

−+ + + + − +

= +

∑

∑
      (21) 

This equation yields an equation of Zψ , 

( ) ( ){ }1 1 1 1 2 1 2 .Z Z Z Z A A Z Za a J J J J bψ ψ ψ− − +  + = + − + +        (22) 

From (18) we obtain, based on the approximation to neglect the term of 

AM J , 

( ) ( ) ( )
2 2 2

2
2

1 1 .
4 2 1Z A A

M M xa J J Z Z
x

   − + − − − −  
−   


       (23) 

Here we introduce a variable x , 

( )
2

1, .
1

4A A

x Z x x
MJ J

≡ ∆ ∆ =

+ −

              (24) 

Applying (20) and (23) to (22) the equation for Zψ  becomes 

( ) ( ) ( ) ( )

( ) ( )

2 2 2
2

1 1 1 12

2
2

1
4 2 1

1 2 1 2 .
2

A A Z Z Z Z

A A Z

M M xJ J Z Z
x

MJ J J J Z

ψ ψ ψ ψ

ψ

+ − + −

  − + − − − + + − 
−  

 
= + − + + − 
 

 (25) 

Let us replace the variable Z  by x  in (24). In addition we introduce 
( ) Zx xφ ψ≡ ∆  in order to obtain the smooth function of x . Then we have  

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )

2 2
2

2 2

2 2
2

1 1
2 1

21 1 .

M xx x x x x
xx

x x x x x
x

J J x M x
x

φ φ

φ φ

φ

   − − − + ∆ + −∆  −∆  

 + + ∆ − −∆ ∆
  = + − − − 

∆  

       (26) 

Expanding ( )x xφ ± ∆  we obtain 

( ) ( ) ( )
( ) ( )

( ) ( )

22 2
22

22

2

2

d d
1 2

d d2 1

1 .
1

x xM xx x x
x xx

MJ J x
x

φ φ

φ

  − − − ∆ + 
−  

 
= + − 

− 

         (27) 

when ( )2 2 1x M∆  , which means 2 2
AM J , we can neglect the term with 

( )2x∆ . Finally we obtain the equation 

( ) ( ) ( ) ( ) ( )
2 2

2
2 2

d d
1 2 1 .

d d 1
x x Mx x J J x

x x x
φ φ

φ
 

− − + = + − 
− 

     (28) 
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The solution of this equation is the associated Legendre function ( )M
JP x  

( 0M > ), 

( )
( ) ( )22 21 d 1

.
!2 d

M JJ M
M

J J J M

x x
P x

J x

+

+

− −
=                (29) 

Taking the normalization into account we thus obtain 

( ) ( )
( ) ( ),

!2 1 .
2 !

M
J M J

J MJx P x
J M

φ
−+

=
+

              (30) 

Then the state ,J MΨ  is given by 

( ), , .J M J M
Z

Z x Z x xφΨ = = ∆ ∆∑                (31) 

4. Additional Interactions 

In this section we introduce two symmetry breaking interactions which are ne-
cessary to obtain the unique ground state. In SU(2) symmetry we have two in-
dependent generators among three generators, ( )ˆ ˆ , ,Q S x y zα

α α= = , Ŝα  being 
defined in (4). We adopt ˆ

yQ  and ˆ
zQ  as the independent generators. The ad-

ditional interactions 1̂V  and 2̂V  have to break the symmetry related to these 
operators. Since we impose that 1̂V  breaks the symmetry on ˆ

yQ , we assume 
that 1̂V  is given by 

( ) ( ) ( )
2

2 2

1 1 1 1 1
ˆ ˆ ˆˆ 0 .z z

z i
i

V g Q g S g S g ≡ = = > 
 
∑          (32) 

The parameter 1g  should be positive because states with large M should be 
suppressed. For its magnitude we do not impose any severe constraint because 

1̂V  commutes with the Hamiltonian Ĥ . The reason to choose the squared op-
erator is that this interaction gives a non-trivial effect to the correlation function, 
which will be described in Section 6. Another interaction 2̂V , which has been 
already introduced in the study of XXZ antiferromagnet [25], is given by 

( ) ( ) ( )2 2 2 2
ˆ ˆ ˆˆ 1 1 0 .iP y y y

i A B
i

V g S g S S g≡ − − = − − >∑         (33) 

This interaction breaks the symmetry on ˆ
zQ . The positivity of 2g  is con-

ventional because it changes when the phase of states changes. The reason why 

2g  should be small is that, since 2
ˆ ˆ, 0H V  ≠  , this interaction modifies the 

quasi-degenerate states by inducing the magnon states.  
The Hamiltonian ˆ

VH  is the sum of the Hamiltonian (2) and these interac-
tions, which is given by 

1 2
ˆ ˆ ˆ ˆ .VH H V V= + +                        (34) 

Note that, because 1 2
ˆ ˆˆ ˆ ˆ, , 0VQ H Q V Vα α

   = + ≠     for ,x yα =  and z, we 
completely break SU(2) symmetry by these interactions so that we can obtain the 
unique ground state with parameters 1g  and 2g . Replacing Ĥ  by the effec-
tive Hamiltonian ˆ

effH  defined in (9), we can introduce ,
ˆ

eff VH , 
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, 1 2
ˆ ˆ ˆ ˆ .eff V effH H V V= + +                       (35) 

Here we can express the whole Hamiltonian only by the spin operators ˆ
USα  

on U sub-lattice ( U=A,B ). Therefore the eigen states of ,
ˆ

eff VH  are constructed 
by the set of states { }, ,A A B BJ M J M .  

The operation of 1̂V  to the state is easily calculated since, from (5), this interac-
tion does not change the state ,J MΨ , 

2
1 , , 1
ˆ .J M J MV g MΨ = Ψ                     (36) 

The interaction 2̂V , on the other hand, changes the state ,J MΨ  since it is 
represented as 

( ) ( )2
2

ˆ ˆ ˆ ˆˆ .
2 A B A B
gV S S S S+ + − − = − − + −                 (37) 

By the algebraic argument on the spin-one operator ˆ
AS + , we find that 

, 1, 1 , 1 0 1, 1
ˆ .A A A

A J M J M J M J MS c c c+
+ + + + − + −Ψ = Ψ + Ψ + Ψ       (38) 

Let us calculate these coefficients Ac±  and 0
Ac . Since ,J MΨ  is expressed by 

the function ( ),J M xφ  as shown in (31), Ac+  is given by 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )

1, 1 ,

2

1, 1 ,
, '

1, 1 ,
, '

2
1, 1 ,

ˆ

ˆ

1 1 1

1 .

A
J M A J M

J M A J M
Z Z

J M A A A A J M
Z Z

J M A J M
Z

c S

x Z S Z x x

x Z Z J J M M x x

x x J x x x

φ φ

φ φ

φ φ

+
+ + +

+
+ +

+ +

+ +

= Ψ Ψ

′ ′= ∆

′ ′= + + − + ∆

+ ∆ − ∆

∑

∑

∑

(39) 

For the associated Legendre function we have the following relation, 

( ) ( ) ( ) ( )2 1 1
1 12 1 1 .M M M

J J JJ x P x P x P x+ +
+ −+ − = −            (40) 

Then from (30) we have 

( )
( )( )

( )

( )( )
( )

2
,

1, 1

1, 1

1

2 12 1
2 3 2 1

12 1 .
2 1 2 1

J M

J M

J M

x x

J M J MJ x
J J

J M J MJ x
J J

φ

φ

φ

+ +

− +

−

+ + + ++
=

+ +

− − −+
−

− +

         (41) 

Assuming 1AJ J M   , which we can realize through the parameters 

1g  and 2g , the above relation is replaced by 

( ) ( ) ( )2
, 1, 1 1, 1

1 11 .
2 2J M J M J Mx x x xφ φ φ+ + − +− −            (42) 

Thus we obtain 2A
Ac J+  . Applying the same discussion to 0

Ac  and Ac− , 
we finally obtain that 

0, 0, .
2 2

A A AA AJ Jc c c+ −+ −                     (43) 

Similarly we obtain the coefficients for ˆ
BS + , 
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0, 0, .
2 2

B B BA AJ Jc c c+ −− +                     (44) 

Note that we adopt the convention in (12) for the phase on the states 
,A AJ M  and ,B BJ M . From (43) and (44) we have 

( ) ( ), 1, 1 1, 1
ˆ ˆ .A B J M J M A J M AS S J J+ +

+ + − +− Ψ Ψ + Ψ −         (45) 

As for ˆ
AS − , we use the relation 

( ) ( )1, 1 , , 1, 1
ˆ ˆ ˆ ˆ .J M A B J M J M A B J MS S S S

∗+ + − −
± + ± +Ψ − Ψ = Ψ − Ψ     (46) 

Then we obtain 

( )
{ }

2 , 2 ,

2
1, 1 1, 1 1, 1 1, 1

ˆ ˆˆ

.
2

y y
J M A B J M

A J M J M J M J M

V g S S

g J + + − + − − + −

Ψ = − − Ψ

− Ψ − Ψ + Ψ − Ψ

 (47) 

From this expression we see that the interaction 2̂V  does not change the 
even-odd property of J M− . 

5. Ground State 

In the previous section we presented the matrix elements of the effective Hamil-
tonian with additional interactions. Using these matrix elements we now solve 
the eigen equation to find the ground state of ,

ˆ
eff VH , 

, , ,
0,

ˆ , .
Veff V V V V J M J M

J M
H EΨ

>

Ψ = Ψ Ψ = Ψ Φ∑           (48) 

Here 
V

EΨ  is the energy eigen value and ,J MΦ  denotes the coefficient. Since 
ˆ

effH  gives the diagonal element ( ) ( )01 2J J Nχ+  for ,J MΨ  we have 

( ) 2
, , 1 ,

0

2
1, 1 1, 1 1, 1 1, 1

1ˆ
2

.
2

eff V J M J M

A J M J M J M J M

J J
H g M

N
g J

χ

+ + − + − − + −

 +
Ψ + Ψ 

 

 − Ψ − Ψ + Ψ − Ψ 



       (49) 

From (48) and (49) we obtain the equation for ,J MΦ , which is 

( ) { }2 2
1 , 1, 1 1, 1 1, 1 1, 1

0

,

1
2 2

.
V

J M A J M J M J M J M

J M

J J gg M J
N

E
χ − − + − + + − +

Ψ

 +
+ Φ − Φ −Φ +Φ −Φ 

 
= Φ

(50) 

Since the even-odd property of J M−  is kept in this equation, we examine 
the equation only for even values of J M− . We introduce ,J MΦ  by 

( )( ) 2
, ,1 .J M

J M J M
−Φ = − Φ                     (51) 

Then the eigen equation becomes 

( ) { }2 2
1 , 1, 1 1, 1 1, 1 1, 1

0

,

1
2 2

.
V

J M A J M J M J M J M

J M

J J gg M J
N

E

χ − − + − − + + +

Ψ

 +
+ Φ − Φ +Φ +Φ +Φ 

 
= Φ

    



(52) 
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Let us introduce new variables by 

( ) ,, , , .J Ms J s t M t s t s tφ≡ ∆ ≡ ∆ ≡ Φ ∆ ∆             (53) 

The difference values s∆  and t∆  will be fixed later. Also using the stag-
gered or the order parameter m+  [26], AJ  is estimated by 

.
2A
NJ m+=                           (54) 

Then we obtain the equation 

( ) ( )
( ) ( ){

( ) ( ) ( )} ( )

2 21 2
2 2

0

1 , ,
42

, , , , .
V

g g m Ns t s t s s t t
N s t

s s t t s s t t s s t t E s t

φ φ
χ

φ φ φ φ

+

Ψ

 
 +  − −∆ −∆

∆ ∆  
+ + ∆ −∆ + −∆ + ∆ + + ∆ + ∆ =

 (55) 

Making the continuous approximation to expand ( ),s s t tφ ± ∆ ± ∆  by the 
partial differential, we have the equation 

( ) ( )
( ) ( ) ( )

( ) ( )

2 2
2 22 21 2

2 2 2 2
0

2

1 ,
22

, .
V

g g m Ns t s t s t
s tN s t

E g m N s t

φ φφ
χ

φ

+

+
Ψ

   ∂ ∂
 +  − ∆ + ∆ 

∂ ∂∆ ∆    

= +

 (56) 

In this equation we set 

( ) ( )2 2 1
2

20 2

1 2, .gs t
m g Nm g Nχ

++
∆ = ∆ =             (57) 

As a result the eigen equation becomes 

( ) ( )

( ) ( )

2 2
2 22

1 22 2
0

2

1, ,
4 2

, .
V

g m s s t m g g N t s t
s t

E g m N s t

φ φ
χ

φ

+
+

+
Ψ

   ∂ ∂
− + −   
∂ ∂   

= +

    (58) 

The eigen solution of (58) is 

( ) ( ) ( ) 2 2

,

2 2
, , e .

s t s s t t

s t
l l l l l ls t N H s N H tφ − −=              (59) 

Here ( )lH u  denotes the Hermite polynomial and lN  is the normalization 
factor. We should notice that there are some constraints on the wave function 
and the parameters. The constraint on the wave function comes from the posi-
tivity of J s s= ∆ . By this constraint we impose that ( ), 0s tφ =  for 0s =  by 
the continuity of ( ),s tφ , because ( ), 0s tφ =  for 0s < . Therefore the quan-
tum number sl  should be an odd integer. The energy eigen value in (58) is then 
given by, with 1,3,5,sl =  , and 0,1,2,3,tl =  , 

( ) ( ) ( )2
2 1 2

0

1, 2 1 2 1 .
4 2V s t s t
g mE l l g m N l m g g N l
χ

+
+ +

Ψ = − + + + +    (60) 

Note that the values of the variables s and t are ( )1O  because the solution 
(59) does not contain the parameters N, 1g  and 2g . The requirement 
J M  is then satisfied by the condition 
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2 2

1.s s
t t

∆   
   ∆   

                         (61) 

Thus the conditions we impose are 

( ) ( )2 2 1.s t∆ ∆                         (62) 

Here the second condition is necessary because of the continuous condition. 
The ground state VG  and the ground energy 

VGE  are then given by 

( )( ) ( )

( )

2
, 1, 0

,
1 , ,

1, 0 .

s t

V V

J M
V J M l l

J M

G s t

G s J s t M t s t

E E l l

φ−
= =

Ψ

= Ψ − = ∆ = ∆ ∆ ∆

= = =

∑
     (63) 

6. Correlation Functions Due to Quasi-Degenerate States 

In this and the next sections we calculate the spin correlation function 
( ),F i jαβ∆ , which is defined by 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

, , ,
ˆ ˆ, 1 1 ,

ˆ1 .

i j

i

P P
V i j V

P
V i V

F i j F i j F i F j

F i j G S S G

F i G S G

αβ αβ α β

αβ α β

α α

∆ ≡ −

≡ − −

≡ −

               (64) 

Here VG  is given by (63). As described in the previous work [25], we can 
divide the correlation function into the contributions ( ),DSF i jαβ∆  and ( ),NGF i jαβ∆ , 
which originate from the quasi-degenerate states and Nambu-Goldstone mode, 
respectively. 

( ) ( ) ( ), , , .DS NGF i j F i j F i jαβ αβ αβ∆ = ∆ + ∆                 (65) 

Since Nambu-Goldstone mode is realized in the operators of ˆ x
iS  and ˆ z

iS , we 
set xα β= =  or z. 

In this section we calculate the correlation functions due to the qua-
si-degenerate states, which are ( ),xx

DSF i j∆  and ( ),zz
DSF i j∆ . Since we examine 

the contribution due to the quasi-degenerate states, we assume that we can re-
place the contribution of the local operator ˆ

iSα  by the uniform contribution of 
the global operator ( )ˆ 2US Nα . Therefore we have the following replacement. 

( ) ( ) ( ) ( )1 1ˆ ˆ ˆ1 1 2 1 1 2 .
2 2

i iP P
i A BS S N S Nα α α   → + − + − −            (66) 

By this replacement we obtain 

( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( ){ }
( ) ( ){ }

ˆ1

1 1 1 1ˆ ˆ1
2 2 2 2

1 ˆ ˆ ˆ ˆ1

1 ˆ ˆ ˆ1 .

i

i i
i

i

i

P
DS V i V DS

P P
P

V A B V DS

P
V A B V V A B VDS DS

P
V A B V V VDS DS

F i G S G

G S S G
N N

G S S G G S S G
N

G S S G G S G
N

α α

α α

α α α α

α α α

= −

 + − − − → − + 
  

= − + − +

= − + −

       (67) 
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( ) ( ) ( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) }

2 2

2

ˆ ˆ, 1 1

1 ˆ ˆ ˆ 1 1

ˆ ˆ ˆ 1 1 .

i j

i j

i j

P P
DS V i j V DS

P P
V A B V V VDS DS

P P
V A B V DS

F i j G S S G

G S S G G S G
N

G S S S G

αα α α

α α α

α α α

= − −

→ − + − −

 + − − + − 

     (68) 

6.1. ( )xx
DSF i j,∆  

Let us consider the first term of ( )x
DSF i∆  in (67) with xα = . Repeating the 

discussion in Section 4, we have 

( ) ( ), 1, 1 1, 1 1, 1 1, 1
ˆ ˆ .

2
x x
A B J M A J M J M J M J M

iS S J + + − + − − + −− Ψ Ψ − Ψ − Ψ + Ψ (69) 

Notifying the convention (12) for the phase on the state ,A AJ M  and the 
state ,B BJ M , we have 

( ) ( )( )

{ }

( )( ) ( )( )

2
,

,

1, 1 1, 1 1, 1 1, 1

2 1,0
,

,

ˆ ˆ 1
2

1 4 .
2

J Mx x
A B V A J MDS

J M

J M J M J M J M

J M
A J M

J M

iS S G J

i J t s t
t
φ

−

− − + − + + − +

−

− Ψ −

× Φ +Φ −Φ −Φ

∂
→ Ψ − − ∆ ∆ ∆

∂

∑

∑



             (70) 

Here the function ( )1,0 ,s tφ  is defined in (59). Then we obtain 

( ) ( ) 1,0
1,00

ˆ ˆ 2 d d 0.x x
V A B V ADSG S S G iJ t s t

t
φ

φ
∞ ∞

−∞

∂
− → − ∆ =

∂∫ ∫       (71) 

For the second term in (67) with xα = , we notice that 

( ) ( ), , 1
ˆ 1 1 .J M J MS J J M M±

±Ψ = Ψ + − ±             (72) 

We have 

( ) { }, , , 1 , 1
1ˆ ˆ ˆ .

2 2
x

J M J M J M J M
iS S S J

i
+ −

+ −
−

Ψ = − Ψ Ψ − Ψ     (73) 

By this expression we obtain 

{ }( )( ) 2
, 1 , 1 ,

,

ˆ 1 .
2

J Mx
V J M J M J MDS

J M

iS G J −
+ −Ψ − Ψ − Φ∑ 

      (74) 

Since J M−  is limited to be even, , 0J MΦ =  for odd J M− . Therefore 
when J M′ ′−  is even, the following product is zero. 

{ }, , 1 , 1 0.J M J M J M′ ′ − +Φ Φ −Φ =                     (75) 

This brings us 
ˆ 0.x

V V DSG S G =                       (76) 

From (71) and (76) we conclude that 

( ) 0.x
DSF i =                          (77) 

Next, we calculate the first term of ( ),xx
DSF i j  in (68) with xα = . Following 

the calculation for (70) we obtain 
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( ) ( ) ( )
22

2 2 21,0 2
0

ˆ ˆ 4 d d 2 .
2

x x A
V A B V ADS

JG S S G t s t J t
t
φ∞ ∞

−∞

∂  − → ∆ = ∆   ∂   
∫ ∫  (78) 

For the second term in (68) we have 

( ) { }( )( )

( ) ( ){ }( )( )

( ) { }

2 2
, 1 , 1 ,

,

2
2

, 2 , , , 2 ,
,

2
2

, , 2 , , 2
,

ˆ ˆ 1
2

1
2

( 1) 2 .
2

J Mx x
V J M J M J MDS

J M

J M
J M J M J M J M J M

J M

J M
J M J M J M J M

J M

iS G JS

i J

i J

−
+ −

−
+ −

−
− +

Ψ − Ψ − Φ

  Ψ − Ψ − Ψ − Ψ − Φ 
 

 = Ψ − −Φ − Φ −Φ 
 

∑

∑

∑









  

(79) 

Therefore we obtain 

( )
( )

( )
( )

2 22
1,02 20

1 1 3ˆ d d .
2

x
V V DSG S G s t s

s s
φ

∞ ∞

−∞
→ =

∆ ∆
∫ ∫        (80) 

Because ,J MΨ  in the ground state is limited to the state with even J M− , 
and ˆ xS  changes the even state to the odd state while ( )ˆ ˆx x

A BS S−  does not 
change this even-odd property, the third term in the above Equation (68) va-
nishes. Thus we have, using (54), 

( ) ( ) ( ) ( ) ( )
( )

2 2
22

1 3 1, , 1 .
2 2

i jP Pxx xx
DS DSF i j F i j m t

N s
++∆ = → ∆ + −

∆
    (81) 

6.2. ( )zz
DSF i j,∆  

In calculations (67) and (68) with zα = , we used the state Z  introduced in 
Section 3. Then we have 

( ) ( )ˆ ˆ ˆ ˆ, , , ,

2 .

z z z z
A B A A B B A B A A B B

A B

Z S S Z J M J M S S J M J M

M M Z

− = −

= − =
  (82) 

Since ,J MΨ  is expressed by Z ’s as shown in (31), we see by the algebraic 
argument on SU(2), 

( ) , 1, 0 , 1,
ˆ ˆ .z z z z z

A B J M J M J M J MS S c c c+ + − −− Ψ = Ψ + Ψ + Ψ       (83) 

We can calculate the coefficients by 

( ) ( )1, , 0 , ,
ˆ ˆ ˆ ˆ, .z z z z z z

J M A B J M J M A B J Mc S S c S S± ±= Ψ − Ψ = Ψ − Ψ    (84) 

The expectation value for zc+  is, when 1J M  , 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1, ,
, '

1, ,

1, 1, 1,

2

2

1 12 .
2 2

z
J M J M

Z Z

A J M J M
Z

A J M J M J M
Z

c x Z Z Z x x

J x x x x

J x x x x

φ φ

φ φ

φ φ φ

+ +

+

+ + −

′ ′= ∆

∆

 + ∆ 
 

∑

∑

∑





       (85) 

Here we used the relation on the associated Legendre polynomial ( )M
JP x ,  

( ) ( ) ( ) ( ) ( ) ( )1 11 2 1 0.M M M
J J JJ M P x J xP x J M P x+ −− + − + + + =     (86) 
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Together with similar calculations, we finally obtain 

0, 0.z z
Ac J c±                          (87) 

We then have, for the first term of ( )z
DSF i  in (67) with zα = , 

( )
( )( ) ( ) ( )( )

( )( ) { }( )( )

( )( ) ( ) ( )( )

2 2
, , , ,

, , ,

2 2
, , 1, 1, ,

, , ,

2 2
, , 1 , 1 , ,

, , ,

ˆ ˆ

ˆ ˆ1 1

1 1

1 1 0.

z z
V A B V DS

J M J Mz z
J M J M A B J M J M

J M J M

J M J M
J M A J M J M J M J M

J M J M

J M J M
A J M J J J J M M J M

J M J M

G S S G

S S

J

J δ δ δ

′ ′− −
′ ′ ′ ′

′ ′

′ ′− −
′ ′ ′ ′ ′ ′+ −

′ ′

′ ′− −
′ ′ ′ ′ ′+ −

′ ′

−

= − Φ Ψ − Ψ − Φ

− Φ Ψ Ψ + Ψ − Φ

= − Φ + − Φ =

∑

∑

∑

 

 



 

(88) 

The reason why the above quantity vanishes is that the operator ( )ˆ ˆz z
A BS S−  

changes the state with the even J M−  to the state with the odd J M− . 
For the second term of ( )z

DSF i  in (67) with zα = , we have 

, , ,
ˆ .z

J M J M J M
tS M
t

Ψ = Ψ = Ψ
∆

                (89) 

Therefore 

( )2
1,00

1ˆ d d 0.z
V V DSG S G s t t

t
φ

∞ ∞

−∞
→ =

∆ ∫ ∫             (90) 

Thus we obtain 

( ) 0.z
DSF i =                           (91) 

Next let us consider the first term of ( ),zz
DSF i j  in (68) with zα = . We re-

peat the discussion for (83) to yield 

( ) { }2 2
, 2, 2, ,

ˆ ˆ 2 .z z
A B J M A J M J M J MS S J + −− Ψ Ψ + Ψ + Ψ

       (92) 

Then we have, for even J M− , 

( )
( )( ) ( ) ( )( )

( )( )

{ } ( )( )

2

22 2
, , , ', '

, , ,

2 2
,

, , ,

2
, 2, 2, , ,

ˆ ˆ

ˆ ˆ1 1

1

2 1

z z
V A B V DS

J M J Mz z
J M J M A B J M J M

J M J M

J M
J M A

J M J M

J M
J M J M J M J M J M

G S S G

S S

J

′ ′− −
′ ′

′ ′

−

′ ′

′ ′−
′ ′ ′ ′ ′ ′ ′ ′+ −

−

= Φ − Ψ − Ψ Φ −

Φ −

× Ψ Ψ + Ψ + Ψ Φ −

∑

∑

 







 

( )( ) ( ) ( )( )

{ }

( ) ( ) ( ) ( ){ }

( )

2 22
, , 2 , 2 , , ,

, , ,

2
, 2, 2, ,

,

2
1,0 1,0 1,0 1,00

2
2 1,02

1,0 20

1 2 1

2

d d , 2 , 2 , 2 ,

2 d d .

J M J M
A J M J J J J J J M M J M

J M J M

A J M J M J M J M
J M

A

A

J

J

J s t s t s s t s s t s t

J s s t
s

δ δ δ δ

φ φ φ φ

φ
φ

′ ′− −
′ ′ ′ ′ ′ ′+ −

′ ′

+ −

∞ ∞

−∞

∞ ∞

−∞

= Φ − + + Φ −

= Φ −Φ −Φ + Φ

→ − + ∆ − − ∆ +

∂
= − ∆

∂

∑

∑

∫ ∫

∫ ∫

 

   

  

(93) 

Finally we obtain 

( ) ( )
2 22 3ˆ ˆ 4 .

2
z z

V A B V ADSG S S G J s− → ∆               (94) 
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For the second term of ( ),zz
DSF i j  in (68) with zα =  we obtain, using (89), 

( )
( )

( )
( )

2 2 2
1,02 20

1 1 1ˆ d d .
2

z
V V DSG S G s t t

t t
φ

∞ ∞

−∞
→ =

∆ ∆
∫ ∫       (95) 

The operator ( )( )ˆ ˆ ˆ ˆz z z z
A B A BS S S S+ −  changes the state with the even J M−  to 

that with the odd J M− . Then the third term vanishes. 

( )( )ˆ ˆ ˆ ˆ 0.z z z z
V A B A B V DSG S S S S G+ − =               (96) 

The final result is, using (54), 

( ) ( ) ( ) ( ) ( )
( )

2 2
22

3 1 1, , 1 .
2 2

i jP Pzz zz
DS DSF i j F i j m s

N t
++∆ = → ∆ + −

∆
   (97) 

7. Correlation Function due to Nambu-Goldstone Mode 

In this section we calculate the correlation function due to Nambu-Goldstone 
mode. When we add the symmetry breaking interaction 2̂V  to the Hamiltonian, 
this interaction changes the gapless mode to the gapped state. We employ linear 
spin wave theory (LSWT) [28] to obtain the correlation function for the gapped 
state. Since there is little difference between LSWT for SU(2) symmetry and one 
for U(1) symmetry carried out in the previous paper [25], we present only a brief 
discussion. The Hamiltonian of the model with spin S is given by 

( )
( ) ( ) ( ) ( )

22

1 2
,

ˆ ˆ ˆ ˆ ˆˆ 1 , 1 .iPS z y
V i j i i

i j i
H S S g S g S S S S= + − − = +∑ ∑

  

      (98) 

We replace the spin operators by the annihilation operators îb  and the crea-
tion operators †

îb  of the magnon, 

( ) ( ) ( )†ˆ ˆ ˆˆ ˆ ˆ1 2 , 1 .i iP Pz x y
i i i i i iS i S Sb S S b b+ − = = − −           (99) 

Instead of îb  we use ˆ
kb , which is Fourier transform of îb , 

( )1ˆ ˆ e , , .iikx
i i x yk

i
b b x i i

N
−= =∑






                 (100) 

Here the wave vector is defined by ( ) ( ), 2 ,2x y x yk k k n N n Nπ π= =


 
using integers xn  and yn . One should note that in LSWT the additional inte-
raction ( )2

1 1
ˆˆ zV g S=  induces only the constant contribution to the ground state 

energy, and no effect to the excitation energy. In order to show it, we express 1̂V  
in terms of ˆ

kb , 

( ) ( )

( ) ( )

2
2

† †
1 1 1 0 0

2 2† †
1 0 0 0 0

ˆ ˆ ˆ ˆˆ
2 2

ˆ ˆ ˆ ˆ2 1 .
2

i i k k
i

k k k k

S SV g b b g N b b

SNg b b b b

= =

= = = =

   = + = +     

 = + + +  

∑  

   

        (101) 

Since 1̂V  is expressed by the magnon operator with the zero-wave vector, this 
interaction gives only the constant to the ground state energy. Therefore it is safe 
to neglect the contributions from 1̂V  in the following study. 

For the magnon excitation with the non-zero wave vector we diagonalize the 
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Hamiltonian by 
†ˆ ˆ ˆcosh sinh .k k k k kb α θ α θ−= +                       (102) 

We obtain 
†ˆ ˆ ˆ .S

V k k k
k

H constω α α= +∑   



                   (103) 

Here the parameter kθ   is determined by 

( ) 2
2

2

cos cos
tanh 2 , , .

1 4 2
x yk

k k

k kgg
g S

γ
θ γ

+
= − ≡ ≡

+



          (104) 

Then the energy kω   of the magnon is given by 

( )2 2
24 1 .k kS gω γ= + −                      (105) 

We would like to obtain the spin correlation function at the large distance on 
the quite large lattice. Therefore we are interested in the magnon with the small 
energy. In the case 1xk   and 1yk  , the energy is given by 

( ) ( )2 2
2 2

14 2 .
2 x yk S g g k kω + + +

                (106) 

In the spin system with SU(2) symmetry on the square lattice, we have anoth-
er kind of the magnon with the small energy, whose wave vector k



 is near 
( ),π π . In the case of 1xkπ −   and 1ykπ −  , the energy is given by 

( ) ( ) ( )22
2 2

14 2 .
2 x yk S g g k kω π π + + − + −  



           (107) 

Note that kγ   is negative in this case. We see that the gap energy 
( )2 24 2ge S g g= +  is proportional to 2g  when 2g  is small. By this gap 

energy we expect that the spin correlation function decreases exponentially at 
the large distance. 

Let us explicitly calculate the spin correlation function of the spin operator 
( ) ˆ1 iP x

iS− . We express the spin operator using the operators ˆ
kα   and †ˆ

kα−
 , 

( ) ( ) ( )†2 1 1 1 1 ˆ ˆ1 1 1 e .
2 22

i iP ikxx
i k k k

k k k

SS
i N

ε γ α α
ω ω −

     − = + + − + −            
∑





  



 



(108) 

Here we introduce notation kω   defined by 

( ) 21 1cosh 2 4 .k
k k

gSθ
ω ω

+
≡ =

 

                   (109) 

Also we define that 

( ) 1 if 0
1 if 0

x
x

x
ε

+ >
= − ≤

                      (110) 

From the expression (108) we can calculate the spin correlation function due 
to Nambu-Goldston mode. Since ˆ 0Vk Gα =  it is clear that 

( ) ( ),x ˆ1 0.iPS x
NG V i V NGF i G S G≡ − =                 (111) 
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Similarly we obtain 

( ) ( ) ( )

( ) ( )

( )

,

2

0

ˆ ˆ, 1 1

1 1 1 11 1 e
2 2 2

1 e .

i j

i j

i j

P PS xx x x
NG V i j V NG

ik x x
k

k k k

ik x x

k k

F i j G S S G

S
N

S
N

ε γ
ω ω

ω

−

−

≡ − −

     = + + − +            
∑

∑



 





 



 

 







      (112) 

Here note that we can neglect the contribution by the magnon with 
( ) ( ), ,x yk k π π , because in the second expression the first term cancels with the 
second term due to ( ) 1kε γ = − . 

For the correlation function of the spin operator ˆ z
iS , Nambu-Goldstone 

mode with the wave vector near ( ),π π  gives the large contribution. This oper-
ator is given by 

( ) ( )†2 1 1 1 1ˆ ˆ ˆ1 1 e .
2 22

iikxz
i k k k

k k k

SS
N

ε γ α α
ω ω −

     = + − − + +            
∑





  



 

  (113) 

Then we have 

( ) ( ), ˆ1 0.iPS z z
NG V i V NGF i G S G≡ − =                (114) 

In addition we obtain 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )( ) ( )

,

2

,

,

0

ˆ ˆ, 1 1

1 1 1 11 1 e 1
2 2 2

1 e 1

1 e e 1 .

i j

i j i j

i j i j

i j i j i j

P PS zz z z
NG V i j V NG

ik x x P P
k

k k k

ik x x P P

k k

ik x x i x x P P

k k

F i j G S S G

S
N

S
N

S
N

π π

π π

ε γ
ω ω

ω

ω

− +

− +

∼

′− − − +

′∼ ′

≡ − −

     = + − − + −            

∼ −

= −

∑

∑

∑



 





 



 







   

 



  (115) 

Since ( ) ( )exp , 1 iP
ii xπ π ⋅ = − 
 , (115) indicates 

( ) ( ), ,, , .S zz S xx
NG NGF i j F i j=                     (116) 

For ( ), ,S zz
NGF i j , the magnon with the wave vector ( ),π π  plays the same 

role as the magnon with the wave vector ( )0,0  for ( ), ,S xx
NGF i j . 

When the distance between i and j is large, the summation on k


 can be 
dominated by the contributions by the low energy. Then we can replace the 
energy by 

( )
( )2 2

2 2
2

1 , 2 2 .
2 1k k g g

g
ω τ τ→ + ≡ +

+




          (117) 

Replacing the summation by the integral we obtain the correlation function at 
the large distance r  [25], 

( ) ( ),
2

1, 2 1 e , .
2

S xx r
NG i jF i j S g r x x

r
τ

π
−→ + = −

           (118) 
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8. Cluster Property 

In this section we discuss the violation of the cluster property in the spin corre-
lation function for the antiferromagnet on the square lattice with SU(2) symme-
try. 

Each spin correlation function ( ),F i jαα∆  is the sum of the function due to 
the quasi-degenerate states and the one due to Nambu-Goldstone mode, which 
have been calculated in the previous sections. Let us collect our results. First we 
consider ( ),DSF i jαα∆ . Using expressions of s∆  and t∆  in (57) the results for 

( ),xx
DSF i j∆  given in (81) and for ( ),zz

DSF i j∆  in (97) become 

( ) ( )
( )

( )
3

1 2
0 2

2

3, , 1 .
2 2

i jP Pxx xx
DS DS

m g gF i j F i j m
g N N

χ
+

+ +∆ = = + −  

( ) ( )
( )

( )
3

2
2 3

0 2 1

3 1, , 1 .
2 8

i jP Pzz zz
DS DS

m m gF i j F i j
g N g Nχ

+ +
+∆ = = + −   (119) 

Since the lattice size N is fixed to be 1020, the parameters in (119) are the 
strength 1g and the strength 2g  of the additional interactions 1̂V  and 2̂V . In 
addition to the condition 2 1g  , we impose the following conditions on 1g  
and 2g , so that the conditions (62) are also satisfied, 

1
1 2

1 , .
gg g

N N
                      (120) 

With (120) it is easy to see that we can neglect the second term in both expres-
sions of (119). As a result ( ),DSF i jαα∆  becomes independent of the site. There-
fore we use the symbol DSFαα  instead of ( ),DSF i jαα∆ , which are defined by 

( ) ( )3 3

1
2

2 0 2

3 1, .
2 2

xx zz
DS DS

m mgF F
g N g Nχ

+ +

≡ ≡          (121) 

We see that these correlation functions do not depend on the distance and 
these values are non-zero as far as N is finite. 

As for the contribution from Nambu-Goldstone mode we conclude that, 
based on discussions in Section 7, 

( ) ( ) ( ) 2, , e , 1.
4

xx zz r
NG NG NG i jF i j F i j F r r x x

r
τ

π
−= → ≡ = −

 

    (122) 

Here we obtain ( )NGF r  by putting 1 2S =  and 2 21 1 2 1g g+ = +   in 
(118). Also we have 22gτ   from (117). 

From the final results of (121) and (122) we conclude that the cluster property 
violates in the correlation functions due to the quasi-degenerate states, and that 
the functions due to Nambu-Goldstone mode exponentially decrease with dis-
tance. Although this conclusion is the same as that for U(1) symmetry [25], 
there are several characteristic properties newly found for SU(2) symmetry. 
• We have two kinds of correlation functions, xx

DSF  and zz
DSF , which violate 

the cluster property. The number “two” originates from the two kinds of the 
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independent generators of SU(2) symmetry. 
• It is noticeable that both xx

DSF  and zz
DSF  show the same dependency on 2g . 

The reason is that the additional interaction 2̂V  induces the same effect on 
both variables s and t in (56). 

• We also should note that the correlation function ( )NGF r  does not depend 
on the value of 1g , since the interaction with 1g  is expressed by the mag-
non operators with the zero-wave vector as is shown in (101). The correla-
tion function zz

DSF  is independent of 1g , too. The correlation function xx
DSF , 

on the other hand, strongly depends on the value of 1g . 
Let us numerically examine xx

DSF  and zz
DSF . We fix N = 1020. As values of m+  

and 0χ  on the quite large lattice, we use 0.31m+ =  [26] [34] and 0 0.063χ =  
[26] [34] [35]. Expressions in (121) indicate that xx

DSF  is proportional to 1g  for 
fixed 2g  and N while zz

DSF  does not contain 1g . We therefore plot xx
DSF  with 

four typical values of 1g , which are 15 10 5
1 10 ,10 ,10g − − −=  and 1, together with 

zz
DSF . Figure 3 shows these results as a function of 2g . Note that, from the condi-

tion (120), we should focus the region where 20
2 110g g−
 . We see that xx

DSF  
with above values of 1g  is larger than zz

DSF .  
Next let us discuss whether this violation in DSFαα  is measurable or not. To 

answer this question it is necessary to compare DSFαα  with ( )NGF r  given by 
(122). In the range of the distance r  where ( )DS NGF F rαα ≥  we would be able to 
observe the violation in experiments. In Figure 4 we plot, as a function of 2g , the 
distance cr  where ( )DS NGF F rαα =  holds. We see that all curves in the figure  
 

 
Figure 3. The correlation functions xx

DSF  and zz
DSF  defined in (121) with the lattice size 

N = 1020. They are plotted as a function of 2g  which is the strength of the symmetry 

breaking interaction 2̂V  defined by (33). The solid lines are the results of xx
DSF  for 

15 10 5
1 10 ,10 ,10g − − −=  and 1. The result of zz

DSF , which is independent of 1g , is plotted by 
the red-dashed line. 
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Figure 4. The distance cr  where the magnitude of ( )NGF r  agrees with DSFαα , as a 

function of 2g . The solid curves show the results for xx
DSF  with 15 10 5

1 10 ,10 ,10g − − −=  

and 1. The result for zz
DSF  is plotted by the red-dashed curve. In the region above these 

curves DSFαα  is larger than ( )NGF r . The lattice size is N = 1020. 

 
resemble each other’s in shape. As 2g  increases the value of cr  on each curve 
increases monotonously until it reaches its maximum value, which we denote 

max
cr , and then decreases monotonously. The location of the maximum point 

shifts depending on α  and, also on the values of 1g  for xα = . Since 
( )DS NGF F rαα >  holds in the area above these curves, where cr r> , we have a 

possibility to observe the violation of the cluster property there. We see that the 
value of 2g  which maximizes cr , say max

2g , is larger when 1g  is larger. We 
also see that max

cr  is smaller for larger 1g . 
Hereafter we focus our attention to curves of xx

DSF  in order to make our dis-
cussion simple. In the area to the left of the maximum point, namely for 

max
2 2g g< , the region where cr r>  holds becomes wide as 1g  grows. When 

max
2 2g g> , on the other hand, values of cr  scarcely depend on 1g . The results 

in Figure 4 suggest in what region the observation can be expected. In Figure 5 
we plot ( )NGF r  versus r  with two typical values of 2g , which we choose 

16
2 10g −=  and 4

2 10g −= , in order to make it easy to understand the measura-
ble area. Then we compare values of xx

DSF  with ( )NGF r  for several values of 

1g . The value of cr  in Figure 4 is now indicated by the cross point where the 
horizontal line of xx

DSF  and the curve of ( )NGF r  meet. Our results show that 
xx

DSF  would be observable in a wide range of r  and 1g  provided that 2g  is 
moderately small. 

9. Summary and Discussions 

In this paper, we investigated the violation of the cluster property for the spin 1/2  
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Figure 5. ( )NGF r  and xx

DSF  shown as a function of the distance r . The solid curves plot 

the values of ( )NGF r  for 16
2 10g −=  and 4

2 10g −= , while the horizontal lines indicate 

the values of xx
DSF . The dashed lines are results for 16

2 10g −=  and, 5
1 1,10g −= and 10−10. 

The dashed-dotted line is the result for 4
2 10g −=  and 1 1g = . The lattice size is N = 

1020. 
 
Heisenberg antiferromagnet with SU(2) symmetry on the square lattice, follow-
ing the previous paper [25] that has shown the violation in the correlation func-
tion for the spin 1/2 XXZ antiferromagnet with U(1) symmetry on the square 
lattice.  

Spontaneous symmetry breaking for the system can be explained by the model 
where the ferromagnets of A and B sub-lattices couple to form the effective Ha-
miltonian [26]. In this model, we could clearly define the quasi-degenerate states 
and could calculate the ground state including the interactions that explicitly 
and completely break SU(2) symmetry. Note that, in the concrete calculation of 
the ground state, we have kept the lattice size large but finite.  

In order to find the violation of the cluster property, we calculated the spin 
correlation functions. We examined two kinds of correlation functions which 
consist of the function due to the degenerate states and the one due to Nam-
bu-Goldstone mode. We calculated the former functions DSFαα  using the qua-
si-degenerate states. As for the latter functions ( )NGF rαα , we obtained it by 
means of linear spin wave theory. 

We see that both xx
DSF  and zz

DSF  violate the cluster property in Heisenberg spin 
systems with SU(2) symmetry. Also when there is the interaction ( )2

1 1
ˆˆ zV g S= , 

xx
DSF  becomes large since it is proportional to 1g . By these enhancements of 

the correlation functions, we find the wide region in the parameter space where 
it would be possible to observe the violation of cluster property. This fact en-
courages us to search for the violation in experiments. 

https://doi.org/10.4236/wjcmp.2018.84015


T. Munehisa 
 

 

DOI: 10.4236/wjcmp.2018.84015 226 World Journal of Condensed Matter Physics 
 

Let us now discuss experiments to observe the violation of the cluster property. 
As described in the previous paper [25], it is required to measure the correlation 
length [36] [37] [38]. The experiments on the material Sr2CuO2Cl2 [39] [40] 
found that the correlation length ξ  is ~200 at temperature 300 KT = . Also 
they confirmed that the dependence of ξ  on T is log( ) 1/ Tξ ∝ , which is de-
rived by the nonlinear sigma model [41]. This means that ξ  becomes huge 
even when the temperature is not so small. As an example, consider the case in 
which the temperature 0T  is 50 K. Then the correlation length at this tempera-
ture is 0/ 13

0 10T Tξ ξ=  , which would be large enough when we explore the re-
gion of ( )1010r N≤ =  in Figure 4 and Figure 5. The results shown in these 
figures, we believe, are worth examining in experiments to find the violation of 
the cluster property. 

Finally, let us make several comments on our calculations and our results. 
• In this work we studied the effect from the additional interaction 1̂V  which 

is defined by the squared spin operators. Since this term was introduced from 
theoretical point of view it might be difficult to include it in the ordinary 
magnetic materials. For the experimental study to realize this interaction in 
the spin systems it is valuable to notice Bose condensation of the atom in the 
double well potential [42]. This system is described by the effective spin sys-
tem, where the squared spin is included. 

• The second comment is about other interactions of the squared spin operators 
to break the symmetry. When, for example, we include ( ) ( ){ }2 2

3 3
ˆ ˆˆ x yV g S S≡ +

instead of 
2̂V , we have ( ){ }2

3 , ,
ˆ 1J M J MV J J MΨ = Ψ + −  for the state 

,J MΨ . By the positive value of 3g , the difference between ( )1J J +  and 
2M  becomes small. Then we cannot apply our approximation adopted in 

this paper to obtain the ground state. Therefore we would need further ex-
tensive work on the ground state with this interaction. 

• The third comment is about the more complicated systems. For example, it is 
quite interesting to study the Heisenberg antiferromagnet on the triangular 
lattice. In this system we suppose that the effective Hamiltonian is con-
structed by the three magnets on three sub-lattices. In spite of the compli-
cated algebraic calculations for three magnetic states, it is quite interesting to 
study this system since the large amount of differences between the quantum 
spin system on the triangular lattice and those on the square lattice has been 
found [26]. 
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