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Abstract 
We develop a model Hamiltonian to treat intrinsic anomalous Hall conductivity in dilute magnetic 
semiconductor (DMS) of type (III, Mn, V) and obtain the Berry potential and Berry curvature which 
are responsible for intrinsic anomalous Hall conductivity in Ga1−xMnxAs DMS. Based on Kubo for-
malism, we establish the relation between Berry curvature and intrinsic anomalous Hall conduc-
tivity. We find that for strong spin-orbit interaction intrinsic anomalous Hall conductivity is quan-
tized which is in agreement with recent experimental observation. In addition, we show that the 
intrinsic anomalous Hall conductivity (AHC) can be controlled by changing concentration of mag-
netic impurities as well as exchange field. Since Berry curvature related contribution of anomal-
ous Hall conductivity is believed to be dissipationless, our result is a significant step toward 
achieving dissipationless electron transport in technologically relevant conditions in emerging of 
spintronics. 
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1. Introduction 
In 1879, Edwin H. Hall discovered that when a conductor carrying longitudinal current was placed in a vertical 
magnetic field, the carrier would be pressed against the transverse side of the conductor, which led to an ob-
served transverse voltage. This is called the Hall effect (HE) [1]. After almost one century, the quantum Hall ef-
fect was discovered by K. von Klitzing in 1982 in a two-dimensional electron gas (2DEG) at low temperature 
and strong magnetic field [2]. However, in ferromagnetic metals like Fe, Co, and Ni, and newly discovered 
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DMSs like Ga1−xMnxAs the Hall effect is anomalous and controlled more by magnetization than by Lorentz 
forces [3] [4], called the anomalous Hall resistivity and the phenomenon is known as anomalous Hall effect 
(AHE). This phenomenon attracted both experimental and theoretical interest due to its potential application in 
emerging science of spintronics [5]. The origin of anomalous Hall effect is believed to be due to spin-orbit (SO) 
interaction in the presence of spin polarization [6]. On the other hand, DMS of type (III, Mn, V) spin polariza-
tion is due to exchange interaction between localized Mn2+ 3d5+ spins and holes introduced by substitution of 
Mn2+ by Ga3+ [7]. There are two popular theories to explain anomalous Hall effect seen in ferromagnetic system, 
named as intrinsic and extrinsic theories,both of these theories involve the SO interaction. The intrinsic theory 
was first time proposed by Karplus and Luttinger (KL) [8]. It required no impurity (the intrinsic scenario) and 
extrinsic theory, which was proposed by Smit and Berger; they pointed out the role of the impurity scatterings in 
the steady state equilibrium and hence in the AHE [9] [10]. Among others, the intrinsic theory dominantly plays 
a rule in dilute magnetic semiconductors of type (III, Mn, VI) and the current understanding on intrinsic theories 
of anomalous hall conductivity allows us to reformulate it with Berry curvature of quasi-particles [11]-[13]. 
Accordingly, intrinsic AHE results from curvature of electrons below the Fermi surface, as a consequence of the 
spin-orbit coupling induced topological properties in Bloch bands [13]. Although this anomalous Hall effect 
(AHE) has become a standard tool to determine the magnetization of ferromagnet and has been known for more 
than a century, its mechanism is still under debate. Particular attention has been paid to intrinsic mechanisms 
based on the Berry phase. According to recent experimental result, the intrinsic version of AHC is quantized 
[14]. 

In this paper we theoretically study anomalous Hall conductivity. The paper is organized as follows. Firstly we 
develop model Hamiltonian on basis of above discussion, which obtains analytical expression for Berry po-
tential and Berry curvature; secondly after applying Quantum Kubo formulism the connection between Berry 
curvature and intrinsic Anomalous Hall conductivity is established. 

2. Theoretical Formulation 
We consider two dimensional hole gas (2 DhG) in the presence of Spin-orbit coupling taking the form of the 
usual Rashba term, exchange field, kinetic energy of itinerant holes in the system. 

 
ˆ

kin ex soH H H H+= +                                     (1) 

where 
2 2

  *2kin
KH
m

=
�

                                       (2) 

kinH  and *m  are usual kinetic energy of carriers (holes) and band mass of charge carriers (holes) respec-
tively 

ex ex zH h σ= −                                        (3) 

Here, hex is exchange field resulting from exchange interaction between localized Mn 3d5 spins and valence 
band holes introduced by substitution of Mn2+ by Ga3+ Our approach is based on mean field treatment and 
magnetization along perpendicular to kx and ky plane or along z axis(along the direction of quantization). ˆ

soH  is 
spin-orbital interaction term in the form of Rash Hamiltonian which accounts that orbital motion of carriers 
coupled with its spin is given by 

( )R x y y xk kα σ σ−                                      (4) 

Here, xσ  and yσ  are Dirac spin operators along x and y direction respectively and xk  and yk  are wave 
vectors along x and y direction respectively and Rα  Rashba type of spin-orbit coupling constant. Using Equa-
tions (2), (3) and (4) into Equation (1), we rewrite the model Hamiltonian as 

2 2

*
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2
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In 2D spin space, application of diagonalization procedures in Equation (5) generates two eigenvalues 

( ) ( ) ( ) ( ) 2 2 2
   s R exE k k s k k k hε ε α± = + = + +I                          (6) 

And we have obtained the corresponding normalized eigenvectors for spinor part and its complex conjugate 
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2.1. Berry Potential and Berry Curvature 
Berry potential in momentum space along α, β and γ where α, β and γ designates x, y and z coordinate system 
respectively were defined in terms of periodic spinor Bloch state and in bands as [15] 

( ) ( ) ( ), , , , .s sA i u k u kα β γ α β γ= ∇                                (9) 

Here , ,
, ,x y zkα β γ
∂

∇ =
∂

 Using Equations (7) and (8) into Equation (9) and after some algebra, we obtained the  

Berry potential (connection) along x and y direction in k space as follows 
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The Berry curvature along perpendicular to α, β and γ plane is defined using analogical expression for real 
space magnetic field [15]. 

, , , , , ,X Aα β γ α β γ α β γΩ = ∇ .                                  (12) 

In two dimensional systems we rewrite as, 

( ), , ,X A eα β α β α β γΩ = ∇                                   (13) 

( ), A A eα β α β β α γΩ = ∇ −∇ .                                (14) 

Using Equation (9) into Equation (14), 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

, n n n n n n
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−
            (15) 

This can be written as compact form after introducing commutation relation and straightforward simplifica-
tion as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ), ,n n n n n ni u k u k e i u k u k e u k u k eα β α β γ β α γ α β γ Ω = ∇ ∇ − ∇ ∇ − ∇ ∇          (16) 
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Since α∇  and β∇  commutate each other, we get, 

( ) ( )( ) ( ) ( ), n n n ni u k u k u k u k eα β α β β α γΩ = ∇ ∇ − ∇ ∇                     (17) 

After introducing identity ( ) ( )ˆ
m mmI u k u k= ∑ , Equation (17) becomes, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ),  n m m n n m m nm ni u k u k u k u k u k u k u k u k eα β α β β α γ≠
Ω = ∇ ∇ − ∇ ∇∑      (18) 

After Series of steps we have obtained analytical expression for k-space Berry curvature as 

( )( ) ( ) ( )( ) ( )
( ), 22 Im

n m m n

m n
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u k H u k u k H u kα β
α β

ε ε≠
−

−
Ω
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= ∑                 (19) 

Here, 
kα
α

∂
∇ =

∂
 and  

kβ
β

∂
∇ =

∂
 

Equation (19) is general equation of K-space Berry curvature in 2 DS having periodic part of eigenfunction 
(Spinor part) ( )m ku k  non degenerate case. After applying Equation (19) for 2 DhG in dilute magnetic semi-
conductor (III, Mn, V) system we rewrite the Berry curvature along z direction in k space as, 

( )
( ) ( ) ( ) ( ) ( ) ( )
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In Equation (20), ( )
x
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y

H k
k
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 are the velocity operators along   xv  and yv  

which were obtained using our model Hamiltonian in Equation (5) 
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Introducing three dimensional unit vector along x, y and z direction, in two dimensional plane in k space in 
terms Eigen values as follows 

( )
, , ,

ˆ , ,R y R x ex

k k k

k k h
n k

α α

± ± ±

  = − 
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                              (23) 

where ( ) 2 2 2
 R exk k hα± = ± +I , using Equations (21)-(23) into Equation (20) and after straightforward manipu-

lation, we have obtained expression for the Berry curvature in k-space for upper and lower band (±), for system 
of hole gas subjected to spin-orbital coupling and exchange splitting in dilute magnetic semiconductor of type 
(III, Mn, V) as shown in Equation (24) 

( )
( )

2

, 3 22 2 22
R ex

x y

R ex

h
z

k h

α

α
±Ω = ±

+
.                              (24) 

The Berry curvature in Equation (24) is responsible for intrinsic Anomalous Hall Conductivity seen in system 
under consideration. 

The connection between Berry curvature and Anomalous Hall conductivity is obtained using Quantum Kubo 
formalism in the following section. 
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2.2. Quantum Kubo Formalism and AHC 
The Kubo formula for Hall conductivity for current-current correlated system is given by [16] 

( ) ( )
( )( ), 0lim Imn m

nm
m n n m

n J m m J nf f
V

α β
α β δσ ω

ε ε ε ε ω δ→

−
= ⋅

− − + +
∑�

�
.                 (25) 

V is volume of system, n  is basis of eigenvectors of the one particle Hamiltonian Ĥ  of Eigenvalues nε , 
nf  and mf  are Fermi Dirac distribution function for band n and m respectively. 

Jα  and Jβ  are single particle current operators given by J qvα α= −  and J qvβ β= − , here α and β are the 
direction of current density. Considering Equation (26) in static limit (ω = 0) and in clean sample and after ap-
plying for system of 2D spin polarized hole gas in DMSs after some manipulation we have obtained the flowing 
expression for AHC. 

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

2

, 2Im
n m m n

km knk m n
km kn

u k H k u k u k H k u kq f f
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 ∇ ∇
 = − ⋅
 − 

∑ ∑�
.      (26) 

On view of Equation (20), right side of Equation (26) inside the bracket gives ,

2
α βΩ

− . Hence, we can rewrite 

Equation (26) as 

( ) ( )
2

,, 2 k kk

q f f e
V ε ε α β γα β γσ − += − − Ω∑�

                           (27) 

Here we have replaced the band indices n and m via ± which designates lower occupied (−) and upper empty 
band (+). In continuous limit it is convenient to replace summation into integration. Therefore, Equation (27) 
becomes 

( ) ( )
2

2
, ,2 0

d
8π

Fk
k k

q k f fα β ε ε α βσ γ − += − − Ω∫�                          (28) 

Plugging Equation (24) into Equation (28), after some algebra we obtained AH conductivity for lower occu-
pied states at T = 0, 

( ) ( )
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2 2

, 3 20 2 2 2

d  
4π

FkR ex
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∫�
.                        (29) 

In Equation (29) we have considered that at Temperature (T = 0) upper band (+) is empty and has nothing 
contribution to Hall conductivity. Equation (29) integrated to give 

( )
2 2

2 2 2
1

4
exR

AH

R ex

hqz
k h

α
σ

α

 
 = − −
 + �

                            (30) 

3. Discussion and Conclusions 
From Equation (8) and Equation (9) we can observe that in absence of spin-orbital coupling (αR = 0) Berry po-
tential along x and y direction in k-space goes to zero and in similar manner the Berry curvature in Equation (24) 
also vanishes as (αR = 0) Or/and (hex = 0). Therefore, the origin of Berry potential (connection) as well as Berry 
curvature in a DMS of type (III, Mn, V) is spin-orbital interaction and exchange field (hex). As seen in Figure 1, 
the Berry curvature is peaked at k = 0, and from Equation (27) the curvature is proportional to AHC; hence the 
maximum anomalous Hall conductivity can be attained for k = 0. 

From Equation (30), if R F exk hα � , for strong spin orbit coupling limit, we have approximate value ano-
malous Hall conductivity as 

( )
2

2AH
qzσ = −
�

                                    (31) 
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Figure 1. The variation of Berry curvature as function of wave vector k for material constant 
of intrinsic Rashba spin-orbit coupling constant (αR = 10 ÅeV) and exchange field (hex = 40 
meV). 

 
Equation (31) reveals that intrinsic anomalous Hall conductance is almost quantized which is also supported 

by recent experimental results [14] [17] [18]. On the other hand, from Equation (27), the intrinsic anomalous 
Hall conductance is simply the sum of the Chern numbers (the total Berry flux through the BZ) for all the occu-
pied band. 

From Case II, integrating Equation (29) from Fk −  to upper empty band Fk + , we obtain anomalous Hall 
conductivity for lower occupied band is 

( )
2

2 2 22
ex

AH

R F ex

hqz
h k h

σ
α

=
+

.                                (32) 

Our analytical results obtained from Equation (30) are similar to result obtained for intrinsic contribution of 
anomalous hall conductance by classical approach [19]. 

In Figure 2, we have plotted the variation anomalous Hall conductivity as function exchange field. As can be 
seen in Figure 1, when there is no magnetic interaction ( exh o= ), the spin lies in the xy plane but there is no 
spin polarization along z axis. As a result, intrinsic Hall conductivity is zero. However, As exh  increases the 
spin is tilted out of the plane by larger amounts, increasing the phase acquired by the wave function (Berry cur-
vature); as a result anomalous hall conductivity increases a until it reaches a maximum and gradually saturates. 

In Figure 3, anomalous Hall conductivity increases monotonically as composition of magnetic dopant (x) in-
creases. Hence, it is possible to control intrinsic anomalous Hall conductivity by changing the concentration of 
magnetic impurities. 

In conclusion we say that, at low temperature, in the presence of strong spin-orbit interaction, the anomalous 
Hall conductivity is quantized. The interplay between spin-orbit interaction and exchange field introduces Berry 
curvature which is responsible for intrinsic anomalous Hall effect in dilute magnetic semiconductors (Ga1−xMnxAs). 
Anomalous Hall conductivity increases monotonically as composition of magnetic dopant (x) increases in mean 
field theory treatment 
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Figure 2. The Variation of Anomalous Hall conductivity as function of exchange field for 
material constant of spin-orbit splitting ( 5 meVso∇ = ) and exchange field hex 0 to 40 meV. 
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Figure 3. Anomalous Hall conductivity as function of composition of magnetic dopant for 
material constants of spin-orbit splitting ( 1 meVso∇ = ) and composition of Mn in GaAs (x = 
0 to 0.08). 
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