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Abstract 
Nanoscale superlattice has been investigated theoretically. It has been shown that the deforma-
tion effects on the energy spectrum of nanoscale superlattice by changing the interatomic dis-
tances as well as varying the width and height of the potential barrier. The potential deformation 
has been estimated. It has been shown that for different edges of forbidden bands the deformation 
potential has different values. It has been also analyzed the dependence of the effective mass on 
energy. It has been determined that the effective mass crosses periodically the zero mark. It has 
been concluded that this phenomena contributes to the periodic change of the oscillation fre-
quency de Haas-van Alphen effect. 
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1. Introduction 
Development of nanotechnology caused increasing requirements of atomic size films. For example, a new low- 
dimensional nanostructure graphene promises to be one of the key elements of the future nanoelectronics [1]. At 
present a number of technological methods for obtaining graphene films on flexible solid-state substrates are al-
ready developed [2] [3]. Actuality of researches strain-sensing properties of semiconductor films caused by the 
creation of strain-resistive sensors with semiconductor sensing elements had high sensitivity, reliability, small 
dimensions and high-technology manufacturing etc. 

Under influence of applied voltage film and the substrate should experience different degrees of deformation; 
however because of they being firm connected each to other the film (due to its small thickness in comparison 
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with that substrate) is compressed (or stretched) to conform to the size of the substrate [4]. As a result the system 
“film-substrate” bends for reaching equilibrium of forces and moments. Thus even a small deformation of the 
substrate deforms significantly the film grown on it. Under these conditions a potential barriers can appear be-
tween the film’s nanoparticles. Tunnel and thermionic currents penetrate through such barriers penetrate. Chang- 
ing distance between the particles of the semiconductor films results in changing of potential barriers and 
changing band gap of semiconductor. Decision of this problem in the general case is rather difficult and some-
times it is impossible because of absence of sufficient information about parameters of the barriers. Therefore it 
would be expidient to use the most simplified models for the decision of such a problem. One such of the model 
is the model of the Kronig-Penney [5]. In this work we tried to apply the model of Kronig-Penney to analyze the 
effect of deformation on the energy spectrum of semiconductor film. 

2. The Effect of Deformation on the Energy Spectrum of the Superlattice 
The effect of deformation on the tensosensitivity films Bi2Te3 and Sb2Te3 obtained by vacuum deposition [6] has 
been studied in [7]. It has been shown that at small thicknesses of the barriers tensosensitivity these films can 
take the anomalously large values [7]. However, the effect of deformation on the energy spectrum of the semi-
conductor film has not been considered. 

In the model of Kronig-Penney simple rectangular potential barriers are used [5]. It is known that in this one- 
dimensional model width of wells are equal and they are separated by a potential barriers with thickness b and 
height U; a + b is to the period of the superlattice. Solving the Schrödinger’s equation we can derive an equation 
for determination the law of the electrons dispersion in the superlattice: 
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,  -Planck’s constant, m0-the free electron mass, k-wave vector, E-  

electron energy, U-potential barrier’s height. Using Equation (1) can be obtained dependence of the energy E on 
the wave vector k. The influence of the periodic potential depends on the magnitude of this potential as well as 
the distance between the potential barriers [5]. 

Thus deforming semiconductor film we act upon its energy spectrum by changing distance between the po-
tential barriers and potential barrier’s width b. 

Knowing how change the forbidden band ( )2 1E E Eδ = −  and that of the barrier ( )2 1b b bδ = −  it will be 
possible to make an estimation of the deformation potential Δ [8]: 
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-the elongation of the superlattice. 

3. Theoretical Calculations 
It should be noted that the calculations allow us to determine only the change of the band gap [9]. Energy shifts 
of the bands extremums depend on linear expansion ε linearly and the coefficient of proportionality is called the 
constant of deformation potential c cEδ ε= ∆ , v vEδ ε= ∆ . 

With the help of programme Maple 9.5 the calculated was made and graphs of dependence of wave vector k 
of the electron’s energy E were drawn. At the calculation the following expression was used: 
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Let’s consider the energy band in which the valence band and conduction bands are shown in Figure 1. One  
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Figure 1. The dependence of the energy of the wave vector for the electronic states for the 
cases where the thickness of barriers constitute b = 0.1 nm and b = 0.05 nm.                

 
of the graphs of the dependence of energy on the wave vector for the electronic states at changing of the thick- 
ness of the potential barriers is shown there. If the sample is stretched so the relative change of the length de-
fines ε, then the bands shifted slightly as it is indicated on the right of Figure 1. 

Basing on the data of Figure 1 and using the expression (2) we can estimate the deformation potential for the 
third section. At the thickness of the barrier b1 = 0.1 nm, the forbidden band’s edge 19

1 4.42 10 J 2.76 eVE −≈ × ≈ . If 
the barrier’s thickness b = 0.05 nm, the forbidden band’s edge 19

2 4.84 10 J 3.03 eVE −≈ × ≈ . The widths for  

both cases are the same a = 1 nm. Substituting these values in (2), we get: 
19

190.42 10 9.3 10 J 5.8 eV
0.045

−
−×

∆ ≈ ≈ × ≈ . 

Table 1 shows the values of the deformation potential for each section of Figure 1. Analysis of the data of 
Table 1 shows that the deformation potential has different values for different band gaps edges. Moreover, as 
we can see in Figure 1 the left edge of the bands have higher values than the right one. 

In addition to the thickness and width of the potential barrier of the potential well another important factor 
have an influence on the energy spectrum of the sample, that is the potential barrier’s height U. Analysis of 
Figure 2 shows that at decreasing the barrier’s height gap of the forbidden bands narrow and when the barrier’s 
height is U = 0, the gaps disappear completely. 

The dependence of the effective mass on energy has been also analyzed. The expression has been used for that: 
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Obtained results are shown in Figure 3. 
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(a)                                                  (b) 

  
(c)                                                  (d) 

Figure 2. Three-dimensional plot of the wave vector k, the energy E and the width of the potential well of a (for cases 
(a) U = 1.6 × 10−19; (b) U = 0.7 × 10−19; (c) U = 0.3 × 10−19; (d) U = 0).                                        

 
Table 1. Analysis of the deformation potential for each section in Figure 1.                                         

Number Section b1, nm b2, nm a, nm E1, eV E2, eV Δ, eV 

1-Section 

0.1 0.05 1 

1.25 1.41 3.4375 

2-Section 1.47 1.50 0.6875 

3-Section 2.76 3.03 5.7750 

4-Section 3.00 3.22 4.8125 

5-Section 5.00 5.50 11.0000 

6-Section 5.22 5.59 8.2500 
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Figure 3. Plot of the effective mass of the energy.                                                               

 
The effect of de Haas-van Alphen (dHvA) in nanostructures of cadmium fluoride was researched in [10]. The  

authors of [10] found out experimentally periodic change of the oscillation frequency dHvA *c
eB
m

ω =  (m*-ef-  

fective mass). Figure 3 shows that the effective mass crosses periodically the zero mark. Apparently, it contri-
butes to the periodic change of the oscillation frequency dHvA. 

4. Conclusions 
On the basis of the study it can be concluded that the electron energy spectrum of the potential barriers depends 
on the barrier’s size. Dimensions of the barriers can be changed by the deformation of thin semiconductor films. 
High tensosensitivity of thin semiconductor films [7] can be explained by the influence of deformation on the 
size of the potential barriers between the semiconductor’s nanoparticles. Anomalously low values of the cyclo-
tron effective mass found in [10] can be caused by the motion of electrons in the potential barriers and wells. 

Thus, we can make the following deductions: 
-Using dependence of the energy on the wave vector (see Figure 1) obtained on the base of the model 

Kronig-Penney we can be estimate the deformation potential. 
-The deformation potential has different values for different edges of forbidden bands: the left edges of the 

bands have higher values than the right one (see Figure 1). 
-With different widths of the potential barriers b wave vector k has different values, and the value of the wave 

vector decreases with increasing width of the potential barriers. 
-Dependence of the effective mass on energy (shown in Figure 3) explains periodic variation of the oscilla-

tion frequency dHvA obtained by authors [10] experimentally. 
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