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Abstract 
The Seebeck coefficient S  is a temperature- and material-dependent property, which linearly 
and causally relates the temperature difference T∆  between the “hot” and “cold” junctions of a 
thermoelectric power generator (TEC-PG) to the voltage difference V∆ . This phenomenon is the 
Seebeck effect (SE), and can be used to convert waste heat into usable energy. This work investi- 
gates the trends of the effective voltage output ( )V t∆  and effective Seebeck coefficient ( )S t′  
versus several hours of activity of a solid state TEC-PG device. The effective Seebeck coefficient 

( )S t′  here is related to a device, not just to a material’s performance. The observations are pur- 
sued in an insulated compartment in various geometrical and environmental configurations. The 
results indicate that the SE does not substantially depend on the geometrical and environmental 
configurations. However, the effective Seebeck coefficient ( )S t′  and the produced effective 

( )V t∆  are affected by the environmental configuration, once the temperature is fixed. Heat 
transfer calculations do not completely explain this finding. Alternative explanations are hypothe- 
sized. 
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1. Introduction 
Imagine two dissimilar electrical conductors or semiconductors joined in two different locations with the “hot” 
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junction at temperature T T T+ ∆ > , and the “cold” junction at T . Such device is a thermoelectric power ge- 
nerator (TEC-PG), and the schematic illustration of the basic unit of a TEC-PG is shown in Figure 1(a). Solid 
state (above millimeter size) TEC-PGs devices used in applications consist of several of such units placed in series. 
The Seebeck effect (SE) in the TEC-PG is a known phenomenon in which the temperature difference T∆  
caused by heat generates a voltage difference V∆  due to the flow of charge carriers (electrons or holes) from 
the “hot” junction in contact with a thermal source, to the “cold” junction, which acts as a thermal sink. In the 
SE, at constant temperature, T∆  and V∆  are causally and linearly related through the Seebeck coefficient 
S , such that *V S T∆ = − ∆ . Voltage production in the TEC-PG is referred to as TEC power generation [1] [2]. 
The spin SE [3], transverse SE [4], and anisotropic SE [5], discussed in recent literature, are examples of TEC 
power generation. Heat is intended as the manifestation of kinetic energy [6] transmitted by the thermal source 
to the neutral particles of the alumina-ceramic plate protecting the “hot” junction of the TEC-PG. Temperature 
witnesses the trends of kinetic energy. Heat is transferred by convection and conduction to the “hot” junction of 
the TEC-PG, and contributes to the generation of the temperature difference T∆ . The temperature difference 

T∆ , in turn, generates the voltage difference V∆  according to the SE. Given that no, or very few, charged par- 
ticles are involved, radiative heat transfer is minimal in the experiments presented here. 

The applications of TEC power generation are numerous: thermal sensors [2] [7], spacecraft heat engines and 
deep-space probes [1] [2] [7], laser temperature controllers [7], thermal cyclers for biological testing [7], health 
[1] [2] and vehicle climate controls [1] [2] [7] [8], coolers [7], and cooling of electronic enclosures [1] [2] [7]. 
Although controversies arose regarding the ability of research efforts to improve the efficiency and performance 
of the TEC-PGs [7] [8], TEC power generation is still proposed for additional and larger-scale applications  

which require materials with large TEC parameters, such as the figure of merit 
2S TZT
κρ

=  [1] [2] [7], and the  

Seebeck coefficient S . In the expression for ZT , κ  is the thermal conductivity and ρ  the electrical resis- 
tivity. Under the assumption that the TEC parameters have a fixed value in a particular material and device, the 
design of the material and its composition are considered the most important factors in improving the perfor- 
mance and efficiency of the TEC-PGs [1]-[3] [7]-[9]. Recently, also band-engineering was shown to enable im- 
provements in the TEC-PG’s performance [4]. In the case of miniaturized (around nanometer size) TEC-PGs 
with thin films as active layer, the film substrate was shown to influence the Seebeck coefficient S  [10]. 

This work focuses on the application of solid state TEC-PG devices as energy harvesting [1] [2] [8] [11]-[13], 
and waste heat recovery devices [7] [8] [14] [15]. For these applications, the effective voltage output ( )V t∆  
and the effective Seebeck coefficient ( )S t′  are characterized versus time in various geometrical and environ- 
mental configurations for commercial solid-state TEC-PG devices consisting of several basic units placed in series. 
The effective Seebeck coefficient ( )S t′  refers to a device, not just to a material’s performance, and relates the 
effective temperature difference ( )T t∆ , measured over time between the “hot” and “cold” junctions, and the 
effective voltage output ( )V t∆ , such that ( ) ( ) ( )*V t S t T t′∆ = − ∆ . Five different geometrical and environ- 
mental configurations are considered in the presented investigation: three geometries, two different “hot” junc- 
tion finishing surfaces, and two sample holder materials, one insulating and one conducting. The investigation is 
performed in an insulated compartment to avoid the contributions to the effective ( )T t∆ , ( )V t∆ , and ( )S t′  
of random variations of laboratory temperature, humidity, and radiation. The insulated compartment promotes 
small fluctuations and low errors in the measurements. The details of the geometrical and environmental confi- 
gurations are described in Section 2. The findings, described in Section 3, suggest that the effective ( )T t∆  and 

( )V t∆  are bound by a causal and linear relationship. However, the effective ( )V t∆  and the effective See-
beck coefficient ( )S t′  are slightly affected by the specific geometrical and environmental configuration, in 
particular by the materials of the sample holder. Heat transfer calculations are unable to completely explain this 
phenomenon. An explanation is offered by observing that the experimental set-up involving the solid state 
TEC-PG device can be treated as system of two capacitors in series. 

2. Experimental Set-Up and Data Analysis 
The heat source used is a Corning Hot Plate Scholar 170. The instrument has a temperature range of 25˚C - 
300˚C, and is located in a custom-made insulated compartment constructed of 1.27 cm thick extruded acrylic 
sheets. The insulated compartment is purged with a flux of N2, which is kept at a steady flow by suction. The 
temperature of the hot plate during the experiment is 40 C≈  . 
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Figure 1. (a) Schematic illustration of the basic unit of the TEC-PG; (b) The “away” horizontal configuration; 
(c) The “toward” horizontal configuration; (d) Photograph of the isolated compartment.                     

 
The solid state TEC-PG devices used are Custom Thermoelectric Inc. model 07111-9L31-04B devices, whose 

TEC-PG basic unit is schematically illustrated in Figure 1(a). Each device has a 900 mm2 surface area. The “hot” 
and “cold” junctions of the solid state TEC-PG device are protected by plates of alumina-ceramic and are at ef- 
fective temperatures ( ) ( )T t T t+ ∆  and ( )T t , respectively. The junctions are separated along the vertical di- 
rection by 4 mm high pillars of an n- and p-doped Bi2Te3-based alloy in series with each other, and by copper 
(Cu) plates. There are 142 of such pillars in the used solid state TEC-PG devices. In all measurements, the “hot” 
junction of the solid state TEC-PG device is placed parallel to the surface of the hot plate, which uniformly heats 
the junction. Thermally insulating sample holders made of wood are used to properly position the solid state 
TEC-PG devices on the hot plate, as illustrated in Figure 1(b) and Figure 1(c). A picture of the insulated com- 
partment is shown is Figure 1(d). 

To examine the behavior of the effective ( )V t∆  and ( )S t′  with time, two geometrical configurations were 
considered: the “away” horizontal and “toward” horizontal. In these configurations, the hot plate is in horizontal 
position inside the insulated compartment as in Figure 1(d). In the “away” horizontal configuration, depicted in 
Figure 1(b), the solid state TEC-PG device is suspended above the hot plate through tape connected to the 
thermally insulating sample holder, and is in contact with neither the sample holders nor the hot plate. In the 
“toward” horizontal configuration, pictured in Figure 1(c), the solid state TEC-PG device is physically sup- 
ported by the thermally insulating sample holders above the hot plate surface. An additional geometrical confi- 
guration was considered: the “toward” vertical, which is the “toward” horizontal configuration rotated by 90˚. 
Furthermore, two additional environmental configurations were examined: 1) the “toward” horizontal-black tape 
configuration, in which a layer of black electrical tape was placed in adhesion to the surface of the “hot” junc- 
tion of the solid state TEC-PG device; and 2) the “toward” vertical-aluminum supports configuration, in which 
the thermally insulating sample holders were substituted with thermally conducting ones, made of aluminum (Al). 

To measure the effective temperatures ( ) ( )T t T t+ ∆  and ( )T t , OMEGA type E Ni-Cr/Cu-Ni thermo-
couple probes were used. The probes are sensitive to temperatures from ‒270˚C to 1000˚C. One probe was 
placed on the alumina-ceramic plate protecting the “hot” junction, and the other one on the plate protecting the 
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“cold” junction. The average difference in the temperature detected by the two probes are 4.02 C 0.30 C− ±   
and 4.96 C 0.09 C− ±  , measured on the alumina-ceramic plate on the “hot” junction in the “away” horizontal 
and “toward” horizontal configurations, respectively. In all configurations, it was verified that the hot plate un-
iformly heats the “hot” junction. The trends of ( )T t∆ , ( ) ( )T t T t+ ∆ , and ( )V t∆  were collected using Keithley 
2000 multi-meters. Each multi-meter is sensitive to direct current voltages from 1 µV to 1 kV, and to the same 
temperature range as the range of sensitivity of the chosen thermocouple probes. The data were collected for 30 
hours (h) at time intervals t∆  of 300 s using Lab View 7, and a National Instruments PXI-1042q communications 
chassis. Before turning-on the hot plate, the solid state TEC-PG device and the thermocouple probes relaxed in the 
insulated compartment for 5 - 6 hours. This time range is named Region 1. In the 400 s time segment immediately 
following the turning-on of the hot plate, a t∆  of 1 s was selected for the data acquisition. Afterwards, the hot 
plate was kept on for the remainder of the experiment. This time range is named Region 2. In all experiments, the 
temperature of the ambient inside the insulated compartment, and the temperature of the sample holder were 
~ 35 C 5 C±  . The laboratory hosting the instrumentation was kept dark and at a constant temperature of 20˚C. 

The data were analyzed using Origin Pro Data Analysis and Graphing Software. The variation effective See- 

beck coefficient was derived as ( ) ( )
( )

V t
S t

T t
∆

′ = −
∆

 in the time interval in Region 2 where steady state was  

achieved. The fitting of the ( )T t∆  and ( )V t∆  curves was performed in the 400 s time segment in Region 2  
immediately following the turning-on of the hot plate. A linear fit was employed, such that 0T T tα∆ = ∆ + ∗ ,  
and 0V V tβ∆ = ∆ + ∗ , respectively. Here, 0T∆  and 0V∆  are the initial offsets, while α  and β  are the rate  

of increase of ( )T t∆  and ( )V t∆  with time, respectively. The goodness of fitting parameters 2Rα  and 2Rβ   
qualify the accuracy of the procedure. 

3. Results 
Figures 2(a)-(c) show the trends of ( )T t∆ , ( )V t∆  and ( )S t′  in the in the “away” horizontal configuration.  

The values of mean ( )µ , standard deviation ( )σ , and relative error R σ
µ

 
= 

 
 of ( )T t∆ , ( )V t∆ , and  

( )S t′  are summarized in Table 1. Figure 2(a) and Figure 2(b) clearly show that ( )T t∆  and ( )V t∆  follow 
the same trends in both Regions 1 and 2. The step between Regions 1 and 2 corresponds to the turning-on of the 
hot plate. The average value of the effective Seebeck coefficient ( )S t′  in the steady state portion of Region 2 is  

mV1.58
C

−


. The negative mean value of ( )S t′  agrees with electrons flowing through the 142 basic TEC-PG  

units to explain the effective ( )V t∆  production [2]. Table 1 indicates that the values of σ  and R  in Region 
2 are of the same order of magnitude for ( )T t∆ , ( )V t∆  and ( )S t′ . Only the σ  value for ( )S t′  is one or-
der of magnitude lower than that for the effective ( )T t∆  and ( )V t∆ . The results are reproducible, and fully 
testify the existence of a causal and linear relationship between ( )T t∆  and ( )V t∆ , in agreement with the SE, 
such that ( ) ( ) ( )*V t S t T t′∆ = − ∆ . 
 

 

Figure 2. Trends of (a) ( )T t∆ , (b) ( )V t∆ , and (c) ( )S t′  for the solid state TEC-PG devicein the “away” horizontal con- 
figuration. Regions 1 and 2 are separated by the transient accompanying the turning-on of the hot plate.                    
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Table 1. Mean ( )µ , standard deviation ( )σ , and relative error ( )R  of ( )V t∆ , ( )T t∆ , and ( )S t′  in the “away” hori- 
zontal and “toward” horizontal configurations. The values displayed for the “away” horizontal configuration are evaluated in 
Region 2 in the 12 - 30 hour time interval, whereas those for the “toward” horizontal configuration are evaluated in Region 2 
in the 10.5 - 30 hour time interval.                                                                           

Device Configurations Parameter µ  σ  R  

“away” horizontal 

T∆  17.8˚C 0.2˚C 0.009 
V∆  28.0 mV 0.3 mV 0.010 

S ′  mV1.58
C

−


 mV0.02
C

 0.011 

“toward” horizontal 

T∆  18.6˚C 0.2˚C 0.010 
V∆  32.4 mV 0.3 mV 0.008 

S ′  mV1.74
C

−


 mV0.01
C

 0.007 

 

 
Figure 3. Trends of (a) ( )T t∆ , (b) ( )V t∆ , and (c) ( )S t′  for the solid state TEC-PG devicein the “toward” horizontal 
configuration. Regions 1 and 2 are separated by the transient accompanying the turning-on of the hot plate.               
 

Figures 3(a)-(c) illustrate the trends of the effective ( )T t∆ , ( )V t∆  and ( )S t′  in the “toward” horizontal 
configuration. The µ , σ , and R  values are displayed in Table 1. The results are comparable to those for the 
“away” horizontal configuration. The average value of the effective Seebeck coefficient ( )S t′  in the steady  

state portion of Region 2 is mV1.74
C

−


. The results are reproducible, and further support the result achieved for  

the “away” configuration that the effective ( )T t∆  and ( )V t∆  are bound by a causal and linear relationship, 
in agreement with the SE. 

Figures 4(a)-(c) illustrate the trends of ( )T t∆ , ( )V t∆  and ( )S t′  in the in the “toward” vertical configu- 
ration. The µ , σ , and R  values are reported in Table 2. The findings again support the causal and linear 
relationship between ( )T t∆  and ( )V t∆ , in agreement with the SE, as in the previously examined configura- 
tions. It is noteworthy, however, that in this case the average value of the effective Seebeck coeffiecient ( )S t′   

in the steady state portion of Region 2 is mV2.70
C

−


, a slightly larger negative value than in the previously ex- 

amined configurations. 
The effects of the environmental configurations are described in Figure 5 and Figure 6 and the corresponding 

µ , σ , and R  values are summarized in Table 3 and Table 4. Causality and linearity between ( )T t∆  and 
( )V t∆  in agreement with the SE hold in a similar manner as for the “away” and “toward” horizontal, and “to- 

ward” vertical configurations. Figure 5 and Table 3 report the results for the “toward” horizontal-black tape 
configuration. In this case, the average value of the effective Seebeck coefficient ( )S t′  in the steady state  

portion of Region 2 is mV1.94
C

−


. Figure 6 and Table 4 report the results for the “toward” vertical-aluminum  

supports configuration. In this case, the average value of the effective Seebeck coeffiecient ( )S t′  in the steady  

state portion of Region 2 is mV2.75
C

−


, similar to that of the “toward” vertical configuration. Thus, the data  
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Figure 4. Trends of (a) ( )T t∆ , (b) ( )V t∆ , and (c) ( )S t′  for the solid state TEC-PG devicein the “toward” vertical con- 
figuration. Regions 1 and 2 are separated by the transient accompanying the turning-on of the hot plate.                   
 

 
Figure 5. Trends of (a) ( )T t∆ , (b) ( )V t∆ , and (c) ( )S t′  for the solid state TEC-PG devicein the “toward” horizontal- 
black tape configuration. Regions 1 and 2 are separated by the transient accompanying the turning-on of the hot plate.       
 

 

Figure 6. Trends of (a) ( )T t∆ , (b) ( )V t∆ , and (c) ( )'S t  for the solid state TEC-PG devicein the “toward” vertical- 
aluminum supports configuration. Regions 1 and 2 are separated by the transient accompanying the turning-on of the hot plate.      
 
Table 2. Mean ( )µ , standard deviation ( )σ , and relative error ( )R  of ( )V t∆ , ( )T t∆ , and ( )S t′  in the “toward” 
vertical configuration.The values are evaluated in region 2 in the 12 - 30 hour time interval.                             

Device Configurations Parameter µ  σ  R  

“toward” vertical 

T∆  14.5˚C 0.2˚C 0.013 

V∆  39.1 mV 0.2 mV 0.006 

S ′  
mV2.70

C
−

  

mV0.03
C  

0.009 

 
presented so far indicate that, in various geometrical and environmental configurations, the trends of the effec- 
tive ( )T t∆ , ( )V t∆  and ( )S t′  are similar. The average values of the effective Seebeck coefficient ( )S t′  in 
the steady state portion of Region 2, however, slightly depend upon the specific configuration. The vertical con- 
figurations seems to promote a lager absolute magnitude of ( )S t′ . 

Slight instabilities in the trends of ( )T t∆  and ( )V t∆ , observed in Figures 3-5, might be due to instabilities 
in the heated N2 gas inside the insulated compartment. It is very interesting to observe that, when the instabilities 
are originated in the ( )T t∆  graphs, they are reflected in the ( )V t∆  trends. This is another proof of the causal 
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Table 3. Mean ( )µ , standard deviation ( )σ , and relative error ( )R  of ( )V t∆ , ( )T t∆ , and ( )S t′  in the “toward” 
horizontal-black tape configuration. The values are evaluated in Region 2 in the 20 - 30

 
hour time interval.                 

Device Configurations Parameter µ  σ  R  

“toward” horizontal-black tape 

T∆  16.4˚C 0.2˚C 0.010 
V∆  31.8 mV 0.4 mV 0.012 

S ′  
mV1.94

C
−

  

mV0.02
C  

0.009 

 
Table 4. Mean ( )µ , standard deviation ( )σ , and relative error ( )R  of ( )V t∆ , ( )T t∆ , and ( )S t′  in the “toward” 
vertical-aluminum supports configuration. The values are evaluated in Region 2 in the 20 - 30 hour time interval.            

Device Configurations Parameter µ  σ  R  

“toward” vertical-aluminum supports 

T∆  18.9˚C 0.2˚C 0.008 
V∆  52.0 mV 0.6 mV 0.011 

S ′  
mV2.75

C
−

  

mV0.04
C  

0.013 

 
and linear relationship existing between the effective ( )T t∆  and ( )V t∆ . 

In Section 2, it was noticed that there are differences in the temperatures detected by the two thermocouple 
probes when placed contemporarily on the alumina-ceramic plate of either the “hot” or “cold” junctions of the 
solid state TEC-PG device. Discrepancies were found in both in the “away” and “toward” horizontal configura- 
tions. Because of these differences, a correction to the average values of the Seebeck coefficients is needed. To 
obtain such correction, the temperature differences ( )calT∆  between the two thermocouple probes in the “away” 
horizontal and “toward” horizontal configurations were measured and reported in Table 5. Based on the calT∆  
values, the corrected T∆ s were estimated and reported as corrT∆ . Finally, using the experimental average vol- 
tage difference in Region 2 ( V∆  from Table 1), the corrected effective Seebeck coefficients in the steady state  

of Region 2 corr
corr

VS
T

 ∆′ = − ∆ 
 are reported in Table 5. The values lie between 1.6− and mV1.3

C
−



 in the  

“away” horizontal configuration, and between 1.9−  and mV1.4
C

−


 in the “toward” horizontal configuration. 

In both the “away” and the “toward” horizontal configurations, the experimentally measured average effective  

( )S t  values of mV1.58
C

−


 and mV1.74
C

−


, respectively, are within the corrS ′  range. 

Figure 7 shows the fitting of the experimental effective ( )T t∆  and ( )V t∆  data in the “away” and “to-
ward” configurations observed in the 400 s time segment in Region 2 immediately following the turning-on of 
the hot plate. A linear fitting with parameters 0T∆ , 0V∆ , α , and β , reported in Table 6, gave the best 
goodness of fitting parameters 2Rα  and 2Rβ . The 0T∆  values vary between 0.28 (“toward” horizontal) to 1.5˚C 
(“toward” horizontal-black tape). On the other hand, the 0V∆  values vary between 0.62−  (“toward” horizontal) 
to 3.75 mV  (“toward” vertical-aluminum supports). However, the rates of increase of ( )T t∆  and ( )V t∆ , α  
and β  respectively, are almost constant in the examined configurations. The rate of increase of the effective 

( )T t∆ , α , is on average C0.02
s
 , while the rate of increase of the effective ( )V t∆ , β , is on average  

mV0.03
s

. Only the β  value in the “toward” vertical-aluminum supports configuration is mV0.08
s

. In this  

case, the 0V∆  (3.75 mV) and the average V∆  (52.0 mV) values are the largest among all the examined cases.  

The value of the rate of increase of ( )T t∆ , α , which is on average C0.02
s
 , coincides with the rate of in- 

crease of the temperature of the hot plate surface. The linearity of the relationship between ( )T t∆  and ( )V t∆  
in the 400 s time segment in Region 2, immediately following the turning-on of the hot plate, is strongly sup- 
ported by the large values of the goodness of fitting parameters 2Rα  and 2Rβ . 
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Table 5. Temperature difference ( )calT∆  between the two thermocouple probes; corrected temperature difference in Region 

2 between the “hot” and “cold” junction of the solid state TEC-PG device ( )corrT∆ ; experimental average effective voltage 

difference in Region 2 ( )V∆ , and corrected Seebeck coefficient in Region 2 ( )corrS′ . The values are analyzed in the “away” 
and “toward” configurations, placing the thermocouple probes either on the “hot” or “cold” junctionsof the solid state 
TEC-PG device, and fixing, for the corrections, either the temperature of the thermocouple normally used on the “cold” or 
“hot” junctions of the solid state TEC-PG device. The former setting is named cold thermocouple, the latter the hot ther- 
mocouple.                                                                                             

Device Configuration calT∆  corrT∆  V∆  corrS ′  
“away” horizontal 

“hot” junction 
fixed cold thermocouple 

−4.02˚C 21.8˚C 28.0 mV mV1.3
C

−
  

“toward” horizontal 
“hot” junction 

fixed cold thermocouple 
−4.96˚C 23.6˚C 32.4 mV mV1.4

C
−

  

“away” horizontal 
“cold” junction 

fixed hot thermocouple 
0.60˚C 17.2˚C 28.0 mV −1.6 mV1.6

C
−



 

“toward” horizontal 
“cold” junction 

fixed hot thermocouple 
1.40˚C 17.2˚C 32.4 mV mV1.9

C
−

  

 
Table 6. The values of initial offsets 

0T∆  and 
0V∆ , and of α , the rate of increase of ( )T t∆ , and of β , the rate of 

increase of ( )V t∆ . The corresponding goodness of fitting parameters 2Rα
 and 2Rβ  are also reported. The parameters are 

obtained from the linear fitting of the experimental curves, as those illustrated in Figure 7, which were obtained in the 400 s 
time segment in Region 2 immediately following the turning-on of the hot plate.                                       

System Configurations 0T∆  
α  0V∆  β  

2Rα  
2Rβ  

“away” horizontal 0.75˚C C0.02
s


 
1.14 mV mV0.03

s  
0.99217 0.98245 

“toward” horizontal 0.28˚C C0.02
s


 
−0.62 mV mV0.03

s  
0.99456 0.9946 

“toward” vertical 0.59˚C C0.01
s


 
−0.24 mV mV0.03

s  
0.99982 0.99419 

“toward”  
horizontal-black tape 1.50˚C C0.02

s


 
0.52 mV mV0.03

s  
0.98371 0.9965 

“toward” vertical-aluminum  
supports 0.71˚C C0.02

s


 
3.75 mV mV0.08

s  
0.99872 0.98003 

4. Discussion 
The results are reproducible and fully support the causal and linear relationship between the effective ( )T t∆   
and ( )V t∆  in agreement with the SE, ( ) ( ) ( )*V t S t T t′∆ = − ∆ , over the examined time range and in all the  
considered geometrical and environmental configurations. 

The average values of the effective Seebeck coefficient ( )S t′  in the steady state of Region 2 after turning- 
on the hot plate, however, slightly depend upon the geometrical and environmental configuration. In particular, 
the vertical configuration seems to promote a lager absolute magnitude. The result holds also after the correction 
of the effective Seebeck coefficient ( )S t′  values required to adjust the systematic errors occurring in the ef- 
fective ( )T t∆  measurements. Gravity should prevent the convection of hot air to reach the higher parts of the 
solid state TEC-PG device, but this effect seems not to play any role. The larger ( )S t′  values found in the ex- 
amined vertical configurations are related to the relatively large average effective ( )V t∆  values, while the av- 
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Figure 7. Linear fittings observed in the 400 s time segment in Region 2 
immediately following the turning-on of the hot plate of the rise in ( )T t∆  (a) 

and ( )V t∆  (b) in the “away” horizontal configuration, and of the rise in 

( )T t∆  (c) and ( )V t∆  (d) in the “toward” horizontal configuration.         

 
erage value of the effective ( )T t∆  is ~ 17.2 C 1.8 C±  .This situation is verified also for the “toward” vertical- 
aluminum supports configuration. Therefore, contributions to ( )V t∆  in the vertical configuration, especially 
with the Al sample holder, originate from factors other than the SE. 

The existence of a causal and linear relationship between the effective ( )T t∆  and ( )V t∆ , in agreement 
with the SE, ( ) ( ) ( )*V t S t T t′∆ = − ∆ , is corroborated by the rates of increase of ( )T t∆  and ( )V t∆ , α  and 
β  respectively, whose values are summarized in Table 6. These values are almost constant in the examined  

configurations: α  is on average C0.02
s
 , while β  is on average mV0.03

s
. It is noteworthy, however, that  

the value of β  in the “toward” vertical-aluminum supports configuration is mV0.08
s

. In this case, average  

effective ( )V t∆  achieves the value of 52.0 mV, which is the maximum detected in the presented set of expe- 
riments. Evidently, the Al sample holder promote an increase in ( )V t∆  without affecting the heat transfer 
across the solid state TEC-PG device: indeed the effective ( )T t∆  is ~ 18.9 C 0.2 C±  , very close to the aver-
age of 17.2 C 1.8 C±  . The lack of correlation between ( )T t∆  and ( )V t∆  with the Al sample holders is 
supported by the existence of a bump followed by a decay in the ( )V t∆  data of the “toward” vertical-alumi- 
num support configuration in Figure 6(b). This feature does not exist in the ( )T t∆  data in Figure 6(a). This 
finding implies that, given the causal relationship between ( )T t∆  and ( )V t∆ , the anomaly is located solely 
in the ( )V t∆  production. Thus, the effective Seebeck coefficient ( )S t′  can be modified by the geometrical 
and environmental configurations in which the solid state TEC-PG device is activated. Testing other settings, 
such as the distance of the TEC-PG from the surface of the hot plate and its inclination on it, with the aid of ei-
ther insulating or conducting sample holders, could further support this conclusion. 

To ascertain the role of heat transfer in explaining the described phenomena, the experimental results are 
compared to calculations. The hypothesis is that sample holders made of materials with different κ  in the “to- 
ward” configuration illustrated in Figure 1(c) produce a different rate of heat loss lossΘ . A larger heat loss rate 

lossΘ  would determine, in a certain time interval, a smaller effective temperature difference ( )T t∆  across the 
solid state TEC-PG device, and a smaller effective voltage difference ( )V t∆  due to the SE. The calculation of 
the heat loss rate lossΘ  across the sample holders in the “toward” configuration is carried out through resistance 
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equations [16], and assuming Al and wood as sample holder materials. The model system is illustrated in Figure 8. 
If an increase in heat loss rates lossΘ  through the sample holder exists and the corresponding voltage differ- 
ence ( )V t∆  decreases, then heat transfer enables the understanding of the observed phenomena. The ( )V t∆  
values achieve a steady state value in Region 2, which is larger for the Al than for the wood sample holder, as 
summarized in Table 2 and Table 4. 

To calculate the heat loss rate lossΘ  through the sample holder [16] in the steady state condition in Region 2, 
first the total resistance TEC-PGR  of the isolated solid state TEC-PG device depicted in Figure 8 without consi- 
dering the sample holders in the right corner of the figure, is calculated as follows: 

2 3 2 3

2 3 2 3 2 3 2 3

Al O Bi TeCu
TEC-PG

Al O Al O Cu Cu Bi Te Bi Te

12 2
142

t tt
R

A A Aκ κ κ
= + +                      (1) 

In Equation (1), t  is the thickness of the material in the solid state TEC-PG device depicted in Figure 8, A  
is its surface area, and κ  its thermal conductivity. The factors 2 in the first and second term of the equation 
appear because there are two alumina-ceramic and two Cu plates in the solid state TEC-PG device depicted in  

Figure 8. The factor 1
142

 in the third term of Equation (1) appears because there are 142 pillars of a Bi2Te3-  

based alloy in the solid state TEC-PG devices used for this experiment. The values of the thermal conductivity 
and of the geometrical parameters are summarized in Table 7. The heat transfer rate across the solid state 
TEC-PG device is: 

TEC-PG

T
R
∆

Θ = ,                                     (2) 

This quantity is 0.5 W, assuming a T∆  of 16.5 C 16.5 K=  (where K is degree Kelvin), as experimentally 
determined and previously discussed. 

The second step is the calculation of the heat loss rate lossΘ  in Region 2 due to the different sample holders 
in the right corner of Figure 8. The sample holder’s (SH) resistance is: 

SH
SH

SH SH

1
2

t
R

Aκ
=                                    (3) 

where the 1
2

 factor is due to the parallel resistance determined by the sample holders in contact with the solid  

state TEC-PG device. The values of the thermal conductivity and of the geometrical parameters of the wood and 
Al sample holders are reported in Table 7. Assuming isotropic heat diffusion, the heat loss rate lossΘ  across the 
sample holders in Figure 8 is: 

loss
SH

T
R
∆

Θ = ,                                      (4) 

where SHT∆  is the temperature difference across the sample holder: 2 K across Al, and 5 K across wood. The 
calculated values of lossΘ  are reported in Table 7, and are compared with the trends of the average effective 

( )V t∆  values in the steady state in Region 2. It can be seen that the lossΘ decreases and the average effective 
( )V t∆  values also decrease, in order, from the Al to the wood sample holders, which is contradictory accord- 

ing to our hypothesis. In addition, with the Al sample holder, the heat loss rate lossΘ  (2.5 W) is larger than the  

heat transfer rate 
TEC-PG

T
R
∆

Θ =  across the solid state TEC-PG device (0.5 W).The lack of correlation between  

the heat loss rates lossΘ  and the effective average ( )V t∆  values, suggests that heat transfer does not com- 
pletely explain the effective voltage production in the examined cases. 

These findings suggest that in solid state TEC-PG devices the effective ( )V t∆  production might be deter- 
mined by factors other than heat transfer. One of these factors could be of electrical nature. Indeed, Figure 8 
suggests that in the “toward” vertical-aluminum supports case, the 142 pillars of doped Bi2Te3-based alloy in the 
solid state TEC-PG device are embedded between two capacitors in series: one is C1, with air and one of the Cu 
plates as electrodes, and the alumina-ceramic plate (Al2O3) as dielectric layer. The other capacitor is C2, with 
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Figure 8. Model of the solid state TEC-PG device mounted to 
the sample holder used in the calculations of heat transfer rates 
across the solid state TEC-PG device and heat loss rates through 
the sample holders. Aluminum and wood are considered as ma- 
terials of the sample holders. The arrows indicate the direction 
of flow of the heat lost through the sample holders. C1 indi- 
cates the capacitor with air and a Cu plate as electrodes, and the 
alumina-ceramic plate (Al2O3) as dielectric layer. C2 indicates 
the capacitor with the other Cu plate, and the Al sample holder 
as electrodes, and the Al2O3 plate as dielectric layer.           

 
Table 7. Thermal conductivity (κ ) and specific physical dimensions (length l , width w , and thickness t ) of the 
materials involved in the heat transfer rate Θ  across the solid state TEC-PG device, and heat loss rate lossΘ  through the 

sample holders.  For the two different sample holder’s materials considered (Al and wood) the heat loss rate lossΘ  is 

calculated through resistance equations [16]. The temperature differences across the sample holders are: 2AlT K∆ = , and 

5woodT K∆ = . The V∆  values are the average effective voltage difference in the steady state condition in region 2 for the 
wood and Al cases, and correspond to those in Table 2 and Table 4.                                                    

Material 
W

mK
κ  
 
   

( )mml  ( )mmw  ( )mmt  ( )loss WΘ  ( )mVV∆  

Alumina-Ceramic (Al2O3) 98% 35.3 [17] 30.0 30.0 1.5   
Cu (Pure)** 401.0 [18] 30.0 30.0 1.0   

Bismuth Telluride (Bi2Te3) 1.5 [19] 0.8 0.8 4.5   
Al 167.0 [18] 6.0 6.0 9.5 2.5 52.0 

Wood 0.15 [*] 6.0 6.0 9.5 0.006 39.1 

 
the other Cu plate and the Al sample holder as electrodes, and the Al2O3 plate as dielectric layer. Although the 
Al sample holders do not completely cover the alumina ceramic plate (the Al2O3 layer in Figure 8), the total 
effective voltage difference ( )*V t∆  produced by such a system of capacitors in series can be approximat- 
ed as: 

( ) ( ) ( )*
1 2V t V t V t∆ = ∆ + ∆ ,                              (5) 

where ( )1V t∆  is the contribution of capacitor C1 and ( )2V t∆  is the contribution of capacitor C2. The 
( )*V t∆  voltage difference influences the effective voltage difference ( )V t∆  produced by the solid state 

TEC-PG device. Wood is an insulator, thus not a good electrode material. Therefore no C2 capacitor can be 
considered with the wood sample holder. Thus in the case of the Al sample holder, the existence of the two ca- 
pacitors in series could explain the average effective 52.0 mVV∆ =  value in the “toward” vertical-aluminum 
supports case, which is larger than the average effective 39.1 mVV∆ =  value in the “toward” vertical case 
with wood sample holders. 
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5. Summary and Significance 
In a solid state thermoelectric power generator (TEC-PG) device, the effective temperature difference ( )T t∆  
between the “hot” and “cold” junctions produces an effective voltage difference ( )V t∆ . This work focuses on 
the effective Seebeck coefficient ( )S t′ , which refers to a device, not just to a material’s performance. The re- 
sults show that effective Seebeck effect ( ) ( ) ( )*V t S t T t′∆ = − ∆  holds over a long time of activity of the solid 
state TEC-PG device in an insulated compartment, and over several geometrical and environmental configura- 
tions. Within the systematic errors in the temperature measurements and the possible temperature instabilities, 
the relationship between the effective ( )T t∆  and ( )V t∆  is always causal and linear. However, the effective 
Seebeck coefficient ( )S t′  can be affected by the geometrical and environmental configurations. In particular, 
contributions to ( )V t∆ , related to the motion of the charge carriers in the semiconducting pillars of the 
TEC-PG and not due to ( )T t∆ , are discovered. Calculations based solely on heat transfer are not sufficient to 
explain the observed phenomena. However, the used experimental set-up involving the solid state TEC-PG de- 
vice can be viewed as a system of two capacitors in series. This view aids in the understanding of the ( )V t∆  
production of solid state TEC-PG devices. Other configurations with different distances or inclinations of the 
solid state TEC-PG device with respect to the heat source should be considered to support this conclusion. The 
available results underline that, while materials engineering efforts are necessary to improve applications ex- 
ploiting the Seebeck effect, efforts are also needed to maximizing the effective performance of thermoelectric 
devices. To this end, in the future experiments are planned to understand the effect of the size of the heating area, 
and will be accompanied by finite element analysis. 
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