
World Journal of Condensed Matter Physics, 2014, 4, 134-140 
Published Online August 2014 in SciRes. http://www.scirp.org/journal/wjcmp 
http://dx.doi.org/10.4236/wjcmp.2014.43018   

How to cite this paper: Munehisa, T. (2014) An Improved Finite Temperature Lanczos Method and its Application to the 
Spin-1/2 Heisenberg Model on the Kagome Lattice. World Journal of Condensed Matter Physics, 4, 134-140. 
http://dx.doi.org/10.4236/wjcmp.2014.43018  

 
 

An Improved Finite Temperature Lanczos 
Method and Its Application to the Spin-1/2 
Heisenberg Model on the Kagome Lattice 
Tomo Munehisa 
Faculty of Engineering, University of Yamanashi, Kofu, Japan 
Email: munehisa@yamanashi.ac.jp 
 
Received 1 May 2014; revised 9 June 2014; accepted 30 June 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We present an improvement of the finite temperature Lanczos method in order to apply this me- 
thod to systems at very low temperature. One proposal is to introduce two steps in this method. In 
the first step, we use the Chebyshev polynomial expansion to calculate ( )ˆ

1exp random vectorH T−  
at moderate temperature 1T . In the second step, we apply the ordinary finite temperature Lanc- 
zos method using the calculated state as the initial state of the Lanczos method. Another proposal 
is to employ a sampling method for selecting a random vector. By this sampling, we can improve 
an efficiency of calculations. Using the improved finite temperature Lanczos method, we calculate 
the specific heat of the spin-1/2 Heisenberg model on the kagome lattices of 27 and 30 sites. 
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1. Introduction 
Study about the spin-1/2 Heisenberg model on the kagome lattice [1]-[4] has remained to be formidable during 
several decades. Recently this model has been studied extensively to pursue a possible candidate for a quantum 
spin liquid [5]-[10]. Also as a spin-1/2 antiferromagnet with the kagome geometry, Kapellasite, ( )3 26ZnCU OH Cl  
has been synthesized and has been studied about its magnetic properties [11]. These experimental works require 
theoretical studies on this system at finite temperature T . One of these studies is made by the high-temperature 
series expansion that has shown the quite stable results for the uniform susceptibility over the wide range of tem- 
perature [12]-[14]. But this study has failed to present conclusive results for the specific heat at low T . Reasons 
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of this failure are that this method such as the high-temperature series expansion is difficult at low T , and that 
the specific heat of the model on the kagome lattice cannot be described by the power-law behavior at low T . 
Also we should realize that this method explains only a half of the entropy. 

In this work, we will present calculations of the specific heat at low T  by the exact approach for small clus- 
ters. The exact approach is very powerful and extensively applied for study at zero T  [15]-[17], although the 
size is severely limited. There are few researches on the exact approach to calculations of the specific heat at fi- 
nite T . Only some results on 18L =  or 24L =  clusters are found in [12] [13]. Here L is the total number of 
sites. By these previous works, it is understood that ordinary calculations on 27L =  or larger lattices are quite 
difficult because the system on the kagome lattice has the complicated structure at low T . We point out the 
Chebyshev polynomial expansion (CPE) as one method of the exact approaches at finite T  [18] [19]. Another 
method is the finite temperature Lanczos method (FTLM) [20] [21].While the polymial expansion method is 
well mathematically understood, in the FTLM we should be careful to control numerical errors. Due to this 
weakness there are a fewer applications of the FTLM, compared with the CPE [18], although both methods give 
us the same calculation costs. 

However, recently the FTLM has been improved by making use of the full irreducible representation of the 
symmetry group [22], by applying the method to the microcanonical ensemble [23] or by combining it with the 
meanfield approach [24]. Also the improvement has been made by modifying the initial state for the Lanczos 
method [25]. As a result, we can make precise calculations of thermodynamic quantities of strongly correlated 
systems [22]. Also it has been applied to the Kondo lattice [26], and J1-J2 Heisenberg model [27]. 

Here we would like to emphasize an advantage of the FTLM that we calculate the specific heat at many val- 
ues of T  without keeping states in the computer memory. This is quite important in study by limited resources 
of computers. 

In calculations at low T , we need the large number M  of iterations for obtaining the orthogonal states in 
the FTLM. In calculations of 100M > , we have to worry about errors on the orthogonality of the states. In or- 
der to keep that 100M < , we propose a two-step method, which is some extension of the method, in which the 
initial state for the Lanczos method is modified [25]. 

In the first step, we use the CPE to generate a state ( )1
ˆexp 2H T r−  at moderate 1T . Here r  is a random  

vector. In the second step, we employ the FTLM. We call our proposed method as a two-step finite temperature 
Lanczos method (tFTLM). 

In addition to this two-step strategy, we propose a sampling method for selecting the initial random state. It is 
well known that the random vector method is quite effective for the trace calculation of the partition function. If 
the Hamiltonian has some symmetry, the basis states are divided into symmetry sectors. In each symmetry sec- 
tor we calculate the partition function. At the infinitely high T  a sampling weight of each symmetry sector is 
proportional to the number of basis states in the symmetry sector. But at very low T , the partition function de- 
pends extremely on the lowest energy sE  of the symmetry sector s . Based on this consideration, we use a  
product of ( )1exp sE T−  and the number of basis states for a sample weight of a sector. 

Contents of this paper are as following. After a brief review on the FTLM, we propose our method in Section 
2. In Section 3, we make an examination about our method in order to show that the tFTLM is effective at very 
low T . After the examination, we apply the tFTLM to calculate the specific heat of the spin-1/2 Heisenberg 
model on the kagome lattice. By results of 27L =  and 30L =  lattice we conclude that the specific heat 
shows the curve of the shoulder around 0.15T = . A final section is devoted to a conclusion. 

2. Two-Step Finite Temperature Lanczos Method 
First we present a brief description on the FTLM. We consider calculations of a static expectation value of an 
operator Ô  at T . 

ˆ ˆ1ˆ ˆe , e ,
N N

H H

n n
O n O n Z n n

Z
β β− −= =∑ ∑                     (1) 

with 1 Tβ =  and a sum over a complete orthonormal basis set n . Here N is the dimension of the vector 
space. Using the FTLM it is approximated by 
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( ) ( ) 2
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with a sum over symmetry sectors s of dimension sN . The trace in (1) is replaced by the sum over R′ s random 
vectors r  in (2) and (3) [28] [29]. M  is the number of iterations in the Lanczos procedure. On each random 
vector r , the Lanczos procedure gives us the eigenenergies ( )r

mE  and their corresponding eigenvectors  
( )r
mΨ , whose number is M . Because we adopt the random vector method, the calculation cost is of order of  

RM .  
The accuracy of the FTLM depends on obtained eigenvalues in the Lanczos method. When a system size be- 

comes large, we need a quite large number M  in order to obtain the eigenvalue that is equal or nearly equal to 
the lowest energy of the system. However, M  could not be large, because in the Lanczos method the error on 
the orthogonality becomes large as M  is large. The maximum value of M  is about 100 [18]. The limit of 
M  gives us the minimum T  where calculations are reliable. 

This limitation can be avoided in the Lanczos method for the energy calculation at zero T  by repeating this 
method several times. In order to introduce this repetition into the FTLM, we propose a two-step method. In the 
first step we generate a state ( )1

ˆexp 2H rβ−  at moderate 1 11T β= . 

( )1 ˆ 1 22
1e H

r r Z rβφ −= ,                               (4) 

( ) 1 ˆ
1 e HZ r r rβ−= .                                  (5) 

For this calculations of rφ , we use the CPE. 

( ) ( ) ( )1 2
1 0 1

ˆ .
K

r k k
k

c T H H r Z rφ β≈ ∑                           (6) 

Here ( )kT x  is the k-th Chebyshev polynomial. Here 0H  is determined in order that the absolute value of 
0Ĥ H  is less than 1. 

The precision of the approximation in the first step calculation can be controlled by K . We would like to 
reduce the numerical error of the state rφ  to ( )1010O − , so that K  is fixed by the value of 1T . 

Next we carry out the second step procedure. Here we apply the Lanczos method, where we use this state 
rφ  as the initial state. 

( ) ( ) ( ) ( ) ( )1
1

1ˆ ˆe ,
r

m
R M

E r rs
r m m r

s r m

N
O O Z r

Z R
β β φ φ− −≈ Ψ Ψ∑ ∑∑                   (7) 

( ) ( ) ( ) ( )1
2

1e .
r

m
R M

E rs
r m

s r m
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Z Z r

R
β β φ− −≈ Ψ∑ ∑∑                         (8) 

In the Lanczos procedure we obtain eigenenergies ( )r
mE  and their corresponding eigenvectors ( )r

mΨ , whose  

number is M . 
Finally we describe a sampling method for selecting the initial random state. As described in the introduction, 

at low T  the partition function depends extremely on the lowest energy sE  of the symmetry sector s . If sE  
differs from each other, it is not effective that only the number of basis states sN  of the symmetry sector is 
used as the sampling weight. The Heisenberg model on the kagome is a typical example of cases that there are 
some differences between sE ’s. For our calculations we use the product of ( )1exp sE T−  and the number of 
basis states for the sample weight of a sector. Therefore a probability ( )P s  of selecting s is given by 

( ) ( ) ( )1 1
'

exp exp .s s s s
s

P s E T N E T N′ ′= − −∑  

Using this probability ( )P s , we obtain 
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The following is a procedure for sampling. First we select s according to the probability ( )P s . Next we gen- 
erate a random vector in the selected s. We apply the tFTLM to calculate the partition function. After that we 
multiply this partition function by the factor of ( )1 P s . 

3. The Specific Heat 
First we make an examination about our method by applying the tFTLM to calculations in the spin-1/2 Heisen- 
berg model on the kagome lattice. The Hamiltonian of this model is defined by 

,

ˆ .i j
i j

H s s= ⋅∑    

Here ( ), ,x y z
i i i is s s s=


 is a spin operator of the spin one-half at a site i . The sum is carried out over a pair of 
sites on a link of the kagome lattice. 

For the examination of the tFTLM we calculate the specific heat on the kagome antiferromagnet of the 24L =  
lattice. Although the exact results on it cannot be available, the specific heat per site ( )vC T  must be quite small 
at extremely low T  on the finite lattice. In Figure 1, we plot the specific heat until 31.25 10T −= × . The calcu- 
lations are made using the FTLM and the tFTLM. The specific heat obtained by the FTLM of 60M =  does not 
fall to the zero, but remains constant. Results by the FTLM of 80M =  have the same tendency, though the con- 
stant value becomes small. About results by the tFTLM, the specific heat has fallen to the value that is consistent 
with zero. This figure shows that the tFTLM can be applied safely to the extremely low T . 

Next we make calculations of the ( )vC T  of the spin-1/2 Heisenberg model on the kagome lattice. Here we 
give a description about parameters of the tFHTM on 27L =  and 30L = . In the first step we have two para- 
meters of 1T  and K . 1 0.25T =  is chosen in order to check our method, by comparing our results with results 
of the FTLM or of the high-temperature series expansion [12]. In order to reduce the calculation error into 1010−   
about a given random vector, we need a ratio of coefficients ( ) ( ) 10

1 0 1 10Kc cβ β −≤  in the Chebyshev poly- 
nomial (6). For obtaining this ratio, we determine 40K =  in (6). In the second step the minimum value of T , 
at which calculations are made, is 0.0125 for making valuable discussions on the size dependence of the specific 
heat. For determining a value of M , we check the reliability of calculations using only one random vector. After 
this examination we fix that 80M = . 

Our results on clusters of 21,24,27,30L =  are given in Figure 2. From the study by the high-temperature se- 
ries expansion analysis [12] [13] we can say that the dependence of the ( )vC T  at 0.25T =  or at the higher T  
on the size is quite small. Our results support this little dependence on the cluster size. On data at 
0.15 0.25T< <  we find the dependence of the specific heat ( )vC T  on the cluster size, but it is small. By this 
small dependence, we can say that the curve of the ( )vC T  on the temperature has changed from the curve at 

0.25T > . As the study of [12] [13] showed, the high-temperature series expansion could not explain this curve at 
this temperature. On the entropy ( )0eS T  that is calculated by the integration from 0T  to the infinitely high T , 
we have that ( )0 0.25 0.5eS T = ≈ . This small value suggests existence of the huge number of excited states, 
whose gap energies are small than 0.25T = . At 0.15T < , we can find the large dependence of the ( )vC T  on 
the cluster size. Therefore we could not mention a quantitative statement on the curve of the specific heat.  

But at 0.04 0.15T< <  we can make a qualitative discussion. We find the qualitatively same results on data of 
21L =  and 27L = , which show the shoulder of the ( )vC T  curve. The ( )vC T  on 24L =  shows the clear 

peak. This fact gives us the qualitative difference between the ( )vC T  on the even size lattice and that of the odd 
size lattice. On the 30L =  lattice, the peak of the ( )vC T  curve is not found, and only the shoulder is seen. 
This tendency suggests that the curve of the ( )vC T on the larger even size lattice will agree with the curve on 

27L = . Summarizing our calculations, they show that this shoulder survives at the large L  limit at 
0.04 0.25T< < . 

4. Conclusions 
In this work, we presented two improvements on the FTLM in order to apply this method to systems at very low 
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Figure 1. The specific heat at low temperature on the kagome lattice of 

24L =  In the tFTHM, 1 0.25T = . The number of sampling random vectors 
is 1000.                                                           

 

 
Figure 2. The specific heat on the kagome lattice of 21,24,27,30L = . On 
calculations of 30L =  and   27L = , parameters of 1 0.25T = , 40K =  and 

80M =  are adopted. The number of sampling random vectors is 1000. The 
statistical error is less than 3%, so that it is not shown.                      

 
temperature. One improvement was to introduce the two-step FTLM, tFTLM. In the first step we used the Che- 
byshev polynomial expansion to calculate ( )1

ˆexp 2H rβ−  at moderate temperature 1 11T β= . In the second  

step, we applied the FTLM using the calculated state as the initial state. By this two-step method, we don’t have 
to worry about the error of the Lanczos method. The following is a reason for this improvement. We need a 
large number of iterations on the Lanczos method at low temperature. This number is limited by the numerical 
error. While in the Chebyshev polynomial expansion this error is under the control. Therefore the numerical er-
ror can be quite small at the first step calculation. By the first step calculation we can reduce the number of the 
iteration of the Lanczos method in the second calculation. 
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Another improvement was to employ the effective sampling method for selecting a random vector. Using this 
sampling we can improve the efficiency of calculations. By the tFTLM, we calculated the specific heat of the 
spin-1/2 Heisenberg model on the kagome lattice of 30 sites. Our results confirmed the little dependence of the 
specific heat on the cluster size at 0.25T > . At 0.15 0.25T< <  the dependence on the cluster size was small, 
so that we concluded that the curve of the specific heat changed from the curve at the higher temperature. Also 
our calculation suggested that the shoulder of the curve survived at the large cluster size at 0.04 0.3T< < . 
Summarizing this work, we proposed the tFTLM that was quite effective for numerical study at extremely low 
temperature and we presented definite results about the specific heat of the Heisenberg model on the 30L =  
kagome lattice.  

We would like to make comments on further applications of the method. In this paper we applied the tFTLM 
to only static quantities at finite  T . But it is easy to apply our method to the dynamical quantities. In study of 
the spin liquid model on the kagome, the work [7] has discussed the dynamical susceptibility that can be ob- 
served by neutron scattering and NMR. Also in numerical studies this is an issue to be examined, if we realize 
that around 0.1T =  results of the specific heat on 30L =  differ from results on 24L = , while the uniform 
susceptibility has showed the little dependence. Therefore it is very interesting to examine a size dependence of 
the dynamical susceptibility. 

Also we comment on implication of our results of the specific heat. They require the more careful study on 
the spin liquid model, which suggests the power law behavior of the specific heat at low T . The size depen- 
dence has become small around 0.1T =  in our results. Therefore we need a consistent description about our 
results and about the power-law behavior of the specific heat. But this is not easy as discussed in [12]. Our study 
suggests that the unified understanding of the specific heat is one of important issues on the Heisenberg model 
on the kagome lattice. 

Acknowledgements 
M. T. thanks Dr. Yasuko Munehisa for every encouragement on my study. 

References 
[1] Zeng, C. and Elser, V. (1990) Numerical Studies of Antiferromagnetism on a Kagome Net. Physical Review B, 42, 

8436-8444. http://dx.doi.org/10.1103/PhysRevB.42.8436 
[2] Elstner, N. and Young, A.P. (1994) Spin-1/2 Heisenberg Antiferromagnet on the Kagome Lattice: High-Temperature 

Expansion and Exact-Diagonalization Studies. Physical Review B, 50, 6871-6876. 
http://dx.doi.org/10.1103/PhysRevB.50.6871 

[3] Nakamura, T. and Miyashita, S. (1995) Thermodynamic Properties of the Quantum Heisenberg Antiferromagnet on the 
Kagome Lattice. Physical Review B, 52, 9174-9177. http://dx.doi.org/10.1103/PhysRevB.52.9174 

[4] Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. and Sindzingre, P. (1997) Order versus Disorder in the Quantum 
Heisenberg Antiferromagnet on the Kagome Lattice Using Exact Spectra Analysis. Physical Review B, 56, 2521-2529. 
http://dx.doi.org/10.1103/PhysRevB.56.2521 

[5] Depenbrock, S., McCulloch, I.P. and Schollwoeck, U. (2012) Nature of the Spin-Liquid Ground State of the S = 1/2 
Heisenberg Model on the Kagome Lattice. Physical Review Letter, 109, 067201-067201-6. 
http://dx.doi.org/10.1103/PhysRevLett.109.067201 

[6] Misguich, G., Serban, D. and Pasquier, V. (2002) Quantum Dimer Model on the Kagome Lattice: Solvable Dimer- 
Liquid and Ising Gauge Theory. Physical Review Letter, 89, 137202-137202-4. 
http://dx.doi.org/10.1103/PhysRevLett.89.137202 

[7] Hermele, M., Ran, Y., Lee, P.A. and Wen, X.G. (2008) Properties of an Algebraic Spin Liquid on the Kagome Lattice. 
Physical Review B, 77, 224413-224413-23. http://dx.doi.org/10.1103/PhysRevB.77.224413 

[8] Iqbal, Y., Becca, F., Sorella, S. and Poilblanc, D. (2013) Gapless Spin-Liquid Phase in the Kagome Spin-1/2 Heisen-
berg Antiferromagnet. Physical Review B, 87, 060405-060405-5. http://dx.doi.org/10.1103/PhysRevB.87.060405 

[9] Messio, L., Bernu, B. and Lhuillier, C. (2012) Kagome Antiferromagnet: A Chiral Topological Spin Liquid? Physical 
Review Letter, 108, 207204-207204-5. http://dx.doi.org/10.1103/PhysRevLett.108.207204 

[10] Clark, B.K., Kinder, J.M. Neuscamman, E., Chan, K.C. and Lawler, M.J. (2013) Striped Spin Liquid Crystal Ground 
State Instability of Kagome Antiferromagnets. Physical Review Letter, 111, 187205-87205-5. 

[11] Fak, B., Kermarrec, E., Messio, L., Bernu, B., Lhuillier, C., Bert, F., Mendels, P., Koteswararao, B., Bouquet, F., Ol- 

http://dx.doi.org/10.1103/PhysRevB.42.8436
http://dx.doi.org/10.1103/PhysRevB.50.6871
http://dx.doi.org/10.1103/PhysRevB.52.9174
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.87.060405
http://dx.doi.org/10.1103/PhysRevLett.108.207204


T. Munehisa 
 

 
140 

livier, J., Hillier, A.D., Amato, A., Colman, R.H. and Wills, A.S. (2012) Kapellasite: A Kagome Quantum Spin Liquid 
with Competing Interactions Experiments. Physical Review Letter, 109, 037208-037208-5. 
http://dx.doi.org/10.1103/PhysRevLett.109.037208 

[12] Misguich, G. and Bernu, B. (2005) Specific Heat of the S = 1/2 Heisenberg Model on the Kagome Lattice: High- 
Temperature Series Expansion Analysis. Physical Review B, 71, 014417-014417-7. 
http://dx.doi.org/10.1103/PhysRevB.71.014417 

[13] Misguich, G. and Sindzingre, P. (2007) Magnetic Susceptibility and Specific Heat of the Spin-1/2 Heisenberg Model 
on the Kagome Lattice and Experimental Data on ZnCu3(OH)6Cl2. The European Physical Journal B, 59, 305-309. 
http://dx.doi.org/10.1140/epjb/e2007-00301-6 

[14] Singh, R.R.P. and Oitmaa, J. (2012) High-Temperature Series Expansion Study of the Heisenberg Antiferromagnet on 
the Hyperkagome Lattice: Comparison with Na4Ir3O8. Physical Review B, 85, 104406-104406-4. 
http://dx.doi.org/10.1103/PhysRevB.85.104406 

[15] Laeuchli, A.M., Sudan, J. and Sorensen, E.S. (2011) Ground-State Energy and Spin Gap of Spin-12 Kagome-Heis- 
enberg Antiferromagnetic Clusters: Large-Scale Exact Diagonalization Results. Physical Review B, 83, 212401-212404. 
http://dx.doi.org/10.1103/PhysRevB.83.212401 

[16] Nakano, H. and Sakai, T. (2011) Numerical-Diagonalization Study of Spin Gap Issue of the Kagome Lattice Heisen- 
berg Antiferromagnet. Journal of the Physical Society of Japan, 80, 053704-053708. 
http://dx.doi.org/10.1143/JPSJ.80.053704 

[17] Isoda, M., Nakano, H. and Sakai, T. (2011) Specific Heat and Magnetic Susceptibility of Ising-Like Anisotropic Hei- 
senberg Model on Kagome Lattice. Journal of the Physical Society of Japan, 80, 084704-084706. 
http://dx.doi.org/10.1143/JPSJ.80.084704 

[18] Weise, A., Wellein, G., Alvermann, A. and Fehske, H. (2006) The Kernel Polynomial Method. Review Modern Physics, 
78, 275-306. http://dx.doi.org/10.1103/RevModPhys.78.275 

[19] Iitaka, T., Nomura, S., Hirayama, H., Zhao, X., Aoyagi, Y. and Sugano, T. (1997) Calculating the Linear Response 
Functions of Noninteracting Electrons with a Time-Dependent Schroedinger Equation. Physical Review E, 56, 1222- 
1229. http://dx.doi.org/10.1103/PhysRevE.56.1222 

[20] Jaklic, J. and Prelpvsek, P. (1994) Lanczos Method for the Calculation of Finite-Temperature Quantities in Correlated 
Systems. Physical Review B, 49, 5065-5068. http://dx.doi.org/10.1103/PhysRevB.49.5065 

[21] Jaklic, J. and Prelpvsek, P. (2000) Finite-Temperature Properties of Doped Antiferromagnets. Advance Physics, 49, 
1-92. http://dx.doi.org/10.1080/000187300243381 

[22] Schnack, J. and Wendland, O. (2010) Properties of Highly Frustrated Magnetic Molecules Studied by the Finite-Tempera- 
ture Lanczos Method. The European Physical Journal B, 78, 535-541. http://dx.doi.org/10.1140/epjb/e2010-10713-8 

[23] Long, M.W., Prelovsek, P., El Shawish, S., Karadamoglou, J. and Zotos, X. (2003) Finite-Temperature Dynamical 
Correlations Using the Microcanonical Ensemble and the Lanczos Algorithm. Physical Review B, 68, 235106- 
235106-10. http://dx.doi.org/10.1103/PhysRevB.68.235106 

[24] Capone, M., de’Medici, L. and Georges, A. (2007) Solving the Dynamical Mean-Field Theory at Very Low Tempera- 
tures Using the Lanczos Exact Diagonalization. Physical Review B, 76, 245116-245116-6. 
http://dx.doi.org/10.1103/PhysRevB.76.245116 

[25] Aichhorn, M., Daghofer, M., Evertz, H.G. and von der Linden, W. (2003) Low-Temperature Lanczos Method for 
Strongly Correlated Systems. Physical Review B, 67, 161103-161103-4. 
http://dx.doi.org/10.1103/PhysRevB.67.161103 

[26] Zerec, I., Schmidt, B. and Thalmeier, P. (2006) Kondo Lattice Model Studied with the Finite Temperature Lanczos 
Method. Physical Review B, 73, 245108-245108-6. http://dx.doi.org/10.1103/PhysRevB.73.245108 

[27] Schmidt, B., Thalmeier, P. and Shannon, N. (2007) Magnetocaloric Effect in the Frustrated Square Lattice J1-J2 Model. 
Physical Review B, 76, 125113-125113-19. http://dx.doi.org/10.1103/PhysRevB.76.125113 

[28] Hams, A. and De Raedt, H. (2000) Fast Algorithm for Finding the Eigenvalue Distribution of Very Large Matrices. 
Physical Review E, 62, 4365-4377. http://dx.doi.org/10.1103/PhysRevE.62.4365 

[29] Iitaka, T. and Ebisuzaki, T. (2004) Random Phase Vector for Calculating the Trace of a Large Matrix. Physical Review 
E, 69, 057701-057701-4. http://dx.doi.org/10.1103/PhysRevE.69.057701 

http://dx.doi.org/10.1103/PhysRevLett.109.037208
http://dx.doi.org/10.1103/PhysRevB.71.014417
http://dx.doi.org/10.1140/epjb/e2007-00301-6
http://dx.doi.org/10.1103/PhysRevB.85.104406
http://dx.doi.org/10.1103/PhysRevB.83.212401
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1143/JPSJ.80.084704
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/PhysRevE.56.1222
http://dx.doi.org/10.1103/PhysRevB.49.5065
http://dx.doi.org/10.1080/000187300243381
http://dx.doi.org/10.1140/epjb/e2010-10713-8
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1103/PhysRevB.76.245116
http://dx.doi.org/10.1103/PhysRevB.67.161103
http://dx.doi.org/10.1103/PhysRevB.73.245108
http://dx.doi.org/10.1103/PhysRevB.76.125113
http://dx.doi.org/10.1103/PhysRevE.62.4365
http://dx.doi.org/10.1103/PhysRevE.69.057701


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	An Improved Finite Temperature Lanczos Method and Its Application to the Spin-1/2 Heisenberg Model on the Kagome Lattice
	Abstract
	Keywords
	1. Introduction
	2. Two-Step Finite Temperature Lanczos Method
	3. The Specific Heat
	4. Conclusions
	Acknowledgements
	References

