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ABSTRACT 
Employing the Geilikman-Kresin (GK) theory, we address the experimental data obtained by Bauer et al., and 
by Schneider et al., on the thermal conductivity (κ) of superconducting MgB2. The two gaps of this compound 
have qualitatively been understood via the well-known Suhl, Matthias, and Walker’s (SMW) approach to multi- 
gap superconductivity. Since this approach is based on one-phonon exchange mechanism for the formation of 
Cooper pairs, it cannot give a quantitative account of the values of Tc and the multiple gaps that characterize 
MgB2 and other high-Tc superconductors (SCs). Despite this fact and some rather ambiguous features, it has 
been pointed out in a recent critical review by Malik and Llano (ML) that the SMW approach provides an im- 
portant clue to deal with an SC the two gaps of which close at the same Tc: consider the possibility of the interac-
tion parameters in the theory to be temperature-dependent. Guided by this clue, ML gave a complete summary 
of parameters that quantitatively account for the Tc and the gaps of MgB2 via the generalized BCS equations 
(GBCSEs). GBCSEs which we recall, invoke multi-phonon exchange mechanism for the formation of Cooper 
pairs and multiple Debye temperatures to deal with composite SCs. The parameter-values given in ML are used 
here to calculate the temperature-dependent gaps, which are an essential input for the GK theory. Notable fea-
tures of this work are: 1) 

2MgBκ  is calculated for both—the scenario in which the two gaps of MgB2 close/do not 
close at the same temperature whence it is found that 2) the latter scenario yields results in better agreement 
with experiment. 
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1. Introduction 
Thermal conductivity (κ) of a superconductor (SC) is an 
important parameter from the point of view of applica- 
tions; additionally, it helps in the theoretical understand- 
ing of the superconducting state [1]. An appreciation of 
the latter follows by recalling that: 1) in the kinetic theory, 
κ is proportional to the following properties of the heat 
carriers: a) number density, b) specific heat and c) mean 
free path (MFP); this is so regardless of whether the sys- 
tem is in the normal or the superconducting state. A non- 
trivial statement about MFP in any system at any temper- 
ature T is that it has the same value for both the normal 
and the superconducting states [2]. This, indeed, is not so  

for the other two properties. 2) The feature that distin- 
guishes the superconducting state from the normal state 
is that the former is characterized by the existence of a 
temperature-dependent gap ∆(T) which is zero for the 
latter state. 3) The increase in ∆(T)—from zero at T = Tc 
to its maximum value at T = 0—is synonymous with a si- 
milar increase in the number of density of Cooper pairs 
(CPs) and hence with a decrease in the number density of 
heat carriers because CPs have zero entropy.  

The existence of a gap in an SC at any T thus pro- 
foundly affects (lowers) both, the number density of the 
heat carriers (the unpaired electrons) and their specific 
heat. If κ of an SC at any T does not have a value as low  
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as one might expect on these grounds, it is so because the 
lower the T is, the greater the MFP is. There is another 
feature that affects κ: heat is transported not only by elec- 
trons, but also by phonons—the quanta of lattice vibra- 
tions. The determination of κ due to any of these carriers 
requires the solution of a Boltzmann equation taking into 
account the nature of the dominant scattering processes 
appropriate for a given sample. If one is dealing with a 
composite superconductor (CS), there are additional com- 
plicating factors. Calculation of κ(T) of a CS is thus a ra- 
ther formidable problem; we refer the reader to the lucid 
review by Uher [1] for its further elaboration.  

The basic equations that yield the thermal conductivity 
of an SC based on the BCS theory [3] were given by Gei- 
likman (G) [4], and by Geilikman and Kresin (GK) [5]. 
While the equation given by G determines κes, the elec- 
tronic thermal conductivity of a simple superconductor 
when the scattering of electrons by impurities is the do- 
minant process, the equation given by GK determines κgs, 
the thermal conductivity due to phonons when phonon- 
electron scattering dominates. Not surprisingly, one finds 
that an application of these equations requires knowledge 
of ∆(T) of the SC for all T ≤ Tc. We note that equations 
similar to the G and the GK equations were also derived 
by Bardeen, Rickayzen and Tewordt (BRT) [6].  

In this paper, we address the experimental data on the 
thermal conductivity of MgB2 obtained by Bauer (B) et 
al. [7], and by Schneider (S) et al. [8], in an approach 
that supplements the G [4] and the GK [5] equations by 
the recently derived generalized BCS equations (GBCSEs) 
[9]. Indeed, each of the groups [7,8] that obtained the 
said data also carried out a similar study based on the G 
and GK/BRT equations. Analyses of the data in these pa- 
pers, however, were carried out without a detailed know- 
ledge of the T-variation of the two gaps that characterize 
MgB2. Employing GBCSEs to calculate the values of 
these gaps for 0 cT T≤ ≤ , we attempt here to shed light 
on their role, individually and collectively, in determin- 
ing the total thermal conductivity of the compound. We 
note that in the earlier work [10-12] in which GBCSEs 
were used for a variety of high-temperature superconduc- 
tors (HTSCs), the gap-values were calculated only at T = 
0. 

An experimental feature of MgB2 as reported by, e.g., 
Iavarone et al. [13] is that its two gaps close at the same 
temperature (~40 K). This is a situation that was envi- 
saged by Suhl, Matthias, and Walker (SMW) [14] in a 
seminal paper. Partly for this reason and partly because 
of a lack of an alternative framework, multi-gap super- 
conductivity has been understood solely via the SMW 
approach for about five decades now. It is therefore nat- 
ural to ask: why can’t one use it to address the Tc and the 
gap-values of the high-Tc SC (HTSC) MgB2? Since the 
approach was originally given in the context of transition 
elements, it can only be adapted for composite SCs such 

as MgB2 which has no d-electrons. Such attempts have of 
course been made. Thus, making out a case for going be- 
yond even the Eliashberg superconductivity, Liu et al. 
[15] were led to attribute the existence of the two gaps in 
MgB2 to the multiple band structure of its Fermi surface 
that brings into play different phonon modes; in particu- 
lar, based on density-functional calculations invoking two- 
phonon exchange mechanism they arrived at the value of 

1.01eff
scλ =  (clean limit) for the effective electron-pho- 

non coupling constant which, they concluded, “is argua-
bly consistent with the measured Tc of nearly 40 K.” In 
another appeal to the SMW approach in the context of 
MgB2, Choi et al. [16] invoked a qualitative picture sim- 
ilar to that of [15]. In this paper [16] the multiple gaps 
and Tc of MgB2 were attributed to the existence of two 
separate populations of electrons—nicknamed “red” and 
“blue,” leading them to note: “Stated differently, electrons 
on different parts of the Fermi surface form pairs with 
different binding energies.”  

Notwithstanding the above developments, the SMW 
approach has till now not led to a framework in which 
the T-dependent gaps and Tc of an HTSC may be calcu- 
lated. However, it seems interesting that it should have 
led to such concepts as two-phonon exchange mechanism 
[15] and CPs with different binding energies [16]. Further, 
in a recent critical review [17] of the SMW approach, it 
has been pointed out that it gives yet another clue to deal 
with an SC the two gaps of which close at the same Tc, 
the clue being: consider also the possibility of the inte- 
raction parameters in the theory to be T-dependent. These 
are precisely the concepts that are manifestly incorpora- 
ted in the Bethe-Salpeter equation (BSE)-based approach 
that led to GBCSEs (Approach 2 hereafter); this approach 
has already been shown to deal quantitatively with the 
multiple gaps and Tcs of a variety of HTSCs with a mea- 
sure of success [10-12]. It is worth noting that each inte- 
raction parameter in Approach 2 satisfies the Bogoliubov 
constraint for the BCS theory given by  

0.5,λ ≤                   (1) 

as discussed in [18].  
The paper is organized as follows. In the next section, 

we give an account of GBCSEs and the G and the GK 
equations which form our framework. Since it was re- 
ported in [13] that both the gaps of MgB2 close at about 
40 K, we consider in Section 3 the experimental data of 
both the B [7] and the S [8] groups in this scenario (Sce- 
nario 1). Additionally, for reasons spelled out below, we 
use as input the T-dependent gap values for the G and 
GK equations when the two gaps of MgB2 close at dif- 
ferent temperatures (Scenario 2). Interestingly, it is found 
that whereas both the scenarios lead to almost indistin- 
guishable results for 0.448 1ct T T≤ ≡ ≤ , the latter sce- 
nario yields results in better agreement with experiment 
for t < 0.448. To avoid repetition, we present here the 
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results of our calculations pertaining to the data of only 
B’s group. Our findings pertaining to the data of the other 
group are of course summarized. The final section sums 
up our findings. 

2. Framework 
Our framework has three constituents. The first of these 
is concerned with calculating the values of ∆1(T) and 
∆2(T) of MgB2 for all 0 cT T≤ ≤  via GBCSEs in both 
the scenarios mentioned above. We first deal with Scena- 
rio 2 in which the interaction parameters are T-indepen- 
dent and recall that the BCS equation for ∆(T) for a sim- 
ple SC is:  
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where β = 1/kBT, kB being the Boltzmann constant, Θ the 
Debye temperature, and 2|W1| is the binding energy of a 
CP that is bound via one-phonon exchanges (recall that 
the energy required to break a CP is 2∆). Note that 
putting W1 = 0 in (3) or ∆ = 0 in (2) yields the familiar 
BCS equation for Tc of the SC. This already suggests a 
connection between W and ∆. Further, it is readily seen 
that when T = 0 (tanh = 1) and λ→0, both (2) and (3) 
yield: ( )0 02 exp 1 WBk λ∆ = Θ − = . 

The generalized version of (3) when CPs in a CS are 
bound via two-phonon exchanges is [9]: 
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where c
iλ  is the interaction parameter due to the ith spe- 

cies of ions in the CS, to be distinguished from λi, which 
denotes the interaction parameter of the same species in 
its free state; a similar distinction applies to c

iΘ  and Θi; 
2|W2| is the binding energy of a CP bound via two pho- 
non exchanges. The equation for Tc of the CS in this case 
follows by putting W2 = 0 in (4a): 

( ) ( )1 22 2

1 2
0 0

tanh tanh
1 d d .

c c
c cT T

c cx x
x x

x x
λ λ

Θ Θ

= +∫ ∫     (5) 

The two Debye temperatures in the problem cater to 
the anisotropy of the CS [9]. The physical significance of 
CPs bound via one- and two-phonon exchange mechan- 
isms is that there are two kinds of “glues” or “springs” 
that bind them, leading to two binding energies in the 
problem.  

The framework of GBCSEs [9] has been applied to a 
variety of CSs [10-12]; the set of parameters thus arrived 
at for MgB2 is [10]: 

B Mg

B Mg

1062 K,  322 K;  

0.2216,  0.1073.

c c

c cλ λ

Θ = Θ =

= =
        (6) 

These lead via (4a) and (5) to 

( )2 0 6.28 meV; 39 K,cW T= =         (7) 

The parameters corresponding to B alone in (6) lead 
via (3a) and the BCS equation for Tc (Equation (5) with 

2 0cλ = ) to 

( )1 10 2.03 meV, 13.2 K.cW T= =       (7a) 

Hence we use |W1,2| and |∆1,2| interchangeably from 
now on; the T-dependent values of these can be calcu- 
lated via (3a) and (4a). Note that both the λs in (6) satisfy 
the Bogoliubov constraint given in (1) above. 

If experiment dictates that the smaller gap of MgB2 
also closes at about 39 K (and not at about 13 K)—as has 
been reported in [13], then to address Scenario 1 one 
must invoke T-dependence of the interaction parameters 
in the theory. It has recently been shown that [19], even 
in the BCS theory for elemental superconductors, such 
dependence has a bearing on the violation of the alleged 
universality of the relation 2∆/kBTc = 3.53. For a detailed 
discussion of how the SMW approach also implies such 
dependence of the interaction parameters, we refer the 
reader to [17], where it is noted that the requirement of 
closure of both the gaps in MgB2 is met by replacing 

1 2 and c cλ λ  above as follows: 
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Figure 1 shows how these replacements in (3a) and 
(4a) lead to closure of both the gaps at the 39 K.  
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We now turn to the second constituent of our frame- 
work: the G equation for κes(T) when electrons are scat- 
tered predominantly by impurities. This equation is [4]: 

( ) ,es esA F Tκ ′=                (9) 

where A′  is independent of T,  

( ) ( )( )( )

2d
e 1 1 ees B x x

u T

x xF T k T
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=

+ +∫        (10) 

and  

( ) ( ) Bu T T k T= ∆ . 

We note that [4] also gives an alternative expression 
for the integral in (10) as a sum of three terms (one of 
which is a sum of an infinite number of terms). Having 
checked our results obtained directly via (10) with those 
obtained via the alternative form, we have not repro- 
duced the latter here. 

The final constituent of our framework is the GK equ- 
ation for κgs when the phonons are scattered predomi- 
nantly by electrons. This equation is [5]: 

( ) ( )2 ,gs gsT B T F Tκ ′=            (11) 

where B′  is independent of temperature, and 
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(12) 
As was the case for (11), [5] also gives an alternative 

expression for the RHS of (12) which now comprises 
many terms some of which are sums of infinite number 
of terms. Again, having checked our results obtained di- 
rectly via (12) with those obtained via the alternative form, 
we have not quoted the latter here. 

3. Total Thermal Conductivity κs of MgB2  
in the Superconducting State 

We first address the data under consideration in Scenario 
1, i.e., when both the gaps close at the same Tc. To this 
end we solve (3a) and (4a) for ∆1(T) and ∆2(T) with Θ- 
values taken from (6) and expressions for λ(T) as given in 
(8); the results are given in Table 1. With ∆(T)s known, 
we are enabled to calculate, for each of the gap-values, 
Fes(T, ∆) and Fgs(T, ∆) via (10) and (12), respectively. 
This exercise is carried out at each of the 38 temperatures 
below Tc for which the experimental values of the total 
thermal conductivity κs are given in the data of B et al.  
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Figure 1. Variation of the reduced gaps of MgB2 with t for 

t T0.1902 39 1≤ = ≤  obtained via solutions of (3a) and (4a) 
with inputs from (6) and (8). 
 
[7]. The results of these calculations are also given in Ta- 
ble 1. 

Using (9) and (11), we now write 
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where r

sκ  denotes reduced thermal conductivity, t = 
T/Tc, and A, B, fes and fgs are dimensionless. 

Equation (14) pertains to the situation when the SC is 
characterized by one gap; when there are two gaps, we 
have 
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     (15) 

We now need to reduce the four F’s in Table 1; this is 
done by using the set of values given in the last row of 
the table: 
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Table 1. Values of ∆1(T), Fes(T, ∆1), Fgs(T, ∆1) and ∆2(T), Fes(T, ∆2) and Fgs(T, ∆2) for all T ≤ Tc in the data of B et al. [7] in the 
scenarios: a) both the gaps close at 39 K and b) ∆1 closes at 13.2 K while ∆2 closes at 39 K. Entries corresponding to b) are 
marked in red. In both the scenarios Θ’s are as given in (6). In the former scenario ∆1(T) is calculated via (3a) with c

1λ  given 
by (9), and ∆2(T) via (4a) with λs given by (9) and (11). In the latter scenario, ∆1(T) and ∆2(T) are calculated with λs as in (6). 
Fes(T) and Fgs(T) corresponding to each ∆(T) are calculated via (14a) and (16a), respectively. κs(T) is calculated via (19). En-
tries marked with (*) are used as input to fix A and B. 

T t = T/39 ∆1(T) 
meV 

Fes(T, ∆1) 
×10−3 Fgs(T, ∆1) 

∆2(T) 
meV 

Fes(T, ∆2) 
×10−4 Fgs(T, ∆2) κes(T, ∆1) 

Κgs(T, ∆1) 
×10−3 κes(T, ∆2) Κgs(T, ∆2) κs(T)│th κs(T)│exp 

7.8313 0.2008 2.3368 
1.479 

0.4322 
0.7859 

381.53 
78.84 

6.212 
6.2583 

0.0713 
0.06749 

1.363.105 
1.460.105 

5.836 
10.637 

0.022 
1.728 

0.096 
0.091 

7.983 
3.200 

13.937 
13.937 13.9374* 

9.4315 0.2418 2.288 
1.1298 

0.7261 
1.1416 

176.36 
35.424 

6.155 
6.2206 

0.3112 
0.2924 

2.664.104 
2.889.104 

9.805 
15.461 

0.015 
1.126 

0.42 
0.396 

2.263 
0.9184 

12.503 
16.777 19.2367 

10.4677 0.2684 2.2423 
0.8616 

0.9342 
1.4264 

116.11 
15.983 

6.101 
6.1827 

0.6377 
0.5961 

1.185.104 
1.297.104 

12.615 
19.306 

0.012 
0.626 

0.861 
0.807 

1.24 
0.508 

14.728 
20.635 24.047 

12.4586 0.3195 2.1299 
0.2573 

1.346 
1.7648 

59.65 
8.404 

5.958 
6.0763 

1.8266 
1.6911 

3.490.103 
3909.9 

18.136 
23.902 

0.0097 
0.4661 

2.461 
2.29 

0.567 
0.2164 

21.174 
26.409 33.8843 

14.4752 0.3712 1.991 
0 

1.752 
2.0519 

35.38 
7.212 

5.759 
5.9202 

3.9804 
3.6596 

1.339.103 
1531.6 

23.606 
27.790 

0.0078 
0.540 

5.363 
4.956 

0.294 
0.1147 

29.271 
32.862 41.8619 

15.6230 0.4006 1.9038 
0 

1.974 
2.2146 

27.85 
7.212 

5.622 
5.809 

5.6777 
5.2084 

839.76 
973.94 

26.598 
29.994 

0.0071 
0.629 

7.65 
7.054 

0.215 
0.0849 

34.470 
37.133 48.5756 

17.4586 0.4477 1.7553 
0 

2.311 
2.4748 

20.42 
7.212 

5.368 
5.5972 

9.0843 
8.3292 

430.26 
510.51 

31.138 
33.518 

0.0065 
0.7855 

12.24 
11.281 

0.137 
0.0556 

43.522 
44.855 53.7372 

19.4661 0.4991 1.5844 
0 

2.656 
2.7593 

15.79 
7.212 

5.045 
5.3175 

13.651 
12.566 

223.19 
271.27 

35.787 
37.371 

0.0063 
0.9766 

18.393 
17.019 

0.089 
0.0367 

54.275 
54.428 67.0045 

20.4718 0.5249 
 

1.4966 
0 

2.821 
2.9019 

14.25 
7.212 
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To proceed further we need to fix A and B. We do so 
by appealing to the experimental values of κs at two tem- 
peratures. This enables us to calculate κs at the remaining 
36 temperatures.  

The above calculations are repeated for Scenario 2. 
Given below are the values for A and B found at different 
combinations of temperatures in the two scenarios (the 
values in the parentheses correspond to Scenario 2):  

( )
( )

1 2

5 5

7.8313,  33.5426 :
0.50935 0.50637 ,

7.14796 10 2.65104 10

T T
A

B − −

= =

=

= × ×
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1 2

5 5
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T T
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= × ×
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5 5
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T T
A

B − −

= =

=
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( )
( )

1 2

5 5

8.0886,  37.7058 :
0.51533 0.51086 ,

9.80056 10 3.6537 10

T T
A

B − −

= =

=

= × ×

  

In each scenario, the results for κs(T) yielded by all of the 
above pairs of A, B values are similar. The values adop- 
ted by us are those given in the top set. While we have 
thus calculated κs(T)s at each of the remaining 36 tempe- 
ratures in the data under consideration, we have given in 
Table 1—for both the scenarios—the results at 20 tempe- 
ratures to save space. Also given in this table are, sepa- 
rately, the contributions of the electronic and the lattice 
parts of the thermal conductivity due to each gap. Figure 
2 gives plots of κs(T)│theory (and its constituents) in the 
two scenarios—together with the plot of κs(T)│exp— 
plotted against the reduced temperature. 

 

 

Figure 2. Clockwise, plots of: a) the experimental values of the total thermal conductivity κt (meV⋅cm‒1⋅deg‒1) against t = T/Tc 
(blue) for all T ≤ Tc in the data of B et al. [7]; b) the theoretical values of κs in Scenario 2 (green); c) the theoretical values of κs 
in Scenario 1 (black). The remaining four plots correspond to Scenario 2: uppermost of these is for the electronic part of κt 
due to the smaller gap, followed by the similar part due to the larger gap. The two coincident plots at the bottom of the figure 
are the lattice parts of the total thermal conductivity due to the two gaps.  
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We have also analyzed the data of S et al. [8] by fol- 

lowing the same approach. Typically, both A and B now 
have somewhat lower values than was the case for the 
data of B et al. An example: with T1 = 0.452423 K and T2 
= 25.84772 K, we obtain:  

60.48412, 1.01782 10A B −= = × . Figure 3 gives plots of 
κs(T)│exp and κs(T)│theory against some selected reduced 
temperatures for this case. 

4. Discussion 
1) While it has been reported [13] that the two gaps of 

MgB2 close at the same Tc (Scenario 1), this result does 
not pertain to the conditions under which thermal con- 
ductivity is determined. For this reason we chose here to 
also address the experimental data in the additional sce- 
nario in which the gaps close at different Tcs (Scenario 2). 
In both cases, as can be seen from Table 1, the total 
thermal conductivity is constituted predominantly by the 
electronic part. While both κes(T, ∆1) and κes(T, ∆2) de- 
crease with T, near Tc, ( ) ( )1 2, , 1es esR T Tκ κ≡ ∆ ∆ ≈ . 
Further, at the lowest temperature in the table, R ≈ 60 
(Scenario 1) and R ≈ 115 (Scenario 2). Thus: a) in the 
entire range of temperature to which the experimental 
data of B et al. [7] pertain, i.e., 0.2008 1,t≤ ≤  κgs(t) 
makes negligible contribution to κs(t) in both the scena- 
rios, b) in the range 0.4477 1,t≤ ≤ the results in the two 
scenarios differ by no more than 3%, and c) for t < 
0.4477, κs(t)-values in Scenario 1 are lower than in Sce- 
nario 2—by about 40% at t = 0.2684, for example. Over- 
all, the latter scenario is thus found to be in better agree- 
ment with experiment  

2) In order to shed light on the above findings, we 
draw attention to the following relations obtained via the 
Gorter-Casimir two-fluid theory of superconductivity, as 
in, e.g., [20]:  

( ) ( ) ( )
( ) ( )

40 1 ,

1 0  0 1
s s s

s

n t N t N t

n t t

≡ = −

≥ ≥ ≤ ≤
       (16) 

where Ns is the density of superconducting electrons. So 
far as the temperature dependence in (16) is concerned, it 
has been noted that “some authors report other exponent 
values or related expressions” [20], but that does not con- 
cern us here.  

The second relation in (16) is strikingly similar to 

( ) ( ) ( )1 0 0.t tδ≥ ≡ ∆ ∆ ≥          (17) 

We thus infer that greater the value of δ(t) greater is 
the fraction of superconducting electrons (or CPs) and 
therefore smaller the fraction of available electrons as 
heat-carriers. It is only under this circumstance that heat 
is predominantly carried by phonons, i.e., when t is close 
to 0 K. This explains the result in para 1 (a) in this sec- 
tion: the contribution of κgs(t) to κs(t) is negligible be-  

Kth
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Figure 3. Plots of the experimental values (green) of total 
thermal conductivity (meV⋅cm−1⋅deg−1) in the data of S et al. 
[8] against t = T/Tc at some selected temperatures below Tc 
and their theoretical counterparts (blue) in Scenario 2. 
 
cause bulk of the data under consideration pertains to 
values of t not close enough to 0 K. Note that in both the 
scenarios the Sp. Ht. and the MFP of electrons have the 
same values at any T. The result in para 1 (c) is explica- 
ble if the sum of the gap-values at any t is naively re- 
garded as proportional to the number of superconducting 
electrons (or CPs) at that t. An example: at t = 0.3195 the 
sum of the two gap values is 8.0879 in Scenario 1 and 
6.3336 meV in Scenario 2. This implies that there are 
fewer CPs in the latter scenario (and therefore more left 
over electrons as carriers of heat) than in the former. This 
is reflected in the κs values: 21.174 (Scenario 1), 26.409 
W∙cm−1∙deg−1 (Scenario 2).  

3) The result in para 1 (b) implies that number of car- 
riers in the stated range is more or less the same in both 
the scenarios; this however is not seen as convincingly as 
in the preceding case.  

4) A feature of our approach is that we have not relied 
upon the Wiedemann-Franz law to separate out the lattice 
part of the total thermal conductivity. There is a differ- 
ence of opinion about the utility of this law for the prob- 
lem addressed here: while B et al. [7] have found it use- 
ful for the analysis of their data, Sologubenko et al. [21] 
have questioned its applicability for MgB2 at low tem- 
peratures.  

5) We now report our findings about the data of S et al. 
[8], the values of A and B for which were given above. 
We note that at around the same temperatures below 39 
K, the values of κs(T) reported by S et al. are lower than 
the values reported by B et al. [7]. At the highest temper- 
ature below 39 K, for example, they quote κ (38.86986 K) 
= 80.4 mW∙cm−1deg−1 as against κ (38.7056) = 145.2463  
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mWcm−1deg−1 quoted by B et al. We also note that B et 
al. have reported their data up to T = 7.4187 K, whereas 
S et al. have done so up to T = 1.8752 K. The differences 
in the values of κs(T) of the two groups can be ascribed to 
the compositional differences of the samples and the 
manners of their preparation since these can cause the 
scattering mechanism in the two samples to differ. This is 
an observation about which S has remarked [22]: “Con- 
cerning the MgB2 sample quality, I fully agree with you. 
It was the early time of superconducting MgB2. Thus, 
sample composition, granularity etc. may differ signifi- 
cantly from group to group. This assumption is also sup- 
ported by varying reported values of, e.g., the thermoe- 
lectric power.” 

6) It seems interesting to point out that the approach 
followed in this paper is remarkably similar to the qualit- 
ative approach of Sologubenko et al. [21], who have 
noted: “Thus, we consider two subsystems of quasipar- 
ticles with gaps ∆1 and ∆2, different parameters E1 and E2 
of phonon-electron scattering, and separate contributions 
κe1 and κe2 to the heat transport.” In this manner—in the 
early days of MgB2—they were able to give good esti- 
mates of the zero-temperature values of the two gaps.  

5. Conclusions 
1) We have presented here a detailed study of the ther- 

mal conductivity of MgB2 in the superconducting state 
via GBCSEs that were derived from a BSE by appealing 
to the twin concepts of a superpropagator and multiple 
Debye temperatures. This approach manifestly gives the 
ideas of Liu et al. [15], Choi et al. [16], and Sologubenko 
et al. [21] a concrete form.  

2) A remarkable result of this paper is: while over a 
substantial range of temperatures below Tc the results in 
Scenario 1 are indistinguishable from those of Scenario 2, 
the latter scenario yields results in progressively better 
agreement with experiment when T ≤ 15 K. As is well 
known, thermal conductivity is a non-equilibrium phe- 
nomenon; it is measured under conditions of no electric 
current. Since a thermal current tends to drag a small 
electric current with it, this current must be balanced by 
an equal and opposite current. In an SC, it is balanced by 
a supercurrent. For these reasons, measurement of ther- 
mal conductivity requires a rather elaborate experimental 
setting up. It is not inconceivable therefore that cumula- 
tive effect of the stresses caused by this setting up lifts 
the “degeneracy” of the two gaps closing at the same T. 

3) We finally note that the approach followed here may 
also shed light on whether or not the Tl- and the Bi-based 
HTSCs are characterized by three gaps—the possibility 
of which was suggested in [11]. 
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