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ABSTRACT 

The dissipative part of the linear magnetic dynamic susceptibility of dipolar spin glasses is considered. Due to the 
transition of the system (at enough high concentration of the magnetic dipoles) from a paramagnetic phase to magnetic 
dipolar one, an anomalous temperature dependence of the dissipative part of the magnetic susceptibility is found. Our 
results are in qualitative agreement with experiments performed on the dipolar-coupled Ising magnet LiHoxY1-xF4. 
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1. Introduction 

Dipolar interactions are always present in paramagnets 
and paraelectrics systems. During the last years, dilute 
magnetic dipolar systems have been the subject of many 
studies addressing, in particular, the question of whether 
or not a spin glass like phase exists in these systems [1-7]. 
Examples include disordered magnetic materials, diluted 
ferromagnetic materials [7]. The dipole-dipole interaction 
have a similar behaviour of the RKKY interaction that fall 
off as 1/r3 so, one might expect the existence of a spin 
glass phase transition with a low freezing temperature. 
The most studied example of such models is the dilute, 
insulating, dipolar-coupled Ising magnetic LiHoxY1-xF4 
(non magnetic Y for magnetic Ho) which presents a 
freezing temperature Tg = 0.13 K for x = 0.167 [3]. 

The model Hamiltonian has the form: 
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where the Jij are random longitudinal dipole-dipole cou-
plings, Γ is the transverse field and the  ’s are Pauli 
spin matrices. Due to the long range nature of the dipole- 
dipole interaction many interesting and non trivial 
low-temperatures properties are expected. Recently, the 
possibility of a spin glass phase transition in a randomly 
dilute classical Ising dipoles has been questioned on the 
basis of a Wang-Landau Monte Carlo simulation [5] and 
experiments employing a µSQUID magnetometer [6]. 
The results obtained lead the authors to the conclusion 
that LiHo0.167Y0.833F4 is not a spin glass. On the contrary, 

a very recent experimental paper [7] prove the existence 
of a spin glass transition for x = 0.167 and 0.198. The 
problem remain open. Finally we note that the some kind 
of questions arise when we investigate dipolar pseudo 
spin glasses model with electric impurity dipolar centers 
in crystals or the role of the strong interactions between 
the elastic tunneling defects like the two-level system 
(TLS) in glass [8-14]. In this paper the magnetic dy-
namical susceptibility of dipolar spin glass in a trans-
verse field is theoretically considered. The main result is 
an anomalous temperature dependence of the dissipative 
part of the magnetic susceptibility due to the transition of 
the system from paramagnetic phase to magnetic dipolar 
glass one. 

2. The Model Hamiltonian 

Let us consider an ensemble of the interacting, between 
each other, magnetic dipoles distributed homogeneously 
and randomly over lattice sites. We consider the domi- 
nant magnetic interaction as dipolar and strong interac-
tion between magnetic dipoles and lattice vibrations. The 
Hamiltonian of the N two-level magnetic dipolar impuri-
ties in the crystal is: 
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In Equation (1),  , , a
i z y z c

i      with ci = 1 if 
the site is occupied by dipole, ci = 0 if not. σa are the Pauli  
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spin operators. Index λ covers branch of phonon spec-
trum and wave vector . The first term in Equation (1) 
describes the dipole interaction with an external dc mag-
netic field H, μ is the value of the magnetic dipole mo-
ment, μ = gμB (g is the Landè factor, μB is the magneton 
of Bohr). The second term represents the tunneling of the 
dipole, Ω0 is the nonrenormalized tunneling parameter. 
The third term describes the lattice vibrations, ωλ is the 
phonon frequency and 

k


a   
  are the phononannihila-

tion (creation) operators. Finally, the fourth and fifth 
terms represents dipole-lattice and dipole-dipole interac-
tion with coupling constants O  and  

0.

λi

 3 21 3cosi j ij ijJ J   r , respectively. Note the long- 
range character of .i jJ  ~ 3

ijr where rij is the interspin 
distance, 2

0J   and θλi is the angle formed by the 
Ising axis and the vector connecting the spin. The angu-
lar dependence of Ji,j means that it can change sign. The 
spin-phonon interaction is regulated by some mechanism 
[15,16]. In magnetic substances the main role is played 
by the modulation of the exchange interaction due to 
lattice vibrations. These latter may also give modula- 
tion of magnetic field produced on a given spin due to 
the surrounding spins. This is the Valler’s mechanism 
namely, the modulation of the dipolar spin-spin interac-
tion due to lattice vibrations. This represents the mecha-
nism relevant for us. For paramagnetic systems becomes 
relevant the Van-Fleck’s mechanism, i.e. the modulation, 
due to lattice vibration of the crystal electric field on spin 
site. Sented by an interaction of the dipolar magnetic 
system with an ac magnetic external field. It is written 
as: 
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where V0 = μh, h is the amplitude of the ac magnetic field 
with momentum  and angular frequency ω. To take 
into account the fourth term in (1) exactly, one must per-
form a canonical unitary transformation of Hamiltonian 
(1) of the form: 
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In this way the term with the dipole lattice coupling 
disappears. After the transformation (3) we get instead of 
(1) the following Hamiltonian, 
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where, 
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Vij represents the indirect (through the phonon field) in-
teraction between dipole impurities. Diagonalizing the 
linear (over a

i  operators) part of the Hamiltonian   
by transformation to the new operators  [8-11], aS
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we obtain the system Hamiltonian of the form, 
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with 
0

X X X    where 
0

 means the thermal 
average with the Hamiltonian 


 . 

In Equation (5),  2 2 2 2
0 0expi i pU T T      is the 

(strong dipole-dipole coupling) tunneling parameter, 
2 2

0 iU O 


  , Tp is the characteristic temperature 
above which the multiphonon relaxation process be-
comes important [17] and 

0i ij j
j

 represents 
the internal “molecular” random field which is due to 
other jth dipoles and it is a random function of the site i. 
Here we consider only z-component of this field. The 
distribution function 

Ф z  

 if   of random mean fields Λi 
was considered in papers [8,9,18]. We note that the in-
troduction of the random field Λi with some distribution 
function  if   allows the many-particle problem to 
lead to one particle unperturbed random Hamiltonian 

0  and the perturbation W. For random system like spin 
glass the equivalence of the configurational average to 
the average over random molecular fields with distribu-
tion function, is usually used [8,9,18]. Klein et al. [18] 
consider a self-consistent mean random field approxima- 
tion in spin glass theory which leads to sharp phase transi- 
tion in the Sherrington-Kirkpatrick theory if the coordi-
nation number . In ref. [8,9] we derived the non 
linear integral equation for distribution function f(Λ) of 
the form, 
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where the function D(x) includes f(Λ) and dipole-dipole 
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interaction parameter. Sometimes it is impossible to 
derive general analytical expression for the distribution 
function and enough to analyze the properties of f(Λ) by 
its moments [18]. The expression for moments [8,9,18] 
include the parameters, 

2
d (Λ)

kz
km f 




  ， 

(k is integer). 
These parameters depend on the temperature and 

they are the order parameters describing the phase transi- 
tion into ordered spin glass phase from paramagnetic 
phase. 

3. Dynamic Magnetic Susceptibility 

Using the linear response theory [19] we derive longitu-
dinal, dissipative component of the linear dynamic mag-
netic susceptibility  , k    averaged over configura-
tions of the impurity magnetic dipoles of the following 
form, 

     0,
2

iji r zz zz
ij

k
ji

ij

V
th e k K

N
k

         
      (8) 

where, 

       
1

1
d 0

2π

( )

zz i t z z z z
ji i i j j

B

te t

k T

K     

 

  



 ,
 

In Equation (8) the angular brackets means thermal 
average with the Hamiltonian ,    means the con-
figurational averaging; kB is the Boltzmann constant and 
T is the temperature of the system. 

In order to calculate the correlation function (8) we use 
the temperature Green function of the form, 
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ij i jG Tr                (9) 

where τ = it with      . 
Then the dissipative part of the susceptibility (8) may 

be represented as, 
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This expression results from the spectral representa-
tion for the Fourier components of the Green function (9) 
which are analytically continued an all complex plane. 
The calculation of  ijG   is performed using diagram-
matic technics developed in ref. [9-11]. The perturbation 
analysis is based on two small parameters: the inverse 
radius of the magnetic dipole-dipole interaction and the 
ratio i  . 

As a result of our calculation we find the following 
expression for longitudinal, dissipative component of the 

dynamical magnetic susceptibility, 
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where  1 k  and  2 k  are the frequencies of two 
branches (a = 1, 2) of the coupled collective dipole- 
phonons excitations, c is the concentrations of the mag-
netic impurities. 

In the long wave approximation the coupled dipole- 
phonons excitations are given by the following expres-
sion describing two branches of these collective excita-
tions (for details see ref. [11,12]): 
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 Ф k  is the Fourier transform of the general (direct and 
indirect) dipole-dipole interaction. We see from (12) that 
one of these models, namely υ1 may be soft. The spec-
trum of Equation (12) is approximately linear over k as in 
usual spin glasses. This spectrum is anisotropic due to 
the anisotropy of the dipole-dipole interaction. The col-
lective excitations are extended [11,12]. When the tem-
perature goes to the spin glass phase transition tempera-
ture Tg then 1 0  . 

The times τ0 and τa are determined in Equation (11) as 
following, 
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where M2 is the second moment of the distribution func-
tion of molecular fields,  I w  are the spectral functions 
of super-propagators, for which the simple asymptotic 
expressions are obtained in [9,11]. 
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4. Discussion of the Results 

From expression (11) we see that the magnetic dynamic 
susceptibility contains two contributions, 1) Relaxational 
which is proportional to  2cos  ; and 2) Resonance 
proportional to  2sin  . 

If Ω < Λ, the relaxational absorption dominates (as in 
spin glass phase); on the contrary, the resonance absorp-
tion will be dominant is Ω >Λ. 

The relaxation time τ0 determines the width of the dis-
sipative line at the spin glass phase, 

2

1
0

6
, ,

π
B

p
B p

T
T T βw

k

k T
 

 
   

 
�

ħ
1 

When the temperature grows, the relaxation rate in-
creases exponentially, 
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The times τa (a = 1, 2) determine the life times of the 
coupled dipole-phonon collective excitations. The mode 
a = 1 is soft and due to the critical temperature depend-
ence of the  we have the following 
asymptotic expression for 
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where c  is the wave vector of the condensation of the 
mode a = 1. 
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The resonant part of the magnetic susceptibility at 

gT T  results as, 
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In the strong external field, the critical temperature 
dependence of the damping rate 1
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  is smoothed down 

 giving the disappearance of the diver-
gence of 
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 1    as gT . We note that the ex-
pression (15), for the resonance line width 
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contain the contributions characteristic of the diluted 
system. These latter will be present to higher orders in 
our perturbation scheme. 

The inhomogeneous width of the energy level in small 
field is determined only by width of the distribution func-
tion of molecular field  which is proportional to 
the order parameter of the spin glass phase  

 f 

   dm f      [8,18]. In paramagnetic phase m = 
0, and, near Tg (spin glass phase) is  ~ gm T T . 

Consider now the width of the absorption line due to 
the scattering of the collective excitations on the vacant 
sites of the lattice (in these sites the impurity dipoles are 
absent). This contribution 1

1   is proportional to the 
concentration of the vacant sites  and in a small 
external field 

1 c 
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   at the transition from 

paramagnetic to spin glass phase. Then the width of the 
absorption line will be proportional to 

  1 21
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   at gT T  giving a decreasing be-
haviour of the susceptibility proportional to gT T  at 
the frequency of the a.c. external field ω = υ1. Due to the 
smoothing of the mode a = 1 at gT T , the resonance 
line width is constricted leading to an anomalous absorp-
tion increasing. When the dipole concentration grows 
this anomalous absorption also increases. 

Measurements made at low temperature (helium tem-
perature and below) of the linear dynamic magnetic sus-
ceptibility for systems with different values of the dipole 
concentration and at different temperatures give the pos-
sibility to observe these interesting anomalies. Many in- 
teresting properties observed for the dilute dipolar-cou- 
pled Ising magnetic LiHoxY1-xF4 [3,7] are related , at 
least qualitatively, to our results, namely: 

1) The growth of     approaching the transition 
temperature; 

2) The concentration dependence of the linear sus- 
ceptibility and; 

3) The transverse field dependence of the suscepti- 
bility. 

When we change the dipole impurity concentration, 
the effects of rejuvenation and memory may be observed 
by direct change in the spin-spin interaction (bond per-
turbation). In this paper we have also considered the ef-
fect of the magnetic dipole-phonon interaction on    . 
In the papers [9,11-13] we took into account the electric 
dipole-dipole interaction, direct and indirect (trough pho-
non field) considering other phenomena and for these 
disordered systems the role of the dipole-phonon interac-
tion is more important. 

Finally some years ago we have calculated the static 
and dynamic non linear magnetic susceptibility χ3 for Ising 
spin glass model, revealing its divergence [20,21]. Meas- 
urement made on LiHoxY1-xF4 system have confirmed 
such results [3,7]. 
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