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Abstract 
Acute myocardial infarction (AMI) is a leading cause of death worldwide. It has been clinically 
classified into 1) ischemic from a primary coronary event (e.g., plaque rupture or thrombotic 
occlusion), 2) ischemic from a supply-and-demand mismatch and c) ischemic from a percutaneous 
coronary interventions (PCI). Catheter-based PCI has been frequently used as an alternative to 
conventional bypass surgery for patients at high risk. However, this method of treatment is asso-
ciated with microvascular obstruction (MVO) by dislodged microemboli that results in left ventri-
cular (LV) dysfunction/remodeling, perfusion deficits, microinfarction and arrhythmia. The con- 
tributions of microemboli after revascularization of AMI have been acknowledged by major car- 
diac and interventional societies. Recent studies showed that Emboli Detection and Classification 
(EDAC) Quantifier offers increased sensitivity and capability for detecting dislodged coronary mi-
croemboli during PCI. Coronary microembolization can be detected directly by monitoring intra- 
myocardial contrast opacification on contrast echocardiography, increasing F-18 fluorodeoxyglu- 
cose (FDG) uptake on positron emission tomography, loss/diminution of signal on first pass per- 
fusion and hypoenhanced zone on contrast enhanced magnetic resonance imaging (MRI) and 
multidetector computed tomography (MDCT) and indirectly by ST-segment elevation on electro- 
cardiography (ECG). The relations between volumes/sizes of microemboli, visibility of microin-
farct, myocardial perfusion and LV function are still under intensive discussions. Non-invasive 
imaging can play important role in assessing these parameters. This review shed the light on the 
techniques used for detecting coronary microemboli, microvascular obstruction and microinfarct 
and the short- and long-term effects of microemboli on LV function, structure and perfusion. 
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1. Introduction 
One in six deaths among Americans is caused by coronary artery disease [1]. Treatment of acute myocardial in-
farction (AMI) includes revascularization therapy using bypass surgery, balloon angioplasty or stenting. Micro-
vascular obstruction (MVO) is an established complication of revascularization therapy for AMI. A recent study, 
however, showed that MVO is ischemic injury and not exclusive to revascularization therapy [2]. Furthermore, 
MVO was observed in a wide range of diseases such as valvular disease, endocarditis, cardiomyopathy with 
mural thrombus and arrhythmias [3]-[9]. It has also been reported in patients with hypertension, diabetes [10], 
systemic lupus erythematosus [11] and sickle cell disease [12]. Thus, early detection of dislodged coronary mi- 
croemboli and visualization of microinfarct are necessary for preventing and treating the side effects of coronary 
microemboli. 

The European Society of Cardiology [13] advocates four reperfusion strategies for acute ST-segment ele- 
vation myocardial infarction (STEMI): primary percutaneous coronary interventions (PCI), thrombolysis, rescue 
coronary angioplasty and late PCI (>12 hours after symptoms). Investigators found that the total volume of 
microemboli dislodged from ruptured plaque is a key event in formation of MVO, microinfarction, LV dysfunc-
tion [10] [14]-[18], arrhythmia [19] [20] and sudden death [16] [21] [22]. Okamura et al. found that distal embo-
lization occurs at high frequently (87%) during PCI procedure and the number of microemboli is the greatest af-
ter stenting [23], because hard stent mash crushes plaque, squeezes plaque particles through the gaps between 
stent struts. Mechanical obstruction of the microvessel lumen by microemboli (leukocytes, erythrocytes, fibrin 
and platelet thrombi) and endothelial damage underly the formation of MVO. The exact time course of changes 
leading to patchy or diffuse MVO, however, are unknown because endothelial damage is induced by intrace- 
llular calcium overload, opening of the mitochondrial permeability transition pore, the release of oxygen free 
radicals and tumor necrosis factor. The variability of atherosclerosis plaque content, type of stent and degree of 
mechanical compression explain the difference in myocardial response. Kleinbongard et al. [24] recently show- 
ed that stent implantation into atherosclerotic plaques releases vasoactive agents (such as serotonin, thrombox-
ane and tumor necrosis factor (TNFα) that contribute to further impairment in myocardial perfusion. These 
findings were confirmed in multiple studies that showed substantial number of patients with AMI experience 
major cardiac events after PCI [25]-[34] and these events continued during follow-up [35]-[39]. 

Myocardial ischemia/reperfusion and coronary microemboli impact not only the myocardium but also coro-
nary microvessels. MVO is the most severe form of reperfusion injury [40], which is resulted primarily from 
debris [41], platelet aggregates [42], vasoconstriction [24] and/or damaged vascular endothelium [43]. MVO can 
happen during primary and elective PCI. Investigators found that MVO is a complex pathologic process and the 
main components are distal atherothrombotic embolization, ischemic injury, reperfusion injury and suscepti- 
bility of coronary microcirculation to injury [44]-[46]. Increased local release of platelet- and endothelium-de- 
rived microemboli into the coronary microvessels has also been identified in patients undergoing primary PCI 
for AMI and correlated to indices of MVO, such as TIMI frame count, myocardial blush grade and electrocar-
diogram ST-segment resolution [47]. 

2. Microemboli and Cardiac Injury Biomarkers 
Measurements of plasma creatine kinase and troponin I are routinely used before and after coronary interven-
tions to provide evidence of myocardial injury [48] [49]. Clinical and experimental studies have reported close 
relationship between MR-defined large infarct size and serum level of creatine kinase MB and troponin I [50] 
[51]. However, this relationship seems not be robust in NSTEMI patients with small infarct size [52]. 

An experimental study showed that the concentrations of troponin I (0.52 ± 0.28 ng/ml) and creatine-kinase 
MB (1670 ± 370 U/L) in animals received 16 mm3 were not sigificantly different from animals received 32 mm3 
(creatine-kinase = 1060 ± 235 U/L and troponin I = 0.68 ± 0.4 ng/ml) at 24 hrs, suggesting that that creatine 
kinase MB and troponin I have limited sensitivity for differentiating the effects of different microemboli vol- 
umes [53]. Another short coming of cardiac injury biomarkers is demonstrated in the kinetics of creatine kinase 
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MB and troponin I. Investigators found that both injury biomarkers are significantly higher at 18 - 24 hours 
compared with controls or baseline data. However, there was no significant difference in creatine-kinase-MB or 
troponin I levels between solely microembolized myocardium and AMI superimposed with similar volume of 
microemboli. At 68 - 72 hours, creatine-kinase-MB returned to baseline level, while troponin I remained high in 
animals subjected to double insult compared with single insult [54]. 

Mehran et al. found after PCI that plaque burden, measured on intravascular ultrasound (IVUS), closely cor- 
related with the elevation of creatine-kinase MB [55] [56]. The DEDICATION trial, evaluating patients rando- 
mized to distal protection using a filter wire protection device versus standard PCI without distal protection, 
showed no significant difference in cardiac biomarker elevation [57]. Kunadian et al. [58] confirmed these data 
in meta-analysis study, where the use of distal protection devices resulted in no decrease of early mortality or 
recurrent myocardial infarction rate.  

3. Coronary Microemboli 
Spontaneous coronary microembolization occurs at any time in diseased arteries despite antiplatelet therapy. 
Coronary microembolization has been confirmed in patients who died from sudden cardiac death [16] [22] and 
the average size of microemboli was ~250 µm [59]. Okamura et al. found on IVUS that the size of microemboli 
ranges between 47 - 2503 µm [60]. The size and number of detached emboli is key in the formation of MVO zone 
in AMI, patchy microinfarction, LV dysfunction [10] [14]-[18], arrhythmia [19] [20] and sudden death [16] [21] 
[22]. 

MVO refers to suboptimal regional perfusion of infarct-related artery in the presence of patent epicardial 
coronary circulation. Investigators found that sponteneous plaques and debris are more common in arteries with 
plaque erosion than plaque rupture [61]. Cardiologists also observed that acute ST-elevation myocardial infarc- 
tion (STEMI) results from coronary atherosclerotic plaque disruption. 

Furthermore, coronary microemboli is considered to be inevitable during PCI revascularization of obstructive 
atherosclerotic plaque [62], because plaques and debris are disrupted during the passage of guide-wires, posi- 
tioning of the balloon and stent implant. Differentiation of spontaneous from procedural microembolization is 
difficult because patients arrive to the hospital with pre-existing AMI related to coronary thrombi and PCI re- 
vascularization is also associated with microthrombi. Pathological analyses revealed that coronary thrombi con- 
sist of platelets, erythrocytes and fibrin, and often contain atherosclerotic inflammatory cells [63] [64]. Micro- 
scopic examination revealed that platelet aggregation could be one of the causes of acute coronary syndrome in 
patients [16] [21] [22]. Additionally, a recent study by Khan et al. showed that the formation of MVO is not 
exclusive to revascularization therapy [2]. 

Boese et al. found an association between plaque composition and post-procedural microinfarction [65]-[67]. 
The components of microemboli, endothelial sloughing, edema and fibrin plugging have significant impact on 
myocardial perfusion [65] [68]-[72] and may be on the invasion of polymorphonuclear leukocytes, monocytes 
and macrophages to the extracellular space [16] [22] [70] [72] [73].  

4. Microemboli Visualization 
Direct and indirect evidence of microembolization during PCI comes from distal protection device and IVUS- 
system, which reported embolic particle sizes and a typical reversal of systolic flow, delayed diastolic compo- 
nent and visualization of microemboli [74]-[76]. Microemboli create countable signals on the IVUS display due 
to the higher reflection of sound waves compared to the blood cells. The microembolic signals appear as short- 
duration, unidirectional, high-intensity signals within the flow spectrum on the fast Fourier transform spectral 
display.The intensity of the backscatter signal is processed into gray scale with a spatial resolution of 150 µm at 
a frame rate of 10 - 30 frames/s. This new technique can also identify and quantify various plaque components 
in patients [77]-[81]. It can detect features associated with plaque vulnerability, such as an eccentric pattern; the 
presence of an echolucent core, probably representing the lipid-rich core; positive vessel wall remodeling, de-
fined by the expansion of the overall vessel without compromising the lumen [82]; presence of thrombi [83]- 
[85]; lumen narrowing [84]; and a spotty pattern of calcifications [86]. Thus, Doppler ultrasound technique be- 
came the gold standard method to quantify microemboli in real-time. 

MRI and MDCT, positron emission tomography (PET) and single photon emission computed tomography 
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(SPECT) are associated with unique imaging properties and exhibit variable sensitivity and specificity to cardiac 
pathologies [87]-[94]. Cardiovascular MRI and MDCT scanners offer a higher spatial resolution than nuclear 
medicine techniques. MRI based on 3D datasets is considered the gold standard for volumetric and functional 
analysis of cardiac chambers. In addition, MRI is a versatile technique that has the ability to assess viability on 
delayed contrast enhancement, LV function on cine, 3D strain with saturation tagged and phase contrast velocity 
encoded sequences and perfusion on first pass contrast media [95]. 

MRI, MDCT have been used for detecting microinfarct [71] [96]-[99]. These noninvasive methods can be 
used alternatively in patients with contraindications to iodinated or gadolinium-based contrast agents. MRI has 
inherent strengths over the other clinically approved modalities that include: 1) the absence of radiation expo-
sure, which is a strong motivation to further work on implementing MRI after PCI; 2) the lack of administration 
of nephrotoxic iodinated contrast media; 3) MRI is the method of choice for assessment of LV function and 
myocardial viability; 4) signal intensity differences of nearly 2 - 5 fold were identified between viable and 
non-viable myocardium; 5) serial assessments; 6) the potential to measure three dimensional (3D) strain at rest 
and dobutamine stress; and 7) acquisition of images in any plane negates the need for post imaging reconstruc-
tion of images. The advantages of using MDCT include: a) MDCT angiography is the method of choice for di-
rect visualization of coronary calcium and atherosclerosis; b) the presence of LV assist devices do not preclude 
the performance of MDCT imaging; c) the relatively fast acquisition time (7 - 10 min) compared with cardiac 
MRI (45 min), leads to patient's comfort as well as cost and time savings; d) scanning of claustrophobic or un-
cooperative patients; e) less technical and personnel requirements for MDCT studies; f) life-support and physi-
ologic-monitoring equipment can be placed close to MDCT scanners and g) iodinated contrast media provide 
linear relationship between attenuation and concentration on first pass perfusion MDCT [100]. 

5. Microvascular Obstruction and Microinfarction 
The coronary artery tree consists of large epicardial arteries and microvessels. The range of epicardial coronary 
artery diameter varies between a few millimeters to 400 - 500 µm and these vessels are visible on the current 
imaging modalities, but not microvessels between 8 - 120 µm. Advanced real-imaging techniques helped in 
accurately determining coronary artery diameter that led to reduce the use of oversized stent or higher pressures 
resulting in emboli being sloughed into the lumen of the artery. 

Galiuto classified microvascular damage after revascularization into structural (irreversible) and functional 
(reversible), where the structural damage is related to damage of microvascular walls; conversely, the functional 
damage is related to edema and cellular plugging [101]. De Maria et al. showed the similarity in the sequelae of 
spontaneous and procedural distal microembolization [62]. Jaffe et al. described two pattens of MVO, namely 
zonal MVO located in the core of pre-existing infart (primery PCI) and patchy MVO located in ischemic 
myocardium (elective PCI) [44]. A schematic figure shows both patterns of infarcts in pre-existing infart 
superimposed with microemboli (Figure 1). Microinfarct has been recognized on MRI in patients after PCI [15] 
[17] [95]. Visualization of patchy microinfarct on contrast enhanced MRI and MDCT depends on multiple 
factors; namely spatial resolution, extent of microinfarct and imaging time after embolization (Figure 2). 

In experimental animal studies, MRI and MDCT demonstrated microinfarct, result from patchy MVO, as dif-
ferentially enhanced speck with heterogeneou pattern in the ischemic-related artery [53]. Acute microinfarct on 
histochemical and histological stains was defined as unstained necrotic speck (0.7 - 7 mm2 in size) and patchy 
violate-blue myocytes surrounding obstructed microvessels, respectively (Figure 3) [53]. 

Investigators also assessed the sensitivity of MRI and MDCT techniques in visualizing patchy microinfarct 
using different volumes/sizes of microemboli and determined the cutoff of microemboli volume that provides 
reproducible visible microinfarct [53] [54] [102]-[105]. We found that both visible and non-visible microinfarct 
on MRI and MDCT have short- and long-term side effects [53] [54] [104] [105].  

Also of clinical significance is patchy MVO at the peri-infarct zone, where, this zone contains an admixture of 
viable and nonviable myocytes that provides a suitable environment for the development of LV arrhythmia [106] 
[107]. The mechanism underlying hypokinesia in the peri-infarction zone is not well defined. Several hypotheses 
have been proposed, including changes in mechanical load leading to cellular hypertrophy and dysfunction [108], 
reduced coronary reserve [109], increased systolic wall stress [110], oxidative stress, and inflammation [111]. 
Microscopic examination of the peri-infarct zone revealed sporadic non-patent microvessels microemboli.  
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Figure 1. The two types of MVO are: MVO zone in the core of AMI (dark zone) 
and the patchy MVO (dotted) after PCI revascularization of stenosed coronary artery 
without infarct.                                                               

 

 
Figure 2. Contrast enhanced MR images of myocardial microinfarct acquired at 1hr 
(left) and 7 days after coronary embolization (middle). The speck of microinfarct are 
visible at 7 days (arrows), but not at 1hr, after embolization. A corresponding left 
ventricle section stained with a triphenyltetrazolium chloride stain shows patchy mi-
croinfarct at 7 days (arrows, right).                                               

 

 
Figure 3. Contrast enhanced MDCT (left block) and MRI (right block) were ob- 
tained from a representative animal subjected to myocardial infarct superimposed 
with microembolization. At 3 days (top row), the images showed hyperenhanced MI 
(black arrows), hypoenhanced MVO (black arrowhead) and moderately patchy 
microinfarct at the peri-infarct zone (white arrowhead). At 5 weeks (bottom row), 
both imaging modalities showed wall thinning in MI (black arrows), moderately 
enhanced microinfarct at the peri-infarct zone (white arrowhead) and hypertrophy in 
remote myocardium.                                                            
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Unlike microscopy, MRI and MDCT indirectly demonstrated sporadic MVO by visualization patchy mic- 
roinfarct.  

6. Microemboli and Infarct Healing 
Our understanding of coronary microvasculature in patients has been limited partly due to inability to non-in- 
vasively visualize the anatomy of microvascular bed and its complicated functional pathways. On the other hand, 
acute and scar myocardial infarct are discriminated on noninvasive imaging. Choi et al. [112] and Inkangisorn et 
al. [113] monitored the healing of myocardial infarct on delayed contrast enhanced MRI. They found a decline 
of 27% - 31% in the extent of myocardial infarct over the course of 2 months in patients. Furthermore, 
myocardial infarct is associated with MVO [114], which occurs in 40% - 60% of patients treated by PCI. Other 
investigators found that the extent of myocardial infarct on MRI decreases by 21% - 30% in humans during the 
first week following treatment for STEMI [115], while MVO reduced by 48% in humans [116] and 67% in 
animals [117].  

In recent studies, we found that MVO zone in AMI delays infarct healing, accentuates LV remodeling and 
hypertrophy of romote myocardium compared with infarct with negligable MVO [118] (Figure 4). The differ- 
ence in the speed of healing is most likely related to slow delivery of nutrients and inflammatory cells to remove 
the debris [119] [120], while the accentuation in LV hypertrophy is compensatory to infarct thinning and 
buldging. Infarct size [121] [122] and MVO [60] [121] [123] [124] are powerful predictors of adverse LV 
remodelling and prognosis. 

7. Microemboli and Perfusion 
PCI partially restores flow in the infarct-related artery with persistent ST-segment elevation, abnormal myocar- 
dial blush grade and abnormal TIMI frame count, due to distal embolization [125]. Lund et al. [126] observed  
 

 
Figure 4. Histochemical TTC stain shows the difference in wall thickness and extent of 
MI between 3 days (top row, group II) and 5 weeks (bottom row, group III). Histopa-
thological stains (Hematoxylin/eosin and Masson trichrome) show the peri-infarct zone 
and scar infarct over the course of 5 weeks. Black arrow = infarct, black arrowhead = 
hemorrhage, white arrowhead = microemboli obstructing blood vessels.                     
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that the perfusion in AMI is spatially and temporally complex with regions of hyperaemia, low flow and MVO. 
Selvanayagam et al. [17] observed a decline in perfusion reserve in myocardial segments that showed new 
microinfarct resulted from microemboli after PCI. Porto et al. [15] used ultrasonography and delayed contrast- 
enhanced imaging after PCI for determining the relationship between the extent of microinfarct and plaque 
volumes. A positive correlation was found between the two parameters. 

Several studies showed the perfusion deficit in embolized myocardium [70] [71] and increase in epicardial 
coronary flow [73], which was linked to the release of adenosine in ischemic myocardium [18] [127]. Experi- 
mental studies confirmed the persistent regional perfusion deficit in AMI, patchy microinfarct (Figure 5) [54] 
[71] and AMI superimposed with microemboli [54], which are reflected on perfusion indices (max upslope, max 
signal intensity/attenuation and time to peak). Table 1 shows the regional changes in peak signal attenuation and 
signal intensity on MDCT (in Hounsfield units) and MRI (in arbitrary units), respectively) as a function of time 
in animals subjected to 90 min LAD occlusion plus microembolization and reperfusion. The perfusion data 
show the deficits in perfusion of the infarct and peri-infarct myocardium over time compared to remote myo- 
cardium. 

 

 
Figure 5. Myocardial perusion deficits (arrows) are shown at the peak of remote myocardial enhancemet at 1 (left) and 7 
(right) days after coronary embolization in swine model.                                                               

 
Table 1. MDCT peak signal attenuation Hounsfield units (HU) of animals subjected to LAD occlusion/reperfusion plus 
microembolization ischemic insult at 3 days and 5 weeks of Groups II and III.                                              

 Group II 3 days Group III 3 days Group III 5 weeks 

MDCT    

Remote myocardium 150 ± 7 123 ± 3 115 ± 1*† 

Peri-infarct zone 89 ± 7# 104 ± 4# 114 ± 3*†# 

Infarct 61 ± 7†§# 88 ± 4†§# 89 ± 1†§# 

MRI    

Remote myocardium 1432 ± 77 1442 ± 67 1515 ± 195 

Peri-infarct zone 1041 ± 72# 966 ± 31# 1277 ± 71*†# 

Infarct 806 ± 58†§# 732 ± 58†§# 1017 ± 79*†§# 
*P < 0.02 compared with 3 days of the same cohort; †P < 0.01 compared with animals in Group II; §P < 0.02 compared with border zone myocardium, 
#P < 0.02 compared with remote myocardium. 
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8. Microemboli and LV Function 
The most clinically used methods for assessing LV function are dobutamine echo-contractile reserve, contrast 
echo (wall motion) and MRI (wall 3D strain). Quantifying LV function is a powerful predictor of mortality in 
patients with coronary artery disease [60] [121]. Invasive methods demonstrated the deleterious effects of 
microembolization on regional and global LV function [18] [128]. The observed changes in LV function were 
disproportional to the extent of microinfarct. 

Noninvasive MRI showed that coronary microemboli cause super-acute (1 hour) acute (3 days), subacute (7 
days) and chronic (5 - 8 weeks) impairment in regional and global LV function [54] [69] [73] [129] [130]. It was 
found that global and regional LV impairment 3 days after LAD microembolization with 16 mm3 volume and 40 - 
120 μm diameters is comparable to 90 min left anterior descending (LAD) coronary artery occlusion/reperfusion, 
despite the substantial difference in the extents of myocardial damage (6.5% ± 0.6% LV mass versus 12.6% ± 
1.2%, P < 0.001) (Figure 6). Other experimental MRI and MDCT studies demonstrated the greater decline in 
ejection fraction and increase in LV volumes in pre-existing MI with large MVO compared with similar extents 
of myocardial damageand negligable MVO [104] [105] [118]. Furthermore, animals with negligable MVO 
showed moderate recovery in ejection fraction over the course of 5 weeks, but not in animals with large MVO. 

In 1995, Pfeffer described the complexity of dimensional changes in the LV after AMI [131]. Early tech- 
niques for assessing myocardial strain were invasive and included implantable metal [132] or radiopaque [133] 
markers. Recently, investigators found that cine, tagged and velocity-encoded phase contrast MR pulses have 
the pontential for quantifying 3 dimensional (3D) LV strain (radial, circumferential and longitudinal) [69] [130] 
(Figure 7 and Figure 8). These indices are independent of ejection fraction, wall motion or myocardial oxygen 
consumption [134]. 

 

 
Figure 6. Ejection fraction (%) and end systolic volume (ml) in Groups I (black column) 
and III (striped column) measured on cine MDCT (top row) and MRI (bottom row). MI 
superimposed with microembolization showed persistent decline in ejection fraction (left 
blocks) and increase in end systolic volume (right blocks). Similar changes in ejection frac-
tion and end systolic volume were observed on both modalities. *P < 0.02 compared with 
Group I. †P < 0.02 compared with the same cohort at 3 days.                                                   
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Figure 7. Cine MDCT (top blocks) and MRI (bottom blocks) acquired at 3 days (left blocks) 
and 5 weeks (right blocks) after embolization of the LAD coronary artery. MDCT and MRI 
show the lack of systolic wall thickening in the LAD territory at 3 days and 5 weeks. The 
LAD region (arrows) showed no thinning at 3 days, but at 5 weeks. Compensatory hyper-
trophy was evident at 5 weeks in remote myocardium.                                         

 
The circumferential and longitudinal strain on MRI were evaluated in control animals and compared with 

animals subjected to different ischemic insults; namely solely coronary microembolization, solely LAD oc- 
clusion for 90 min followed by reperfusion and 90 min LAD coronary occlusion plus microembolization and 
reperfusion in a swine model [130]. MRI studies were performed 3 days affter coronary interventions (Figures 
9-11). It was found that the impairment in LV circumferential strain and dyssynchrony is comparable between 
32 mm3 coronary microemboli and 90 min occlusion/reperfusion of the same infarct-related artery, despite the 
difference in the extents of myocardial damage. Furthermore, microemboli caused significant decrease in peak 
systolic strain rate of remote myocardium. The comparable LV dysfunction in these animals suggests that me-
chanisms other than the extent of myocardial damage govern LV dysfunction [135], such as the release of tumor 
necrosis factor (TNF)-α [19] and other inflammatory mediators [136] [137]. Solely microembolized and AMI 
superimposed with microemboli showed slower systolic strain rate than LAD occluded/reperfused territory, 
suggesting disproportion between myocardial damage and circumferential strain. In remote myocardium, peak 
systolic strain rate was significantly decreased in microembolized and combined insult animals, but not in 
occluded/reperfused animals, compared with controls. Similar to peak systolic strain rate, peak diastolic strain 
rate in remote myocardium was significantly decreased in animals subjected to microembolization or combined 
interventions, but not in LAD occluded/reperfused animals. Cine and tagged MRI sequences provided evidence 
that peak strain and time to peak strain (TTPS) are early predictors of dysfunction. Recent studies showed that 
the complex contraction pattern of the heart and alterations to this pattern due to various cardiac pathologies 
could be determined using tagged cine MRI [11]-[13]. 

9. Clinical Studies 
Evidence on coronary microembolization in patients came from intravascular imaging, detailing a relationship 
between plaque volume reduction in the diseased coronary artery after PCI with reduced myocardial reperfusion  
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Figure 8. Systolic wall thickening in slices above (a) and (c) and below (b) and (d) the site of occlusion/microembolization/ 
reperfusion at 3 days (top row) and 5 weeks (bottom row) in Group III. Each LV slice was divided to 8 segments and the 
segments with dysfunctional LAD territory are located in segments 2, 3 and 4. Similar magnitudes of changes in systolic 
wall thickening were obtained on MDCT (black bars) and MRI (striped bars). *P < 0.02 compared with remote myocardium.   
 

 
Figure 9. Representative tagged and cine MR images utilizing tracing Method. Top row demonstrates short-axis and 
long-axis MRI images, while bottom row demonstrates images after tracing of the myocardium using HARP. Left three 
columns are cine tagged MRI and right three columns are cine MRI. IVC = Isovolumetric Contraction, ESys = End Systole, 
EDia = End Diastole, LV = Left Ventricle, RV = Right Ventricle, CW = Chest Wall, RA = Right Atrium, LA = Left Atrium, 
AAo = Ascending Aorta.                                                                                                
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Figure 10. Top row: Phasic circumferential strain peak and rate during R-R interval in LAD territory and remote myocar-
dium of control and animals subjected to microembolization, 90 min LAD occlusion/reperfusion and the combination. A 
significantly decreased peak circumferential strain was observed in the LAD territory compared with remote myocardium in 
all coronary interventions (P < 0.001). Bottom left: Bars show average peak circumferential strain. ANOVA showed signifi-
cant decrease in strain of the LAD territory 3 days after interventions compared with controls. Remote myocardium showed 
no significant difference between interventions and control. Bottom right: Bars show significant variation in time to peak 
circumferential strain between remote and LAD territory TTPS. Remote myocardium showed decreased TTPS for all 
interventions, while the LAD territory demonstrated increase. *P < 0.05, **P < 0.01, ***P < 0.001.                               
 
[138] and formation of new infarction and MVO in patients [15] [139]. The occurrence of plaque rupture with 
subsequent microemboli of atherosclerotic and thrombolytic debris into small coronary vessels has been con-
firmed [22] [140]. Enhanced Myocardial Efficacy and Recovery by Aspiration of Liberated Debris (EMERALD) 
trial reported visible debris in 78% of patients [141]. Bahrmann et al. demonstrated that the incidence of 
procedure associated non-ST elevation myocardial infarction is correlated to the frequency of Doppler-detected 
microemboli [76] [142]. 

Clinical studies showed substantial difference in the incidence of microembolization from coronary plaques 
from 30% [22], 54% [61] to 81% [143]. In half of the patients the additional infarct after PCI was interpreted to 
be caused by occluded side branches, resulting in a 12% incidence of microinfarction caused by microemboliza-
tion [15]. Recent studies showed the capability of MRI and MDCT to detecting microinfarct (>2 g) [71] 
[96]-[99]. Selvanayagam et al. found a new area of infarct in 28% of patients after the procedure using contrast 
enhanced cardiac MRI [144]. The highest incidence was seen in patients who had recent PCI or thrombolysis 
[143]. Coronary microemboli are considered the primary causes of contractile dysfunction and arrhythmogenesis 
in the absence of an atherosclerotic obstruction of an epicardial coronary artery [16] [20]. Cardiac MRI has been 
implemented in measuring perfusion in patients after PCI [17] [145]. 

Coronary microemboli may explain the cause of mismatch between blood flow in the epicardial coronary ar-
teries and LV function; a phenomenon which has been clinically observed after PCI [146] [147]. Selvanayagam 
et al. [145] found in 152 patients that even small amounts of procedure-related myocardial injury are associated 
with poor clinical outcome and concluded that 2% - 5% of LV infarct causes disproportional LV dysfunction 
[110]. Other studies have shown coronary microemboli cause persistent LV dysfunction (heart failure) and in 
some cases sudden death [25] [26].  

The clinical evidence for microembolization after PCI came from the elevation of creatine-kinase in 10% - 
40% of patients [20] [74] [96] [148] [149]. A follow-up study in patients who underwent coronary angioplasty 
or coronary atherectomy found that the relative risk of cardiac death is increased 2.2-fold in patients whose  
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Figure 11. Top row: Circumferential strain rate curves. In control animals, remote myocardium and LAD territory have 
identical curves, while remote vs. LAD territory in all interventions were significantly different (P < 0.001). Bottom left: The 
LAD territory showed significantly decreased systolic strain rate in LAD territory for all interventions, with microembolized 
and combined groups significantly less than solely LAD occlusion. Remote myocardium showed only a decrease in micro-
embolized and combined groups. Bottom right: The LAD territory demonstrated significantly decreased diastolic strain rate 
in LAD territory for all interventions. Remote myocardium again showed only significant decrease in microembolized and 
combined groups. *P < 0.05, **P < 0.01, ***P < 0.001 [130].                                                             
 
creatine-kinase levels were elevated >2 times the upper normal range compared with patients whose creatine- 
kinase were not elevated [73]. Such observations have been confirmed by subsequent studies [18] [73] [150] 
[151]. 

Recent clinical studies showed a link between MR visualization of microinfarction and impaired myocardial 
perfusion [95] [96]. Selvanayagam et al. examined myocardial perfusion and necrosis serially after PCI with a 
validated, quantitative MR technique [17] and found that myocardial perfusion is reduced in segments with in-
farct after PCI. Investigators also reported that patchy microinfarct at the peri-infarct zone might be an arrhyth-
mogenic substrate [107] [152]-[154]. The proposed pathophysiological explanation is that the tissue heterogene-
ity with re-entrant ventricular tachycardia is promoted in patchy infarcts with interwoven bundles of myocytes 
[107] [155].  

10. Microemboli and Myocardial Protection 
The clinical impact of microemboli on patients with STEMI is evident. Distal protection devices and throm-
bectomy catheters are widely used to minimize coronary microembolization. These devices are positioned distal 
to the target lesion to filter emboli sloughed into the lumen of the artery during PCI. Depending on the pore size 
of these filters, they catch emboli down to a certain size of particles, while allowing continuous blood flow 
during the procedure. Most of these filters have a pore size of 100μm or larger, which can allow smaller par- 
ticles to go to microvessels with the possibility of microinfarct. There have been considerable advances in de-
veloping distal protection devices, thrombectomy catheters and therapies for minimizing the effects of micro-
emboli during coronary interventions [60] [74] [156]-[161]. Distal protection devices, such as the Filter Wire 
System, have been shown to reduce the incidence of microinfarction and adverse cardiac events in patients un-
dergoing saphenous vein graft interventions [162]. Other investigators found that it also improve microcircula-
tion and LV function in patients [162] [163]. Others questioned its effectiveness in filtering microemboli 
because cardiac complications are observed after utilization of the filters [58] [164]. The impact of these devices 
on myocardial perfusion and clinical outcome in patients remains limited [164]. The absence of benefits with the 
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use of distal filter wire protection devices could be explained by the low sensitivity of the assay methods, the 
fact that such devices can themselves induce distal embolization when crossing highly thrombotic lesions or 
may not be effective in filtering microemboli which is related to the large pores (~120 µm) of these filters that 
allow the passage of <120 µm microemboli. 

Another approach to reduce coronary microemboli is to use therapeutic drugs or anti-platelet agents. The 
glycoprotein IIb/IIIa inhibitors are synthetic, non-peptide inhibitor acting at glycoprotein (GP) IIb/IIIa receptors 
in platelets. Junghans et al. found that glycoprotein IIb/IIIa receptor antagonist tirofiban reversibly suppressed 
HITS (microemboli) in the cerebrovascular circulation [165]. Others found this class of therapy inhibitors MVO 
[166] [167]. Yang et al. found in infarction that tirofiban is very effective in improving myocardial perfusion via 
vascular endothelial protection [168]. These findings support the concept that endothelial protection, apart from 
platelet inhibition, contributes to the efficacy of tirofiban on myocardial perfusion. Despite the adverse out- 
comes associated with microembolization, proven targeted therapies remain elusive. The presented data that ob- 
tained from controlled studies may activate the development of new devices and therapies for preventing mi- 
croembolization and treating microinfarct, respectively. MRI and MDCT are useful noninvasive techniques for 
guiding interventional procedures and assessing the effects of microemboli and therapies. 

11. Conclusion 
The sequellae of changes in coronary arteries and myocardium after microembolization has been documented in 
experimental animals and patients subjected to coronary interventions. Non-invasive imaging modalities can 
play important role in assessing the short- and long-term effects of coronary microemboli on cardiac function, 
perfusion and viability. Non-invasive imaging may also help in assessing the efficacy of newer distal filtration 
devices and therapies in patients. 
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