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ABSTRACT 

Most of the existing opportunistic network routing protocols are based on some type of utility function that is directly or 
indirectly dependent on the past behavior of devices. The past behavior or history of a device is usually referred to as 
contacts that the device had in the past. Whatever may be the metric of history, most of these routing protocols work on 
the realistic premise that node mobility is not truly random. In contrast, there are several oracles based methods where 
such oracles assist these methods to gain access to information that is unrealistic in the real world. Although, such ora-
cles are unrealistic, they can help to understand the nature and behavior of underlying networks. In this paper, we have 
analyzed the gap between these two extremes. We have performed max-flow computations on three different opportun-
istic networks and then compared the results by performing max-flow computations on history generated by the respec-
tive networks. We have found that the correctness of the history based prediction of history is dependent on the dense 
nature of the underlying network. Moreover, the history based prediction can deliver correct paths but cannot guarantee 
their absolute reliability. 
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1. Introduction 

Since the initial introduction of Delay Tolerant Networks 
on the research horizon for interplanetary communication 
[1], several offshoots have spawned, e.g. Vehicular Net- 
works, Mobile Social Networks and Opportunistic Net- 
works. Similarly, several practical applications, such as 
an emergency response in case of a catastrophe, military 
operations and non-interactive Internet access in rural 
areas [2] have vastly increased the usability of such net- 
works. Although, there have been a few practical de- 
ployments of opportunistic networks [3,4], simulation is 
still the favorite tool assisting us in analyzing opportunis- 
tic networks with several variations, e.g. mobility pattern 
of devices, variable bandwidth, obstacles and other envi- 
ronmental effects. 

The challenges involved in opportunistic network rout- 
ing are totally different from the traditional wired net- 
works. We cannot only design and plan the structure of 
wired networks, but in case part of a network fails, we 
receive real time information about the route changes in 
the network. On the other hand, opportunistic networks 
(as the name suggests) cannot be designed or planned. 
They are implicitly created and evolve due to wireless 

devices that come into each other’s radio range. These 
wireless devices then behave as data mules as well as 
routers. They make routing decisions to bring the mes-
sages to their respective destinations based on the local 
knowledge that they have obtained earlier from the net-
work. 

One of the not that obvious effect of delay in Oppor- 
tunistic Networks is lack of accurate information flow. 
Due to intermittent connectivity, a node that may be 
temporarily connected to a cluster, is not able to adver- 
tise its new contacts. By the time potential consumers get 
the access to this info, it is outdated and that edge may 
not be available anymore. This problem becomes two 
fold when we incorporate the congestion factor into the 
scenario. In traditional networks, congestion related in-
formation is available in accurate and timely fashion. As 
soon as, an edge gets congested, appropriate measures 
like exponential back off are taken immediately. In the 
case of opportunistic networks, delay destroys this prom- 
ise of congestion handling and avoidance. Ideally, we 
would like to distribute congestion related information as 
quickly as possible to the nodes that are affected by it. In 
opportunistic networks, individual devices do not only  

Copyright © 2012 SciRes.                                                                                 WET 



Analyzing History Quality for Routing Purposes in Opportunistic Network Using Max-Flow 133

have variable capacities but also the traffic is less pre-
dictable. It is well known that wireless communication 
suffers severely from traffic congestion and that in case 
of a bottleneck; path recalculation can be a resource ex-
pensive process. As argued in [5], traffic congestion in 
opportunistic networks, does not only create problems 
for those messages that are directly involved but it also 
reduces the delivery probability of those messages that 
are sharing the same path. Authors in [6] have proposed 
an algorithm DARA that handle congestion problem by 
utilizing a centralized solution to better exploit the lim-
ited storage buffers and the contact opportunities how-
ever, it operates in a fully distributed manner and reduces 
the computational complexity. In any case, it is important 
for opportunistic networks to have traffic metrics that are 
as accurate as possible, so that congestion can be avoided. 
The delay encountered by the messages in opportunistic 
networks ranges from a few minutes to several days de-
pending on the dense/sparse nature of the network. As 
the wireless communication is inherently dependent on 
the external environment such as distance, obstacles, 
interference, etc., we cannot assure the accumulated traf-
fic measures to be precise in such scenarios. 

Every routing protocol deploys its own way of col-
lecting the history that is distinct with respect to several 
aspects including 1) what kind of history information is 
collected; 2) how frequent is it collected; and 3) what 
measures are taken to maintain the minimum device stor-
age consumption. Moreover, due to hardware limitations, 
the size of routing information must be limited, which 
introduces inaccuracies in the measures. Consequently, 
obtaining accurate and precise traffic measures for par-
ticipating devices is a great challenge. One may expect 
that more accurate paths and traffic measures will lead to 
better message delivery. The information that is consid-
ered relatively useless due to less frequent use or expired 
lifetime, is discarded to keep the consumption of compu-
tation and storage resources to an acceptable level. The 
delay encountered by the messages in opportunistic net-
works ranges from a few minutes to several days de-
pending on the dense/sparse nature of the network. 

Given these arguments, it can be understood that re-
searchers face the enormous challenge of acquiring ac-
curate and precise information to make correct routing 
decisions. Meaning that delays and device mobility make 
the access to information like network topology and traf-
fic volume very difficult. When we look through the 
available routing protocols in the research arena, we can 
find big variances in the motivations, approaches and 
methodologies used. Jain, Fall and Patra [7] have pro-
posed several oracles with future insight. Although, such 
methods are unrealistic, they can help to understand the 
nature and behavior of underlying networks, such as to 
reveal the hidden complexities of the propagation of 

messages that are not perceivable otherwise. On the other 
hand, the realistic protocols mostly consist of history 
based methods that utilized the past behavior shown by 
devices to predict their future pattern. Motivated by the 
work in [7,8] we have performed max-flow computations 
on three different opportunistic networks and then com-
pared the results by performing max-flow computations 
on history generated by the respective networks. We 
have varied the historical information available to de-
vices in the network to observe its effects on the max- 
flow throughput. 

2. Related Work 

Opportunistic networks can be seen as good examples of 
distributed systems [9], which can be simulated and ana-
lyzed with the help of oracles that have the capability of 
delivering different kinds of network measures without 
delay, throughout the network. Mechanisms that provide 
information to predict the device and traffic behavior, 
and which are difficult or impossible to gather in realistic 
scenarios, are known as oracles [7]. Provided that the 
information is accurate, strategies can make very effi-
cient use of network resources by forwarding a flow 
along the best path. Jain, Fall and Patra [7] have pre-
sented classification of several oracles based on the ex-
tent of information they can deliver. As depicted in the 
Figure 1, a zero knowledge protocol could be one that 
forwards the messages randomly or to whomever re-
ceives it first. The contact summary gives insight into the 
past contact frequencies and the more frequent contacts 
receive priority over the others. The most complicated 
oracle is the one that can predict the exact timings of 
contacts, volume of traffic in local queue of devices, and 
traffic demand. One can safely assume that the higher the 
accuracy, the less likely it is to actually construct such an 
oracle in the real world. The information that is neces-
sary for making intelligent routing decisions, and which 
can be constructed in the real world, lies between the two 
extremes, the zero knowledge of network and the full 
knowledge of timings of node contacts with future traffic 
demand. 
 

 

Figure 1. Conceptual performance vs knowledge [16]. 

Copyright © 2012 SciRes.                                                                                 WET 



Analyzing History Quality for Routing Purposes in Opportunistic Network Using Max-Flow 134 

As already stated, we can also find several other op-
portunistic network routing protocols that are based on 
some type of utility function [10]. Such mechanisms as-
sume that nodes in an opportunistic network tend to visit 
some locations more often than others, and that node 
pairs that have had repeated contacts in the past are more 
likely to have contacts in the future. A probabilistic met-
ric called delivery probability P(A, B), estimates the 
probability that node A will be able to deliver a message 
to node B. Additionally, we can find other examples 
where geographical location and time is also considered 
part of the history taking advantage of spatial and tem-
poral factors in routing [10,11]. Whatever may be the 
metric of history, most of these routing protocols work 
on the realistic premise that node mobility is not truly 
random. 

One of the issues with history gathering is to define 
the granularity as well as the timespan. Opportunistic 
networks consist mostly of mobile phones or other port-
able devices. Several methods have therefore been pro-
posed to summarize the history in such a way that it is 
does not pose a burden on computational and storage 
capabilities of the device. Moreover, it is argued that 
better prediction can be obtained by recent history. 
Lindgren et al. [12] uses an aging factor associated with 
probabilistic computations where old values are weighted 
less than the new ones. Other examples like [13] use a 
mechanism similar to the sliding window to discard the 
“obsolete” history. Wang [14] has argued in favor of 
using the most significant r history readings where sig-
nificance can be defined on a case-to-case basis. We can 
also find examples where Kalman filters have been used 
to reduce the noise (irrelevant history) to assure better 
prediction [15]. 

We can find several examples in the past that utilize 
maximal-flow to improve data dissemination in wireless 
networks. [16] has presented a theoretically-optimum 
max-flow routing algorithm that makes EH-WSNs able 
to transparently adapt to time-varying environmental 
power conditions during their normal operation. Effi-
ciency of smart antennas can be analyzed in interference 
prone environments using max-flow [17]. In the case of 
wireless ad-hoc networks, max-flow can also be used to 
maximize the traffic flow utility over time while, mini-
mizing the total power or maximizing the time to net-
work partition [18]. Moreover, wireless network access 
points can deploy intelligent bandwidth allocation policy 
by jointly distributing the resources for those clients that 
have overlapping connectivity [19] 

3. Why Max-Flow? 

Typically, network analysis requires finding a maxi-
mal-flow solution to identify bottlenecks when there are 

capacity constraints on the arcs. The maximum flow 
problem is structured on a network, however, the arc 
capacities or upper bounds, are the only relevant pa-
rameters. Given a graph where one vertex is considered a 
source and another is the sink, some object then flows 
along the edges of the graph from the source to the sink. 
Each edge along the path is given a maximum capacity 
that can be transported along that route. The maximum 
capacity can vary from edge to edge, in which case the 
remainder must either flow along another edge towards 
the sink or remain at the current vertex for the edge to 
clear or to be reduced. Thus, the goal of the maximum 
flow problem is to determine the maximum amount of 
throughput in the graph from a source to the sink. Read-
ers interested in background and theoretical proofs of 
problems related to max-flow may consult [20]. 

A. Adaption for Opportunistic Networks 
One may think of several ways to adapt the maximum 

flow problem for opportunistic networks. The idea here 
is to obtain maximum traffic that can flow in an oppor-
tunistic network among random source and destination 
pairs. We have used the contact oracle [7] to obtain the 
maximum flow between two nodes in the network be-
cause maximum flow solution can only be obtained, if we 
have the knowledge about the whole network. Since the 
contact oracle can predict the timings of future contacts, 
the contact oracle max-flow solution will give us the 
maximum volume transferrable between these selected 
source and destination (src, dst) pairs. As the contact 
oracle can deliver the exact contact timings of devices in 
an opportunistic network, we only need a modified 
Dijkstra’s algorithm citeJain2004Routing to adapt the 
computation to obtain maximum flow. 

When we think about computing maximum flow with 
the help of history, we have a choice to obtain the path to 
destination in two different ways. 

1) With contact summary: First, we rely on the con- 
tact summary oracle to compute maximum flow. As the 
contact summary oracle does not posses accurate node 
contact timings in the network, maximum flow obtained 
by contact summary oracle is expected to be less than 
that of the contact oracle. As stated earlier, since several 
methods are used to limit the size of information pro-
vided by the contact summary oracle, we analyze how 
these methods reduce the traffic flow with the gradual 
decrease in network information accuracy. The informa-
tion size can be reduced by aggregating the measures 
over a defined timespan. Here aggregation refers to the 
mean values of the contact delays and their durations, 
thus maximum flow can be computed by extrapolating 
these aggregated measures. We use these extrapolated 
measures to forecast for the upcoming timespan. 

2) Without contact summary: The second way of 
computing a path for computing maximum flow is by 
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removing the contact summary oracle. Thus, nodes them-
selves are responsible for sharing the aggregated delays 
and other measures among each other. This means that 
information accuracy is further decreased in contrast to 
the previous scenario of the contact summary oracle be-
cause the information flow through the network is de-
pendent on node mobility. A source can calculate the 
shortest path using this shared information only if an-
other network node has already shared the measures 
about the destination with the source.  

Thus, we reformulate the max-flow problem in an op-
portunistic network such that we compute the maximum 
traffic that can flow between a source and a sink using 
the mean of the variant capacities of all the paths over a 
defined timespan. Following are the issues that must be 
addressed to adapt the maximum flow computation for 
time varying graphs like opportunistic networks. 

1) We must define the terminal condition of maximum 
flow computation algorithm for opportunistic networks. 
The maximum flow algorithm does not terminate until 
the residual capacity of all the paths to the sink is re-
duced to zero. As we are dealing with time varying 
graphs, we have limited our analysis by setting up a 
timespan during which the destination must be accessed 
directly or indirectly by the source.  

2) Another interesting question is how to assure this 
terminal condition when we do not posses accurate in-
formation about the network. As stated earlier, both his-
tory variants of maximum flow computation have to pre-
dict the paths and these computed paths cannot be guar-
anteed to be correct. In the case, we have an incorrect 
path, one of the edges on the incorrect path must be ei-
ther labeled invalid or disconnected temporarily so that 
Dijkstra’s algorithm can deliver the next best path. At the 
same time, the residual capacity of the remainder of this 
path must be kept intact so that it may still be utilized for 
further maximum flow computation.  

3) Another issue is how strictly a path may be fol-
lowed when we have inaccurate information. We have 
used a forwarding strategy that does not follow the com-
puted path in a very strict sense. The flow can be at-
tempted to be propagated to any hop that may bring it 
closer to destination as shown in Figure 2. Due to this 
aspect, the labeling of an edge as invalid is further com-
plicated because we cannot identify the most suitable 
edge to be declared invalid, unless we use another oracle 
that can tell us which edge was either mistimed or failed 
to be realized at a particular point in time. This factor 
introduces more inaccuracy to history based computation 
of maximum flow and remains an open issue. 

4. Simulation Setup 

We have considered three different kinds of data sets, all 
of which have been obtained from CRAWDAD. The  

 

Figure 2. Message propagation: shortcut method. 
 
motivation behind choosing these three traces has been a 
broad spectrum between dense and sparse networks. Two 
of the data sets have been synthesized from reality min-
ing project [21] from MIT spans on 16 months, i.e. Feb-
ruary 2004 to August 2005 whereas, the third data con-
sist of the SNMP logs for one month from an IBM cam-
pus [22]. 

In the case of the IBM access point trace, SNMP is 
used to poll access points (AP) every 5 minutes, from 
July 20, 2002 through August 17, 2002. A total of 1366 
devices have been polled over 172 different access points 
during approximately 4 weeks. We have extracted the 
traces of 928 devices after discovering the existence of 3 
clusters in this network. We then chose the biggest clus-
ter with respect to node count. To turn these samples into 
continuous data, we assume that the snapshot data re-
mains constant for the next 5 minutes. In the rare cases 
where this would cause an overlap with another snapshot 
from another access point, we assume that the transition 
happens halfway between the two snapshots. We further 
assume that two nodes that are connected to one access 
point during the overlapping time period are connected to 
each other. 

The second trace of the MIT cell tower is utilized ac-
cording to the similar principal that was used for the IBM 
traces. The only difference is that instead of access points, 
cell towers are used to gather the contact times of the 
nodes, thus the resulting network can be characterized as 
a very dense network due to the high range of the cell 
tower. Due to several lapses in data gathering mentioned 
by the creators of the data, only 89 of 100 devices are 
included in our simulation that visited 32,768 different 
cell towers. 

As the duration span of the MIT reality mining is 
longer than the IBM trace, we have filtered the MIT data 
to match the time span of the IBM traces. The span time 
of the IBM trace is approximately one month whereas for 
MIT is more than one year, we have chosen one month 
from cell tower on the basis of the activity, so that the 
results can be compared. We observed that November 
2004 had the maximum activity1 among all the months 
for which cell tower data has been recorded. Similarly to 
Bluetooth traces, November 2004 turns out to be the 
maximum activity month with 81 devices and 12592 
distinct cell towers. After this filtering process, IBM ac-
1Activity is defined as time spent “online” by devices, i.e., being con-
nected to either cell towers or other neighboring devices. 
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cess point trace turned out to be a medium sparse net-
work while the MIT cell tower trace turned out to be a 
dense one. 

The sparsest network is obtained from Bluetooth logs 
(MITBT) where each node scans every five minutes for 
active Bluetooth neighbors and stored the duration of 
contact times. Like the MIT trace, we selected one month 
from Bluetooth traces, i.e. November 2004 showed 1858 
Bluetooth nodes suggesting a huge number of undesig-
nated nodes as compared to the designated2 81 nodes that 
were designated to gather the data. Here it is noteworthy 
that a few undesignated devices had more connectivity 
and interaction with the network than the designated 
nodes. 

Simulator: 
The motivation behind the simulator is to help us find 

the delays incurred by flows suffered by networks during 
the execution of different variations of max-flow algo-
rithms. The output is analyzed on the basis of both the 
number of src, dst pairs that are connected via routes as 
well as volume delivered from source to destination. As 
already mentioned, three different traces have been used 
that significantly differ in the number of nodes involved, 
number, frequency, and distinctness of meetings that 
took place among the participants. We have chosen 100 
source and destination pairs, for which we compute the 
maximum traffic that can flow between them. For access 
point and cell tower traces, the criterion for source desti-
nation selection has been set as the 30th percentile of the 
devices with respect to online time. For Bluetooth, a 
more strict limit of the 70th percentile has been set for 
the selection of source and destination due to the scarcity 
of the network. The rest of the simulation parameters are 
summarized in Table 1. 

It is imperative to mention that the assumption of two 
devices being connected to one base-station (access point 
or cell tower), introduces inaccuracies [23]. On one hand, 
this is overly optimistic, since two devices attached to the 
same access point may still be out of range of each other. 
On the other hand, the data might omit connection op-
portunities, since two nodes may pass each other at a 
place where there is no base-station, and, hence, this 
contact could not be logged. Another issue with these 
data sets is that the devices are not necessarily co-located 
with their owner at all times (i.e. they do not always 
characterize human mobility). Despite these inaccuracies, 
such traces are a valuable source of data, since they span 
many months and include thousands of devices. In addi-
tion, considering that two nodes connected to the same 
AP are potentially in contact is not altogether unreason-
able, as these devices could indeed communicate through 
the AP, without using end-to-end connectivity. 

A. Analyzed Strategies 

Based on the above discussed issues, we have simu-
lated the following three different max-flow strategies for 
the sake of comparison. However, it is important to men-
tion that in the following experiments, maximum flow 
computations are not performed simultaneously for all of 
the source and destination pairs. We compute maximum 
flow between the first src, dst pair and then we move back 
in time to select the next pair iteratively. Similarly, we go 
back in time to compute a new path if the given path 
provided by the contact summary oracle is not correct. It 
is also important to mention that our implementations of 
the below described strategies are of greedy nature with 
respect to delay (quickest path first). Therefore, it is pos-
sible that a better path with longer delay is sacrificed for 
a quicker path. We have decided for the greedy imple-
mentation because one of the terminal conditions of the 
algorithm is to find all maximum flows that can access 
the destination within the described timespan. Without 
this condition the computation overhead is too high. 

1) Contact oracle max-flow: This max-flow computa-
tion is based on contact oracle [7] where paths provided 
by oracle iteratively, are consumed as long as there exist 
no such path to the destination that can deliver the traffic 
within the desired timespan. The path is computed be-
tween 100 pairs of source and destinations with the help 
of the variant of the Dijkstra’s algorithm. Once the src, 
dst pair is selected, we follow the mechanism similar to 
what has been presented in [8] described here in Algo-
rithm 1. This way, max-flow computed between the first 
pair of src, dst will affect all the next max-flows to be 
computed later, if they share at least a common edge. 
 

Table 1. Simulation parameters. 

Source, sink pair count 100 

Flow computation window length 7 Days 

History window length w = 10 (1st - 10th) Days 

 w = 14 (1st - 14th) Days 

Valid path delay x = 7 with path oracle 

 x = 10 without path oracle 

Bandwidth (low) 100 kiB/s 

Bandwidth (high) 10,000 kiB/s 

 

 

Algorithm 1. Max-flow calculation with help of contact ora-
cle for a given src, dst pair. 2Nodes running the scanning software are referred to as designated. 
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2) History-based max-flow with path oracle: This 
strategy is a variant of contact summary oracle where we 
are aware of the delays as well as the mean throughput of 
the obtained paths. It is imperative to recall that the ob-
tained paths with these measures are used for prediction 
purpose. These measurements of delays and throughput 
are accumulated over a defined timespan in the following 
way. For each encounter between two directly connected 
nodes X and Y as shown in Figure 3 as direct link, the 
history information is shared as follows. 

a) Node ID of Y if it is a first contact between X and Y.  
b) Update or insert mean delay εXY encountered for 

transmission from X to Y. εXY, includes the time durations, 
data stay in the local queues as well as inter-hop trans-
mission times.  

c) Link throughput. Update mean number of bytes that 
could be delivered BXY. 

As discussed earlier, contact summary oracle may find 
a path to the destination but cannot ensure the realization 
of this path in the network trace. In case, this oracle pre-
dicts the path correctly, the probability of correct path 
throughput prediction is low. Thus, a flow is initiated 
with the volume that is prescribed by the oracle and this 
volume is decreased during the propagation if it is real-
ized that the path throughput is less than the volume. 
This way, different edges on the path may suffer differ-
ent bandwidth consumptions, which may bring inconsis-
tencies to the results. As there may be several instances 
of a contact between two devices, we must extrapolate 
the edges of contact summary oracle proportionally to 
the frequency of contacts between two devices. These 
extrapolated edges are consumed in a fashion similar to 
the mechanism presented in [24] where the aggregated 
residue capacity on each edge is reduced according to the 
minimum aggregated capacity of the whole path. 

3) History based max-flow without path oracle: This 
strategy has no access to any oracle. Devices themselves 
gather and share historical information for a defined 
timespan. This means we must extend our history gath-
ering method so that direct as well as transitive contacts 
can be preserved. In addition to the sharing of direct 
contact history information as described previously, in-
formation about indirect contacts is shared in a transitive 
manner as follows: 

For an indirect neighbor or twohop link as shown in 
Figure 3, device X inserts augmented information in its 
routing table about the device Z accessible via Y, 

a) Node ID Z if X has no earlier record of Z via Y.  
 

 

Figure 3. History calculation. 

b) Update or insert mean delay from X to Z,  

XZ XY YZ     

c) Path throughput X, Y, Z, 

 min ,v v
XZ XY YZB B vB  

A source computes maximum flow to the destination, 
based on these measurements of mutually shared mean 
delay among the devices. The key difference between 
with and without path oracle is that the history based 
max-flow without path oracle does not assure a path, 
unless the source has been able to obtain the mean delay 
to the destination from the mutual contacts of the middle 
hops. Thus, the mobility of a network plays an important 
role for the dispersion of this information. Theoretically 
speaking, if nodes in a network move very frequently 
with the speed of light, we may end up having the same 
measure as we had in the case of with path oracle vari-
ant. 

Another question is how to proceed when we have a 
false prediction. It is possible that the first path is a bad 
prediction but there may still be available several valid 
paths that show longer delays. We have to somehow 
eliminate the current invalid path so that the Algorithm 2 
can find the next best predicted path. For the sake of 
simplicity, we disconnect one edge on the invalid path 
that has failed to be realized. This means, we disconnect 
the edge between the last hop successfully taken and the 
next available hop in the path as shown in Algorithm 3. 
As our forwarding mechanism does not follow strictly 
the given path (Figure 2), disconnecting the last hop and 
next hop may give unexpected results. 

B. Amount of History 
As discussed in Section 2, a variety of methods can 

that propose the use of history to predict the behavior of 
devices can be found in literature. In the light of these 
examples, we have introduced a window period variable 
w. This variable represents the timespan over which his-
tory is accumulated. The two values used for w are 10 
and 14 representing the corresponding timespan in days. 
To separate the two issues of accuracy loss due to infor-
mation aggregation from quality of prediction, we have 
simulated both variations of history based max-flow 
computation on the same timespan from which history 
has been computed as well as for 7 following days after 
the history timespan elapsed. This configuration is rep-
resented in Figure 4, where two values of w = 10 and 14 
are represented with the corresponding prediction time 
period. 

We have used a threshold of path delay of x = 7 days, 
i.e. all paths showing longer than 7 mean delays are dis-
carded. The rest of the simulation parameters are sum-
marized in Table 1. It is important to mention here that 
we have utilized the same history for x = 10 as computed  
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Algorithm 2. Dijkstra’s Algorithm modified to use history 
costs. src and dst are the source and destination node re- 
spectively. The path calculation is performed on the edges 
provided by history(E), using oracle, we can calculate cost 
calculated provided by history to every node, however 
without oracle, we need a destination for which we need to 
calculate the costs. 
 

 

Algorithm 3. Max-flow calculation with help of history ora- 
cle for a given src, dst pair. 

for opportunistic routing simulations presented in [5]. 
This aspect resulted in some unexpected outcomes that 
we are not able to address due to time limitations. 

5. Results and Discussion 

For the sake of presentation, we have assigned several 
denotements to our strategies that are presented in Table 
2. We have used the suffix-Pred. to represent the pre-
dicted max-flow. 

This max-flow computation is performed on the time-
span of 7 days that starts after history timespan has 
elapsed shown as unshaded rectangle in Figure 4. More-
over, each denotement is followed by a number that 
represents the value of history window size, i.e. w. 

When we look at all the plots in Figures 5 and 6, CMF 
has delivered the maximum amount of bytes as well as 
discovered the maximum number of routes between src, 
dst pairs. The scarcity of the Bluetooth (MITBT) trace is 
evident here where CMF has discovered a mere 30 routes 
between src, dst pairs as shown in Figure 5(a). In cell 
tower (MIT) and access point (IBM) cases, it has discov-
ered routes between 98 and 70 src, dst pairs receptively. 
We also notice that the difference between high and low 
bandwidth is visible only in the traffic volume while, the 
number of src, dst pairs connected via routes is more or 
less the same. 

Another observation that is true for all the 4 figures is 
that an increase in window size w has a positive effect on 
almost all of the HMFs variants. Moreover, we see a de-
crease in both max-flow computations, i.e. volume and 
count, in almost all cases, when we look at pred. variants. 
There are a few exceptions to this statement that we will 
be discussing later. 

When we analyze the two sets of results presented here 
in low bandwidth Figures 5(a) and (b), CMF has deliv-
ered maximum bytes as well established contacts be-
tween maximum pairs of source and destination in all 
three traces. When we look at all of the HMFs-7 and 
HMFP’s-7, we see a drastic decrease in both aspect, i.e. 
volume and count. We did not expect such a drastic de-
crease, particularly not in the Bluetooth (MITBT) trace. 
It is also interesting to observe that HMFP has delivered 
slightly fewer bytes than HMF but has established one 
 

Table 2. Algorithm denotement and description. 

Strategy Denotement Description 

Contact oracle max-flow CMF Based on contact oracle 

History based max-flow
with path oracle 

HMFP 
Based on aggregated history
and oracle is responsible 
for information sharing 

History based max-flow
without path oracle 

HMF 
Based on aggregated history
and devices are responsible 
for information sharing 
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more path. Although, HMF is supposed to have more 
inaccurate information in comparison to HMFP, due to 
artifacts explained later, it has delivered a few extra bytes 
in the Bluetooth (MITBT) trace. 

On the contrary, HMFP has delivered more bytes as 
well as discovered routes between more src, dst pairs in 
the Bluetooth (MITBT) high scenario (Figure 6(a)). 
Where HMFP has delivered more data as compared to 
HMF, the IBM trace has shown the expected behavior as 
far as volume is concerned (Figure 6(b)). This behavior 
is consistent for the IBM trace in the high bandwidth 
scenario however; it is not true for the MIT high band-
width scenario. 

The behavior of the dense MIT network has been as 
expected because the history window size of 14 has made 
sure that information about all paths is spread all over the 
network (Figure 5(a)). All strategies with history win-
dow w = 14 have discovered almost all the routes be-
tween pairs that CMF has discovered. As far as volume is 
concerned, (Figure 5(b)), we can see that the decrease in 
readings, when compared to CMF, is due to information 
loss to aggregation. 

A few inconsistencies that have been observed in the 
results can be explained with the help of following ar-
guments. As stated earlier, our implementation of the 
contact summary oracle is greedy with respect to delay 

(the quickest path first), which means that the utilization 
of a quicker low throughput path can affect the max-flow 
computation of a slower high throughput path. Moreover, 
the artifact of the forwarding scheme depicted in Figure 
2 has also resulted in interesting side effects. As dis-
cussed, the forwarding scheme combined with the 
mechanism of removing the invalid path can cause a 
useful edge to be disconnected. This is due to the fact 
that we cannot exactly identify the edge on the traversed 
path that is responsible for the failure without another 
oracle. Another reason is the variable consumption of 
edges during volume propagation, in which all history 
based max-flows may consume less bytes in later edges 
than the former ones because of the dynamic reduction of 
flow volume. 

When we look at the volumes delivered by CMF in 
high bandwidth scenario (Figure 6(b)), volume delivered 
for IBM trace has surpassed all the others, whereas the 
contact count is higher in the MIT case (Figure 6(a)). 
Surprisingly, the contact count for HMF is far lower 
when we compare MIT low and high bandwidth cases. 
This is because the two HMFs, i.e. low and high, have 
discovered several routes between same src, dst pairs 
through different paths because of congestion experi-
enced in low bandwidth. Thus, the larger volume deliv-
ered by HMF has caused the history oracle to disconnect  

 

 

Figure 4. History window and prediction setup configuration. 
 

 
(a)                                                             (b) 

Figure 5. Maximum flow results for low bandwidth scenario (a) src,dest count (b) Volume. 
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(a)                                                             (b) 

Figure 6. Maximum flow results for high bandwidth scenario (a) src,dest count (b) Volume. 
 
the network and the contact count has dropped (Figure 
6(b)). 

6. Conclusions and Future Work 

We have fused concepts from traditional graph theory 
with the emerging opportunities in mobile wireless envi-
ronment. Initial results are promising both in terms of 
admittance and fairness. These max-flow based experi-
ments can be seen as a first attempt to analyze the vari-
ance in the behavior of three opportunistic networks 
while varying variable like bandwidth and window size. 
We can conclude from these experiments that the vari-
ance of all variables may produce counterintuitive results 
depending on the underlying network. History can bring 
good quality prediction provided the network devices 
show regularly consistent behaviors. 

In our opinion, it is unlikely for a history computa-
tion/gathering mechanism that is universal for every kind 
of opportunistic network. Thus, history gathering should 
be an adaptive process in such a way that it can select the 
statistical methods for acquiring node contact informa-
tion with respect to the context of underlying network. In 
a low resource setting with limited mobility, the physical 
transport of digital data at a frequency of less than once 
per week should still be acceptable for services that can 
tolerate such delayed notification of results [25]. Fur-
thermore, the validity of history decays with the passage 
of time and particularly sparse network suffer this decay 
in quality. It is also essential to keep the history size in 
check, although history gathered over longer period does 
bring some advantages. In our opinion the history win-

dow size must be correlated with the mobility of indi-
vidual devices, i.e. devices with low mobility should 
have longer window than devices with high mobility. 

REFERENCES 

[1] I. Bisio and M. Marchese, “Congestion Aware Routing 
Strategies for dtn-Based Interplanetary Networks,” Pro-
ceedings of the Global Communi-cations Conference, 
New Orleans, 30 November-4 December 2008, pp. 1-5.  

[2] S. Guo, M. Derakhshani, M. H. Falaki, U. Ismail, R. Luk, 
E. A. Oliver, S. U. Rahman, A. Seth, M. A. Zaharia and S. 
Keshav, “Design and Implementation of the Kiosknet 
System,” Computer Networks, Vol. 55, No. 1, 2011, pp. 
264-281. doi:10.1016/j.comnet.2010.08.001 

[3] A. Keranen and J. Ott, “Increasing Reality for dtn Proto-
col Simulations,” Helsinki University of Technology, 
Helsinki, 2007. 

[4] J. Burgess, B. Gallagher, D. Jensen and B. Levine, 
“Maxprop: Routing for Vehicle-Based Disruption-Tol- 
erant Networking,” Proceedings of IEEE Infocom, Bar-
celona, 23-29 April 2006.  

[5] M. Islam and M. Waldvogel, “Optimizing Message De- 
livery in Mobile-Opportunistic Networks,” Internet Com- 
munications, 2011 Baltic Congress on Future, Riga, 17 
February 2011, pp. 134-141.  
doi:10.1109/BCFIC-RIGA.2011.5733212 

[6] X. Zhuo, Q. Li, W. Gao, G. Cao and Y. Dai, “Contact 
Duration Aware Data Replication in Delay Tolerant Net-
works,” IEEE International Conference on Network Pro-
tocols, Vancouver, 17-20 October 2011, pp. 236-245. 

[7] S. Jain, K. Fall and R. Patra, “Routing in a Delay Tolerant 
Network,” Proceedings of SIGCOMM 2004, ACM Press, 

Copyright © 2012 SciRes.                                                                                 WET 

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1109/BCFIC-RIGA.2011.5733212


Analyzing History Quality for Routing Purposes in Opportunistic Network Using Max-Flow 141

New York, 2004, pp. 145-158. 
doi:10.1145/1015467.1015484 

[8] M. A. Islam and M. Waldvogel, “Questioning Flooding 
as a Routing Benchmark in Opportunistic Networks,” 
2011 Baltic Congress on Future Internet Communica-
tions, Riga, 17 February 2011, pp. 128-133.  
doi:10.1109/BCFIC-RIGA.2011.5733215 

[9] L. Lilien, Z. H. Kamal and A. Gupta, “Opportunistic 
Networks: Chal-Lenges in Specializing the p2p Para-
digm,” International Workshop on Database and Expert 
Systems Applications, Krakow, 4-8 September 2006, pp. 
722-726.  

[10] J. Z. J. Liu and H. G. Gong, “Preference Location-Based 
Routing in Delay Tolerant Networks,” International Jour- 
nal of Digital Content Technology and its Applications, 
Vol. 5, No. 4, 2011, pp. 468-474.  

[11] B. Burns, O. Brock and B. N. Levine, “Mv Routing and 
Capacity Building in Disruption Tolerant Networks,” 
Proceedings of IEEE Infocom, Miami, 13-17 March 
2005.  

[12] A. Lindgren, A. Doria, J. Lindblom and M. Ek, “Net-
working in the Land of Northern Lights: Two Years of 
Experiences from dtn System Deployments,” Proceedings 
of the 2008 ACM Workshop on Wireless Networks and 
Systems for Developing Regions, ACM, New York, 2008, 
pp. 1-8. doi:10.1109/TMC.2007.1016 

[13] E. P. C. Jones, L. Li and J. K. Schmidtke, “Practical 
Routing in Delay-Tolerant Networks,” IEEE Transac- 
tions on Mobile Computing, Vol. 6, No. 8, 2007, pp. 943- 
959.  

[14] Y. Wang, S. Jain, M. Martonosi and K. Fall, “Erasure- 
Coding Based Routing for Opportunistic Networks,” 
ACM Workshop on Delay Tolerant Networking, Phila-
delphia, 26 August 2005. 

[15] P. Costa, C. Mascolo, M. Musolesi and G. P. Picco, “So- 
cially-Aware Routing for Publish-Subscribe in Delay- 
Tolerant Mobile Ad Hoc Networks,” IEEE Journal on 
Selected Areas in Communications, Vol. 26, No. 5, 2008, 
pp. 748-760. doi:10.1109/JSAC.2008.080602 

[16] A. Seraghiti, S. Delpriori, E. Lattanzi and A. Bogliolo, 

“Self-Adapting Maxflow Routing Algorithm for wsns: 
Practical Issues and Simulation-Based Assessment,” Pro-
ceedings of the 5th International Conference on Soft 
Computing as Transdisciplinary Science and Technology, 
Ser, ACM, New York, 2008, pp. 688-693.  

[17] X. Huang, J. Wang and Y. Fang, “Achieving Maximum 
Flow in Interference-Aware Wireless Sensor Networks 
with Smart Antennas,” Ad Hoc Networks, Vol. 5, No. 6, 
2007, pp. 885-896. doi:10.1016/j.adhoc.2007.02.003 

[18] T. X. Brown, H. N. Gabow and Q. Zhang, “Maximum 
Flow-Life Curve for a Wireless Ad Hoc Network,” Pro-
ceedings of the 2nd ACM International Symposium on 
Mobile Ad Hoc Networking & Computing, ACM, New 
York, 2001, pp. 128-136.  

[19] S. K. Dandapat, B. Mitra, N. Ganguly and R. R. Choud-
hury, “Fair Bandwidth Allocation in Wireless Network 
Using Max-Flow,” SIGCOMM—Computer Communica-
tion Review, Vol. 41, No. 4, 2010, pp. 22-24.  

[20] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network 
Flows: Theory, Algorithms, and Applications,” Prentice 
Hall, Upper Saddle River, 1993.  

[21] N. Eagle and A. S. Pentland, “CRAWDAD Data Set 
Mit/Reality (v. 2005-07-01),” 2005.  
http://crawdad.cs.dartmouth.edu/mit/reality  

[22] M. Balazinska and P. Castro, “CRAWDAD Data Set 
IBM/Watson (v. 2003-02-19),” 2003.  
http://crawdad.cs.dartmouth.edu/ibm/watson  

[23] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass and 
J. Scott, “Impact of Human Mobility on the Design of 
Opportunistic Forwarding Algorithms,” Proceedings of 
IEEE Infocom, Barcelona, 23-29 April 2006.  

[24] D. R. F. Ford, “Maximal Flow through a Network,” Ca-
nadian Jounral of Mathematics, Vol. 8, 1956, pp. 399- 
404. doi:10.4153/CJM-1956-045-5 

[25] J. S. S. Syed-Abdul, et al., “Study on the Potential for 
Delay Tolerant Networks by Health Workers in Low Re-
source Settings,” Computer Methods and Programs in 
Biomedicine, 2011, in Press.  
doi:10.1016/j.cmpb.2011.11.004 

 

Copyright © 2012 SciRes.                                                                                 WET 

http://dx.doi.org/10.1109/BCFIC-RIGA.2011.5733215
http://dx.doi.org/10.1109/TMC.2007.1016
http://dx.doi.org/10.1109/JSAC.2008.080602
http://dx.doi.org/10.1016/j.adhoc.2007.02.003
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1016/j.cmpb.2011.11.004

