
Wireless Engineering and Technology, 2012, 3, 52-62
http://dx.doi.org/10.4236/wet.2012.32009 Published Online April 2012 (http://www.SciRP.org/journal/wet)

Software Defined Radio Prototyping with Visual C++
Express and Code Composer Studio

Sverre Wichlund

Nordic Semiconductor ASA, Trondheim, Norway.
Email: wichlund@gmail.com

Received February 23rd, 2012; revised March 16th, 2012; accepted March 31st, 2012

ABSTRACT

The primary goal of this project was educational: to demonstrate Software Defined Radio based prototyping using Vis-
ual C++ Express and Code Composer Studio. More specifically an IEEE802.11a Phy [1] compliant baseband processor
was written in C++ and a radio link demonstrated “live” using a standard PCand the DSK6713 kit from Spectrum Digi-
tal [2] for baseband processing at the receiver and transmitter side respectively. To reduce costs without loss of educa-
tional value (the algorithms remains the same), the bandwidth was scaled down from 20MHz to 6 kHz to be able to
utilize cheap narrowband COTS RF frontends operating at an intermediate frequency of only 12 kHz at the transmitter
and receiver sides. This was easily achieved by just reducing the OFDM symbol rate by a suitable factor. The develop-
ment process is described in detail, emphasizing development tricks to facilitate debugging of this kind of complex
baseband processing. For educational purposes some other simpler waveforms was implemented as well.

Keywords: SDR; OFDM; Waveform; IEEE802.11; DSK6713; Visual C++ Express; Baseband Processing

1. Introduction

For the last two decades or so, SDR (Software Defined
Radio) has been subject to tremendous research1. Fueled
by the enormous semiconductor advancement, SDR
technology is today at the core of established techniques
like Cognitive Radio and DSA (Dynamic Spectrum Ac-
cess) for more effective use of limited spectrum re-
sources. From a stronghold within military applications,
SDR technology is migrating into other application do-
mains as well. There are many definitions of SDR,
common is that the waveform is completely defined in
software. A typical SDR architecture is depicted in Fig-
ure 1. Note that the up/down mixing can in general be
either direct conversion or to/from some suitable inter-
mediate frequency.

In this project we wanted to focus on the educational
part of SDR prototyping and basic wireless communica-
tion concepts. Therefore, focus has been on low cost and
writing the baseband processing software from scratch.
Unless otherwise stated, we did not emphasize optimiz-
ing the code for reduced footprint. In a wideband and/or
power constrained context this must of course be focused
on. In summary the prime motivating factors were:
 Gain experience with implementing and debugging

digital signal processing software using the free Vis-

ual C++ Express [3].
 Studying carrier and symbol timing recovery tech-

niques applicable to IEEE802.11a/g.
 Getting a proper understanding of OFDM (Orthogo-

nal Frequency Division Multiplexing) as well as im-
proving skills with digital modulation and demodula-
tion, filtering and pulseshaping.

There is a myriad of existing SDR development plat-
forms out there that vary in cost and performance, from
high-bandwidth systems requiring expensive develop-
ment software to tiny less flexible systems with modest
capabilities. The systems may be classified along differ-
ent dimensions, e.g. cost, bandwidth, processing capa-
bilities, type of RF frontend, development software,
flexibility. A detailed overview is considered beyond the
scope of this paper. An interesting taxonomy may be
found in [5]. Some examples of available systems for
SDR prototyping in order of decreasing cost:
 The “flexComm” SDR platform from Spectrum Sig-

nal Processing [6]. This is a high performance / high
bandwidth platform.

 SDR development platforms from Lyrtech [7]. These
are commercial high-performance/flexible systems
requiring relatively expensive development soft-ware.

 The Typhoon SDR Waveform Development platform
from Datasoft [8]. Interesting is that the popular GNU
radio software [9] (a free toolkit for SDR development) 1See the landmark paper by J. Mitola [4].

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 53

90°

Freq. synthesizer

LNA

PA

-

ADC

ADC

DAC

DAC

DUC

DDC

FPGA

Baseband processing
(e.g. GPP / DSP)

Analog
frontend

Figure 1. Common SDR architecture.

is supported by this platform.
 GNU radio [9] is often used together with the USRP

device from Ettus Research [10]. This is a popular
platform providing the base for several other systems
as well [5].

However, either existing systems didn’t fit our budget
or we found the flexibility to be insufficient. In addition,
taking the educational value into account, we set out de-
fining and developing our own. We may highlight the
characteristics for our platforms follows in the order of
decreasing priority:
 Low cost (uses relatively cheap hardware and mainly

free software).
 Developed for educational purposes.
 Flexible, developed entirely in C++.
 Any RF frontend with an IF (Intermediate Frequency)

in the vicinity of 12 kHz may be used.
The C++ language was chosen as the implementation

language because it is “always” used within the digital
signal processing community for programming DSPs
(Digital Signal Processors). Although GNU radio uses a
Phyton based programming interface, the core signal
processing blocks are written in C++. Furthermore, every
programmer has some C/C++ knowledge.

2. Architecture

Our hardware setup for the SDR platforms is shown in
Figure 2. We utilize two PCs together with relatively
cheap RF frontend hardware. On the transmitter side we
implemented the baseband processor on a DSP using the
DSK6713 from [2] connected to PC-A. The reason for
this was twofold: 1) to gain experience in programming a
DSP, and 2) to be able to compare TIs CCS (Code Com-
poser Studio) IDE2 with Visual C++ Express for devel-
oping signal processing software. The DSK6713 has a
CODEC that we connected to a mixer from [11]
up-converting (without image rejection) our 12 kHz IF
signal to 10.724 MHz. This mixer was chosen due to its
excellent linearity; note that the crest factor3 for an
IEEE802.11a signal is approx. 11 dB. We had a WRG313
receiver [12] from an earlier project and decided to reuse
this as the RF frontend at the receiver side. This receiver
has its own DSP for demodulation, however the DSP was
bypassed and the IF samples were transferred directly to
PC-B for demodulation on t e PC itself. Note that Win- h

2Integrated Development Environment.
3Or peak-to-average power ratio is a dimensionless quantity calculated
from the peak amplitude of the waveform divided by the RMS value of
the waveform.

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 54

DSK6713
USB

Mixer

IF@12kHz

PC A

 WRG313e

10.724MHz

PC B

USB

Tx Rx

Figure 2. Our SDR platform hardware setup for the radio link.

Radio [12] provides an open API that facilitated com-
plete control over the radio from our software developed
on PC-B using Visual C++ Express.

To be able to prototype and run the complete
IEEE802.11a baseband processing software using this
radio HW setup, we had to scale down the 20MHz
bandwidth in the standard [1] down to a manageable
bandwidth, in this case 6 kHz. This was accomplished by
scaling every relevant IEEE802.11a parameter in [1] by 3
× 10–4. The key figures are shown in Table 1.

The main blocks in an IEEE802.11a OFDM transmit-
ter and receiver (physical layer) is shown in Figure 3.

We will not go into the OFDM fundamentals here, see
e.g. [13]. In summary, at the top we have the transmitter
chain consisting of inner (convolutional) coder, block
interleaving (frequency domain spreading of adjacent
bits) and sub-carrier mapping, IFFT transforming the
complex OFDM symbol to time-domain samples, guard-
interval (cyclic-prefix) insertion, pulse shaping and fi-
nally up-conversion to RF. In our case, all these blocks
were implemented in C++ using CCS and the executable
then downloaded to the DSK6713 board. The up-con-
version to “RF” was done using the mixer mentioned
above, converting the 12 kHz IF signal output from the
onboard DSK6713 CODEC to a 10.724MHz signal radi-
ated from a random wire a few feet long. See Figure 2.

On the receiver side we have down-conversion from
RF to a complex baseband signal. In general this may be
done either directly or via one or more intermediate fre-
quencies. The choice is left to the implementer. Each
method has its strength and weaknesses and the relatively
complex trade-offs here are beyond the scope of this pa-
per, see e.g. [14]. In our case we used the WRG313e re-
ceiver for converting the received 10.724 MHz signal
down to a 12 kHz IF signal at 48Ksamples/s which was

then transferred to PC-B via the USB cable.
Please observe that in our low-cost (narrowband) setup,

common issues like I/Q mismatch and DC offset are
non-existent because the actual I/Q merge/split is done
digitally (in the software) with only real IF signals in-
volved. In a system operating at the rated speed and RF
frequencies [1], the (broadband) RF frontend will typi-
cally be more similar to that in Figure 1 and these issues
must of course be dealt with to adequately fulfill required
radio performance parameters4.

Following the complex down-conversion is channel
filtering (ensuring proper selectivity) and down-sampling
to reduce the computational burden in the downstream

Table 1. IEEE802.11a parameters vs. downscaled “802.11a”.

Parameter
IEEE802.11a
(20 MHz ch.)

Our downscaled
“802.11a”

Bandwidth 20 MHz 6 kHz

FFT order 64 64

Data subcarriers 48 48

Pilot subcarriers 4 4

Subcarrier spacing 312.5 kHz 93.75 Hz

FFT period 3.2 µs 10.67 ms

Guard interval 0.8 µs 2.67 ms

OFDM symbol rate 250 kHz 75 Hz

Preamble duration 16 µs 53.3 ms

Modulation
BPSK/QPSK/

16-QAM/64-QAM
BPSK

Code rate 1/2, 2/3, 3/4 1/2

4OFDM systems are very sensitive to I/Q mismatch because of the
complex signal constellations used (e.g. 64-QAM).

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 55

FEC
Coder

Interleaving+
Mapping

IFFT
GI

Addition
IQ

Mod

HPA

Symbol
Wave

Shaping

LNA

AGC Amp

Rx Lev. Det.

IQ
Det

AFC
Clock Recovery

FFT
Remove

GI
Demapping+

Deinterleaving
FEC

Decoder

Figure 3. Transmitter and receiver block diagram for an IEEE802.11a OFDM Phy [1].

signal processing blocks. This is not shown in Figure 3.
Then come a vital block, namely the carrier and timing
recovery engine (synchronizer). The task of this block is
to estimate the carrier frequency/phase offset and symbol
clock from the incoming signal. In a communication
system it is of vital importance that this block is carefully
designed as its performance will directly affect the
packet error rate for a given demodulator SNR. Assum-
ing that carrier, symbol timing and frame synchroniza-
tion5 have been performed, the guard-interval is removed
and FFT is performed to enable individual subcarrier
demodulation. After subcarrier demodulation and equali-
zation6, the raw bits are de-interleaved and passed on to a
Viterbi decoder. The bits output from this decoder are
then fed to the next protocol level for processing.

3. The Development Phase

Being faced with such a complex development task, we
started out with modeling the whole system in Octave
[15]. The role of this system modeling can be summa-
rized as follows:
 First, to get a proper understanding of the OFDM-

modulation principles, experimenting with different
system parameters, before implementing. See also the
tutorial paper [13].

 Algorithm development: although the key blocks in

the processing chain are well defined (Figures 17-12
in [1]), it is left to the designer to choose and imple-
ment algorithms for carrier and timing recovery
[16,17]. This is a research field on its own and be-
yond the scope of this paper. However, we will pre-
sent our implementation of a proper7 carrier and tim-
ing synchronizer in detail below.

 To have a cycle-accurate reference model during the
C++ implementation proved extremely useful through-
out the development phase.

We started with generating the complex baseband
samples constituting the training symbols, see Figure 4.
These were verified against Annex G in [1].

We then went on with modeling all the blocks in Fig-
ure 3 except for the frontends (the connection in the
model between Tx and Rx chains was the 12 kHz IF sig-
nal). The most complex blocks to model were the syn-
chronizer and the Viterbi decoder. Since the model was
going to be used as an implementation reference for the
successive C/C++ implementation, we modeled these
blocks in an elaborate way (cycle accurate) to make this
transition as smooth as possible. It should however be
mentioned that we skipped the “normal” floating-point to
fixed-point model refinement during modeling8. For
more details about the synchronizer, see appendix A.

Having the model up and running, we were set for the
Tx software development on the DSK6713. Before going
nto further details, we summarize the hardware and i5Frame synchronization is the task of determining the relative bit posi-

tion in the received data-packet such that we know where the header
and payload starts. This task is easily done by correlating with a known
pilot symbol.
6Not shown in Figure 2 is a necessary equalizer block which equalizes
the channel effect on the OFDM symbol. The 1-tap equalizer coeffi-
cients are easily computed based on the long training symbol. They are
successively updated based on the pilot symbols. Note that the subcar-
rier phase coherency is based on the complex rotation done by the
equalizer.

7“Proper” in this case means that the synchronizer worked flawlessly
(didn’t turn out to be a bottleneck with respect to packet error rate)
under the conditions present in our experimental setup.
8This step is mandatory when designing DSP systems for HW imple-
mentation (ASIC, FPGA) to be able to estimate area/speed/power be-
fore going to HW. In our case however, the SDR implementation is
largely floating point based since the TMS320C6713 on the DSK is a
floating point DSP.

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 56

 8 + 8 = 16 µs

10 × 0.8 = 8 µs 2 × 0.8 + 2 × 3.2. = 8.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 T1 T2GI2 GI GI GI Data 1 Data 2SIGNAL

DATASERVICE + DATA RATE
LENGTH

Signal Detect,
AGC, Diversity
Selection

Coarse Freq.
Offset Estimation
Timing Synchronize

Channel and Fine Frequency
Offset Estimation

Figure 4. IEEE802.11a OFDM training symbols [1].

software used in Table 2.

Rather than developing the Tx software from scratch
in CCS, we decided to implement this software first in
VC++ on PC-B on the receiver side. See Figure 5. The
reason for this was mainly twofold:
 This enabled us to dump samples to file from any

“probe” point in the Tx software and successively
verify the samples directly against our model by
reading the samples file into Octave. In this way we
were able to verify each development “step” in a di-
rect way that wouldn’t be possible on the DSK6713.

 During the successive Rx software development we
utilized the Tx software9 set up in software-loopback
for verification. This proved very useful indeed.

Following the development of the Tx part of the soft-
ware in VC++, we ported this software into a project
denoted “OFDM” in CCS on PC-A. This was pretty
straight forward. We verified this step by compiling and
debugging the software on the DSK, comparing the gen-
erated baseband samples against Annex G in [1]. The
sample rate was set to 48 kHz, thus an oversampling fac-
tor of 8 (the elementary sample rate is 6 kHz, see Table
1). The complex baseband samples were upsampled to 48
kHz using a FIR interpolation filter and then upconverted
to real 12 kHz IF samples by multiplying the samples

with
π

2
j n

e and keeping the real part. The samples were
then scaled properly before being output to the CODEC
on the DSK6713. A screen shot of the CCS GUI is
shown in Figure 6. Furthermore, a scope picture of the
final 10.724 MHz signal transmitted on-the-air is shown
in Figure 7.

Before going into details about the Rx development, it
should be emphasized that the author prior to this project
had written a small application for interfacing to the
WRG313 receiver using the G313API SDK. This appli-
cation contains demodulators for simpler modes (AM,
FM, SSB, RTTY, BPSK) and has a GUI based on the Qt
SDK [18] and sound output10 based on the PortAudio
API [19]. Thus it was not necessary to start from scratch

establishing the various software “infrastructure” (GUI,
lower level software interface to APIs) and it was thus
possible to concentrate solely on the implementation of
the core DSP algorithms in this project.

The class hierarchy for the VC++ “modem” project is
depicted in Figure 5. The Tx part consists of the “Wave-
synth” class and parts of “FEC” and “OFDM”. As men-
tioned above, this part of the software was ported to CCS
on PC-A. The part of the software which is the scope of
this work was partitioned into the following classes:
 “FEC”: encoding and decoding (Viterbi) according to

the standard [1].
 “OFDM”: PLCP preamble generation (short and long

training symbols), FFT/IFFT, interleaving, packet as-
sembly, windowing.

 “OFDMRX”: implements Figure 8, in addition to
subcarrier demodulation, equalization, de-interleaving,
decoding.

Table 2. Software and hardware used during development.

PC-A

OS Win XP Pro SP3

CCS
Platinum Edition v3.1.0
(locked to DSK6713)

HW
Intel Pentium 4 630@3GHz
3GB RAM, 160GB HD

PC-B

OS Win Vista Home Premium SP2

Visual studio Visual C++ Express 2010/2008

APIs
Sound: PortaudioAPI
GUI: Qt v2009.03 Winradio
G313API SDK 2007/06

Octave v3.2.3

Version control TortoiseSVN

HW
Intel Dual-Core E5200 @2.5GHz,
4GB RAM, 320GB HD

Other

Oscilloscope Agilent DSO3062A 60MHz

9Which now had been verified against our “golden” Octave reference
model.
10Only relevant for the voice modes.

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 57

DSP

FEC Modem

Receiver Spectrum Transmitter

WRG313-
Receiver

Loopback

OFDM

Wavesynth

OFDMSYNC OFDMRX

Figure 5. Class hierarchy for the VC++ “modem” project. Dashed lines denotes object instantiation, e.g. a “Loopback” object
will instantiate one “Wavesynth” object.

Figure 6. Screen shot of the Code Composer Studio GUI with our “OFDM” project open. An FFT of the transmitted 12 kHz
IF signal is shown at the upper right corner of the screen.

 “OFDMSYNC”: implements the synchronization (car-

rier and timing recovery, pilot based residual fre-
quency offset correction). See “synchronizer” in Fig-
ure 8 as well as Appendix A.

We started the Rx software development by imple-

menting the “synchronizer” (class “OFDMSYNC”) which
has been described in detail in Appendix A. With the Tx
part of the software now in place in the VC++ project, it
was very convenient during debug to loopback Tx to the
Rx part of the software under development. Thus the Tx

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 58

Figure 7. Oscilloscope screen shot of the 10.724 MHz signal.
Note that the image of the signal is visible at the left, since
the image is not rejected.

part in loopback acted effectively as our Rx testbench.
Alternatively we could have read in reference samples
from the Octave model, but as mentioned earlier it was

beneficial to develop the Tx software itself within the
same VC++ project on PC-B.

To increase confidence, we implemented incremen-
tally in small steps. Thus, the “testbench” for each step
consisted of:
 Stimuli generation by the previous block(s) in the Rx

processing chain.
 Verifying the response by dumping the samples to file

and reading them into our Octave model for verifica-
tion.

Only after gaining sufficient confidence in the current
implementation, we did move on to the next step in the
processing chain.

Implementing OFDMRX was relatively straightfor-
ward due to the “processing blocks” being so well de-
fined by the standard [1]. However when implementing
the Viterbi decoder (belongs to class “FEC”), the tutorial
[20] was of great help. Much of the total debugging time
was spent on this decoder. A screenshot of VC++ with
the “modem” project during debugging of the Viterbi
decoder is shown in Figure 9.

1, 0, –1, 0

0, 1, 0, –1

Baseband
filtering

8

8

IF

12 kHz

Fc=3kHz

SamplerateFs = 48 kHz Fs = 6 kHz

Real samples from
WRG313e
dsp::SamplesIFHandler()

e–jφ

 Phase-
accu

φ

CP
removal

Foffset
estimator

Correlators

Sync controller

Synchronizer

Figure 8. A detailed view of parts of the receiver chain, including the synchronizer. All blocks shown modeled in Octave and
implemented in C++.

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 59

Figure 9. Screen shot of Visual C++ 2010 Express GUI with our “modem” project open.

To be able to effectively use the Octave model as a
reference, we used the same LFSR (Linear Feedback
Shift Register) for payload generation in the Tx software
and the Octave model.

4. Results

A GUI screenshot of our application running on PC-B is
shown in Figure 10. The main part of the GUI consists
of a real time spectrum display of the 12 kHz IF as re-
ceived from the WRG313 radio. At the bottom is a tran-
script window logging packet statistics. To ensure ade-
quate SNR we located the transmitter and receiver as
shown in Figure 2 within a few meters of each other.

For reference, we started testing with FEC disabled
and achieved a PER (Packet Error Rate) of approx. 30%.
With FEC enabled the PER dropped to well below 1%.
The packet length was fixed at 10 OFDM symbols (in-
cluding the SIGNAL field, excluding the PLCP preamble).

For such a narrow bandwidth, the processing require-
ments were modest. On the Rx side, the “modem” pro-
ject’s CPU usage on PC-B was barely noticeable. On the
Tx side, we were well within limits set by the sample rate
(48 kHz). However, we struggled a bit with the memory
footprint; some minor tweaking was necessary to fit the
executable within the 264 kB L1/L2 memory of
TMS320C6713.

A direct comparison of VC++ Express and TIs CCS

with respect to DSP software development may be diffi-
cult based on one project only. However, here are a cou-
ple of observations based on our setup.

CCS has better data analysis (graph plotting fre-
quency/time domain) possibilities, but this was partly
outweighed in our project through the use of Octave to-
gether with VC++. Implementing the DSP software this
way, using VC++ in tandem with Octave turned out to be
surprisingly effective in this project. Another observation
is that the “Express” version of VC++ has no profiling
support. In addition to extensive profiling support, CCS
has other useful analysis capabilities facilitating real time
embedded software development.

We found that it was quite convenient to partition the
Rx software as discussed earlier: during debug it was e.g.
possible to “watch” the whole OFDMSYNC object, thus
tracking “key” sync parameters during packet receive.

Approximate software development times are depicted
in Table 3.

The development times listed are based on the number
of SVN commits with an average of 4 man hours per
commit. The development time of the existing software
“infrastructure” (the GUI, etc) is not included here.

5. Conclusions and Further Work

In this work we have demonstrated the high level modeling
and subsequent SDR implementation of an IEEE802.11a

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 60

Figure 10. Screen shot of the “modem” GUI. An FFT of the
received 12 kHz IF signal is shown in the middle. The tran-
script window at the bottom shows the received packet sta-
tistics. Note that the carrier frequency offset displayed at
top left is the offset as estimated prior to offset correction
(i.e. it is not the residual offset).

Table 3. Approximate development time spent on Octave
modeling and C++ implementation.

Component Hours Comment

Octavemodel 120
Incl. synchronization

algorithm development

Tx software 80

Rx software 240
>50% on “FEC”

and “OFDMSYNC”

40
Various software

infrastructure related
Other

:Sum 480

Phy compliant baseband processor. The baseband proc-
essor was implemented in C++ using MS’ VC++ Express
and TIs CCS and executed on a standard PC as well as
on the DSK6713 board. To be able to demonstrate func-
tionality utilizing relatively cheap RF frontends, the band-
width was scaled down to 6 kHz without loss of educa-
tional value.

We believe we could have put together a similar sys-
tem running in the 2.4/5 GHz band in a shorter time
frame using commercially available prototyping plat-
forms with available reference designs and more sophis-
ticated development tools. But the cost would have been
on a completely different scale. Our focus has been on
low cost and educational value using only free tools as

far as possible.
At a later stage it would have been interesting to in-

vestigate the possibility of porting some of the developed
C++ code to fit one of the available USRP RF frontends
from Ettus [10]. Other platforms don’t fit our low cost
budget.

REFERENCES
[1] http://standards.ieee.org/findstds/interps/802.11-2007.html

[2] Spectrum Digital Inc. www.spectrumdigital.com

[3] The free Visual Studio 2010 products.
http://www.microsoft.com/visualstudio/en-us/products/20
10-editions/express

[4] J. Mitola, “The Software Radio,” Proceedings of IEEE
National Telesystems Conference, 19-20 May 1992, Wash-
ington DC, pp. 13-15.

[5] Christophe F4DAN. http://f4dan.free.fr/sdr_eng.html

[6] Spectrum Signal Processing. www.spectumsignal.com

[7] Lyrtech. http://www.lyrtech.com.

[8] Datasoft. www.datasoft.com

[9] GNU Radio. www.gnuradio.org

[10] Ettus Research. www.ettus.com

[11] SAT-Service Schneider.
http://www.sat-schneider.de/DRM/DRM.htm

[12] WiNRADiO Communications.
http://www.winradio.com/home/g313e.htm

[13] S. A. Fechtel, “OFDM: From the Idea to Implementa-
tion,” Advances in Radio Science, Vol. 3, 2005, pp. 27-37.
doi:10.5194/ars-3-27-2005

[14] P. Kenington, “RF and Baseband Techniques for Soft-
ware Defined Rario,” Artech House, London and Boston,
2005.

[15] Octave.
http://www.gnu.org/software/octave/download.html

[16] H. Meyr, M. Moeneclaey and S. A. Fechtel, “Digital
Communication Receivers,” John Wiley & Sons Inc.,
Hoboken, 1998.

[17] C.-H. Liu, “On the Design of Symbol Timing Recovery
for WLAN OFDM Systems,” IEEE 8th International
Symposium on Spread Spectrum Techniques and Applica-
tions, Sydney, 30 August-2 September 2004, pp. 184-188.

[18] Qt SDK. qt.nokia.com

[19] PortAudio Cross-Platform API. www.portaudio.com

[20] Viterbi Decoding Tutorial.
http://home.netcom.com/~chip.f/viterbi/tutorial.html

[21] Wang, “Design and Implementation of Timing Acquisi-
tion in IEEE 802.11a Wireless LANs,” Proceedings of the
2003 Joint Conference of the 4th International Confer-
ence on Information, Communications and Signal Proc-
essing, Singapore City, 15-18 December 2003, pp. 554-
558.

Copyright © 2012 SciRes. WET

http://dx.doi.org/10.5194/ars-3-27-2005

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 61

Appendix: The Synchronization Engine

The location of the synchronizer is shown in more detail
in Figure 8. The figure shows the first parts of the re-
ceiver chain. Note that the synchronizer is running at the
(elementary) sample rate of 6 kHz. The block labeled
“Foffset estimator” is providing a coarse estimate of the
carrier frequency offset based on the short training sym-
bols, see Figure 4. It must be run prior to timing recov-
ery, otherwise the correlator based timing recovery algo-

rithm will not provide qualifying correlation peaks. This
will become clear below11. The coarse frequency offset
estimator we chose here is based on Phase Increment
Estimation [16]. Let

1)
1 *
0

L

n n i ni
c z z


i D  

 , z complex baseband samples

Then we may estimate the carrier frequency offset by

2)
arctan()

2π
ˆ n
offset s

c
F F

D


start

syncstate

Compute short symbol
,n nC M

0.7n

n

c

M


N

distance ok?

N

 transcnt++ transcnt=1

 transcnt >
MINTRANS

N

 syncstate++

 Set strobetiming

end

0

 Compute long symbol
,n nC M

1

0.7n

n

c

M


N

 ltcorrcount++

 i=ltcorrcount

store  arctan arctan i

nc

 Compute FFT of received
long training symbol

ltcorrcount >2

N

Initialize 1-tap equalize
estimate fine freq. offset
syncstate++

 Phase offset correction
done by 1-tap equalize

2

 Update 1-tap equalizer
based on the pilot tone

Figure 11. The “sync controller” state machine. Some details are not shown.

11Although powerful algorithms for joint frequency offset and timing recovery exist (see e.g. [16]), we chose to split these tasks here.

Copyright © 2012 SciRes. WET

Software Defined Radio Prototyping with Visual C++ Express and Code Composer Studio 62

where sF is the sampling rate (6 kHz here) and D is a
constant. The choice of D is not trivial [16,21]. We chose
a value of 16 to cancel the modulation effect on the esti-
mate since the short training symbol length is 16 samples
long given our sample rate. A correlation length L of 32
was found to be sufficient through experiments with our
Octave model in an AWGN channel.

The increment in the phase accumulator in Figure 8
was then loaded with the initial (coarse) carrier fre-
quency offset estimate given by Equation (2). This esti-
mate must be “good” enough to allow subsequent timing
synchronization.

The timing recovery is based on the correlation of the
complex baseband samples with coefficients ,s ip con-
stituting the short training symbol. Let

3) , z complex baseband samples
15 *

,0n s ii
c p 
  n iz

4)
15

,0n s ii n iM p z 
 

The symbol timing was then recovered by monitoring
the value of nc . A sufficient correlation (peak) was

defined as 0.7n

n

c

M
 . By counting a sufficient number

of correlation peaks (4 in our case) occurring sequen-
tially with a distance of 16 +/–1 sample between them,
we then based our subsequent long symbol strobe timing
on the average of the time of these events. The reference
time was simply given by a modulo 16 counter.

The frame synchronization is based on the correlation
of the complex baseband samples with coefficients
constituting the long training symbol:

,l ip

5) , z complex baseband samples
63 *

, 320n l ii
c p  
  n iz

6)
63

, 320n l ii n iM p z 
 

Note the value 32 added to the index in the coefficients

,l i in Equations (5)-(6). This was to avoid correlating
with the samples constituting the cyclic prefix added to
the first long training symbol, see Figure 4. In addition,

p

we only had to evaluate n

n

c

M
 at the recovered strobe

timing. At the second event of 0.7n

n

c

M
 we know that

the subsequent OFDM symbol according to the standard
[1] will be the SIGNAL symbol. We are now frame syn-
chronized as well, and know that the subsequent OFDM
symbol shall be processed 80 samples in time after the

last event of 0.7n

n

c

M
 . This reference time is ensured

by a modulo 80 counter, initialized at this time.
We also used Equation (5) for fine frequency offset

estimation. By storing the value of ar after
correlation with each of the two long training symbols,
we then calculated the fine frequency offset estimation
by:

ctan()nc

7)
   2 1

,

arctan arctan
ˆ

2π64

n n

offset fine s

c c
F F




where and are after correlation
with the first and second long training symbol respec-
tively. The increment in the phase accumulator in

1
nc 2

nc arctan()nc

Figure
8 was then adjusted by adding the fine carrier frequency
offset estimate given by Equation (7) to the increment.

The proper sequencing of the blocks and events in the
synchronizer was orchestrated by the block labeled
“Sync controller”. This is a state machine which runs
continuously at Fs. The state of the synchronizer is given
by the variable syncstate. The state machine is depicted
in Figure 11 below.

Some details have been omitted in the figure. More
specifically:
 A “watchdog” was implemented which resets the

synchronizer in the case that the long training symbol
correlator fails detection (missed framesync).

 The tasks in the figure corresponding to syncstate > 0
are run at a sample rate sF : The tasks correspond-
ing to syncstate==1 are run@ 16sF , while the tasks
corresponding to syncstate==2 are run @ 80sF
(the OFDM symbol rate).

Copyright © 2012 SciRes. WET

