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ABSTRACT 

A parameter optimized approach for reducing the numerical dispersion of the 3-D hybrid implicit-explicit fi-
nite-difference time-domain (HIE-FDTD) is presented in this letter. By adding a parameter into the HIE-FDTD formu-
las, the error of the numerical phase velocity can be controlled, causing the numerical dispersion to decrease signifi-
cantly. The numerical stability and dispersion relation are presented analytically, and numerical experiments are given 
to substantiate the proposed method. 
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1. Introduction 

The finite-difference time-domain (FDTD) method [1] 
has been proven to be an effective means that provides 
accurate predictions of field behaviors for varieties of 
electromagnetic interaction problems. However, as it is 
based on an explicit finite-difference algorithm, the 
Courant–Friedrich–Levy (CFL) condition [2] must be 
satisfied when this method is used. Therefore, a maxi-
mum time-step size is limited by minimum cell size in a 
computational domain, which makes this method ineffi-
ciency for the problems where fine scale dimensions are 
used. 

To relax the Courant limit on the time step size of the 
FDTD method, a three–dimensional (3-D) hybrid im-
plicit-explicit finite-difference time-domain (HIE-FDTD) 
method has been developed recently [3]. In this method, 
the CFL condition is not removed totally, but being 
weaker than that of the conventional FDTD method. The 
time step in this scheme is only determined by two space 
discretizations, which is extremely useful for problems 
where a very fine mesh is needed in one direction. How- 

ever, the numerical dispersion error of the HIE-FDTD 
scheme is larger than that of the conventional FDTD 
method. 

In this letter, a simple and efficient approach for re-
ducing the numerical dispersion of the 3-D HIE-FDTD 
method is proposed. Numerical results indicate that the 
numerical dispersion of the method can be notably re-
duced when a proper parameter is introduced [4]. As a 
result, the usefulness and effectiveness of the HIE-FDTD 
method can be significantly enhanced. The numerical 
dispersion of the new algorithm is studied analytically 
and validated by a numerical simulation, and the results 
are compared with both the standard HIE-FDTD method 
and the conventional FDTD method. 

2. Formulations 

To reduce the numerical dispersion of the 3-D HIE- 
FDTD method, parameter N is introduced into the 
HIE-FDTD discretization. The modified algorithm is 
described as follows: 
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n  and  are the index and size of time-step, t x , 
y  and   are the spatial increments respectively in z x , 

and  directions, i , , and  denote the indices of 
spatial increments respectively in 
y z j k

x , , and  direc-
tions, 

y z
  and   are the permittivity and permeability 

of the surrounding media, respectively. When the value 
of parameter N is equal to 1, Equations (1)-(6) is the  
 

formulations of standard HIE-FDTD method [3]. 
Obviously, updating of xE component, as shown in 

Equation (3), needs the unknown zH  component at the 

same time, thus the xE component has to be updated 

implicitly. Substituting Equation (5) into Equation (3), 
the equation for xE field is given as: 
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Similarly, updating of zE component needs the un-

known xH  component at the same time-step. Substitut-

ing Equation (6) into Equation (4), we obtain the discrete 
equation for zE field, 
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Therefore, the field components are updated by using 

Equations (1), (2), and (5)-(8). Components yE and 

yH are explicitly updated first by using Equations (1) 

and (2). Then, xE and zE components are updated im-

plicitly by solving the tridiagonal matrix equations by 
using Equations (7) and (8). After xE and zE are ob-

tained, components zH and xH  are explicitly updated 

straightforward by using Equations (5) and (6).  

3. Weakly Conditionally Stability 

The relations between field components of Equations (1)- 
(6) can be represented in a matrix form as: 
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where 
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With no loss of generality, the field components can 

be written as follows: 
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wave numbers.   indicates growth factor.  p  are the 

amplitude of the field components, respectively.  
In a discrete space,  , ,f x y z can be denoted as: 
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Substituting these represents into Equation (9), the 
matrix becomes: 
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For a nontrivial solution of (16), the determinant of the 

coefficient matrix in (16) should be zero. It can be ob-
tained: 

      22 2 22 2 2 21 1 1 4 4         y z xN r r r  0  

             (17) 
where: 

   2 2 2sin 2   x xr c t k x x , 

   2 2 2sin 2  y yr c t k y y , 

   2 2 2sin 2   z zr c t k z z , 1c   

is the speed of light in the medium. 
By solving Equation (17), the growth factor  is ob-

tained 

12 1                    (18) 
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To satisfy the stability condition during field ad-

vancement, the module of growth factor  can’t be lar-

ger than 1. It is evident that the module of 12  is unity. 

For the values of 34 and 56 , when the condition 

1 x zr r  is satisfied, 34 56 1    can be obtained. 

The limitation for time-step size can be calculated as 
follows: 
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This scheme is weakly conditionally stable. The time 

step is only determined by two space discretizations. The 
parameter N doesn’t affect the weakly conditionally sta-
bility of the HIE-FDTD method. 

 

4. Numerical Dispersion Analysis 

We now study the numerical dispersion in the modified 
HIE-FDTD algorithm. Substitute j te   into Equation 
(16), it can be obtained: 
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For comparison, we take a look at the numerical dis- persion relation of the standard HIE-FDTD method. 
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Compared to the dispersion Equation (22) of the stan-

dard HIE-FDTD method, it can be obtained that there is a 
factor added to the last term in the right-hand side of 
the numerical dispersion relations of Equation (21). 
When a proper value of parameter N is selected, the nu-
merical dispersion of the HIE-FDTD method can be con-
trolled, causing the numerical dispersion to decrease sig-
nificantly, which is validated in next section. 

2N

5. Numerical Validation 

Suppose that a wave propagating at angle   and  is in the 

spherical coordinate system. Then,    sin osc x k k , 

   sin sin yk k , and  cos zk k . By substitut-

ing them into dispersion relations (21), numerical phase 

velocity 


pv
k

 of modified HIE-FDTD method can be 

solved numerically. To make the discussion simple and 

easy, only the uniform cell      x y z  is consid-

ered here. y  is set to be / 20 , with   the operating 

frequency. 

On the x zkk plane     in 00, sin s  yk k  . 

It can be easily seen that the numerical dispersion of 
modified HIE-FDTD method is the same as that of stan-
dard HIE-FDTD method. So we only consider the dis-
persion performance comparison between the modified 
HIE-FDTD and standard HIE-FDTD method on other 
planes. 

Figures 1-4 show the normalized phase velocities 
with respect to angle  for different CFLN values.   is 
set as 45° and 90° respectively. The CFLN is defined 
as the ratio of the time-step size and the maximum 
time-step size satisfied with the 3-D CFL condition of 
conventional FDTD method. Parameter N equal to 1 
represents the normalized phase velocity of standard  
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Figure 1. When CFLN = 1, the normalized phase velocities 
with respect to angle   for different parameter N (  45°). 
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Figure 2. When CFLN = 1.2, the normalized phase velocities 
with respect to angle   for different parameter N (  45°). 
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Figure 3. When CFLN = 1, the normalized phase velocities 
with respect to angle   for different parameter N (  90°). 
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Figure 4. When CFLN = 1.2, the normalized phase velocities 
with respect to angle   for different parameter N (  90°). 

 
HIE-FDTD method. For comparison, the normalized 
phase velocity of conventional FDTD method is also 
plotted in these figures. 

It can be seen from these figures that the numerical 
dispersion error of the standard HIE-FDTD (N=1.000) 
scheme is larger than that of the conventional FDTD 
method, especially when   is close to 90°. When 
CFLN = 1.2, the dispersion error along the y axis 
(  90°,  = 90°) of standard HIE-FDTD method is 
almost 4 times as that of conventional FDTD method.  

For the modified HIE-FDTD method, the dispersion 
error is reduced as the value of parameter N increase. 
Under the CFLN = 1, with N = 1.004, the normalized 
phase velocities of the modified HIE-FDTD is almost the 
same as that of the conventional FDTD method for both 
  45° and   90° planes. Apparently, the dispersion 
performance of HIE-FDTD method can be controlled by 
selecting parameter N.  

However, when the value of N exceeds the value 1.004, 
the normalized phase velocities will exceed 1, which is 
not the performance we expect. So, select a proper value 
for parameter N is the key factor for reducing the disper-
sion error of HIE-FDTD method. It can be easily decided 
by Equation (22) numerically. 

6. Conclusions 

A parameter optimized HIE-FDTD method is presented 
in this letter. The parameter is introduced to minimize the 
dispersion error. The stability analysis shows that this 
algorithm is also weakly conditionally stable. Numerical 
experiments show that this algorithm can dramatically 
reduce the dispersion error without introducing addi-
tional computational cost. 
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