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ABSTRACT

A parameter optimized approach for reducing the numerical dispersion of the 3-D hybrid implicit-explicit fi-
nite-difference time-domain (HIE-FDTD) is presented in this letter. By adding a parameter into the HIE-FDTD formu-
las, the error of the numerical phase velocity can be controlled, causing the numerical dispersion to decrease signifi-
cantly. The numerical stability and dispersion relation are presented analytically, and numerical experiments are given

to substantiate the proposed method.
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1. Introduction

The finite-difference time-domain (FDTD) method [1]
has been proven to be an effective means that provides
accurate predictions of field behaviors for varieties of
electromagnetic interaction problems. However, as it is
based on an explicit finite-difference algorithm, the
Courant—Friedrich-Levy (CFL) condition [2] must be
satisfied when this method is used. Therefore, a maxi-
mum time-step size is limited by minimum cell size in a
computational domain, which makes this method ineffi-
ciency for the problems where fine scale dimensions are
used.

To relax the Courant limit on the time step size of the
FDTD method, a three—dimensional (3-D) hybrid im-
plicit-explicit finite-difference time-domain (HIE-FDTD)
method has been developed recently [3]. In this method,
the CFL condition is not removed totally, but being
weaker than that of the conventional FDTD method. The
time step in this scheme is only determined by two space
discretizations, which is extremely useful for problems
where a very fine mesh is needed in one direction. How-
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ever, the numerical dispersion error of the HIE-FDTD
scheme is larger than that of the conventional FDTD
method.

In this letter, a simple and efficient approach for re-
ducing the numerical dispersion of the 3-D HIE-FDTD
method is proposed. Numerical results indicate that the
numerical dispersion of the method can be notably re-
duced when a proper parameter is introduced [4]. As a
result, the usefulness and effectiveness of the HIE-FDTD
method can be significantly enhanced. The numerical
dispersion of the new algorithm is studied analytically
and validated by a numerical simulation, and the results
are compared with both the standard HIE-FDTD method
and the conventional FDTD method.

2. Formulations

To reduce the numerical dispersion of the 3-D HIE-
FDTD method, parameter N is introduced into the
HIE-FDTD discretization. The modified algorithm is
described as follows:
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n and At are the index and size of time-step, Ax, formulations of standard HIE-FDTD method [3].
Ay and Az are the spatial increments respectively in x, Obviously, updating of E, component, as shown in

y ar_1d| z directions, i, j, alnd_ k- denote thg indi((:j(_es of  Equation (3), needs the unknown H, component at the
Spatial increments respectively in x, 'y, and 2 direc- same time, thus the E, component has to be updated

tions, & and u are the permittivity and permeability T o i ) )
of the surrounding media, respectively. When the value ~ implicitly. Substituting Equation (5) into Equation (3),
the equation for E, field is given as:

of parameter N is equal to 1, Equations (1)-(6) is the
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Similarly, updating of E,component needs the un- ing Equation (6) into Equation (4), we obtain the discrete

known H, component at the same time-step. Substitut-  €quation for E, field,
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Therefore, the field components are updated by using tained, components H,and H, are explicitly updated
Equations (1), (2), and (5)-(8). Components E, and  straightforward by using Equations (5) and (6).
H, are explicitly updated first by using Equations (1) 3. Weakly Conditionally Stability
and (2). Then, E, andE, components are updated im-

plicitly by solving the tridiagonal matrix equations by
using Equations (7) and (8). After E, and E, are ob-

The relations between field components of Equations (1)-
(6) can be represented in a matrix form as:
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D

w

7, 0
= aW(w_x,y,z) repre
sents the first derivative operator with respectto w .

With no loss of generality, the field components can
be written as follows:

where a:it, b

33

where g=E,H , p=x,y,z, J=+-1.k Kk,
wave numbers. ¢ indicates growth factor. ¢,, are the

amplitude of the field components, respectively.
In a discrete space, f (x,y,z)can be denoted as:

k, are

f (mAX, 1Ay, pAz) = exp(jk,mAx + jk 1Ay + jk, pAz)

B (%Y. 2) =0, " f(xY,2) (10) 12
f(x,y,2)=exp(Jkx+ Jk,y + jk,2) (11) Then:
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For a nontrivial solution of (16), the determinant of the
coefficient matrix in (16) should be zero. It can be ob-
tained:

(€ -1 ((¢ -0 + N7 (¢ +2)° +4r224’+4rng“)2 -0
(17)
where:

r, =(cAt)zsin2(kXAx/2)/Ax2 :
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r, :(cAt)zsinz(kyAy/Z)/Ay2 ,

r, =(CAt)25in2(kZAz/2)/Az2 , c=1/Jeu
is the speed of light in the medium.
By solving Equation (17), the growth factor ¢ is ob-

tained

¢ =1 (18)
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To satisfy the stability condition during field ad-
vancement, the module of growth factor ¢ can’t be lar-

ger than 1. It is evident that the module of ¢, is unity.
For the values of ¢,, and ¢, , when the condition

19
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ro+r, <1 is satisfied, |¢;,|=|¢s|=1 can be obtained.

The limitation for time-step size can be calculated as
follows:
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This scheme is weakly conditionally stable. The time
step is only determined by two space discretizations. The
parameter N doesn’t affect the weakly conditionally sta-
bility of the HIE-FDTD method.
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4. Numerical Dispersion Analysis

We now study the numerical dispersion in the modified
HIE-FDTD algorithm. Substitute ¢ =e'“'into Equation
(16), it can be obtained:

(1)

For comparison, we take a look at the numerical dis-
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persion relation of the standard HIE-FDTD method.
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Compared to the dispersion Equation (22) of the stan-
dard HIE-FDTD method, it can be obtained that there is a
factor N?added to the last term in the right-hand side of
the numerical dispersion relations of Equation (21).
When a proper value of parameter N is selected, the nu-
merical dispersion of the HIE-FDTD method can be con-
trolled, causing the numerical dispersion to decrease sig-
nificantly, which is validated in next section.

5. Numerical Validation

Suppose that a wave propagating atangle ¢ and @isinthe
spherical coordinate system. Then, k, =ksin(@)cos(¢),
k, =ksin(@)sin(¢), and k, =kcos(¢). By substitut-
ing them into dispersion relations (21), humerical phase
velocity v, :% of modified HIE-FDTD method can be

solved numerically. To make the discussion simple and
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easy, only the uniform cell (Ax=Ay=Az) is consid-
ered here. Ay issettobeA/20,with A the operating
frequency.

On the k, —k, plane (¢=0,k, =ksin(g)sin(6)=0).
It can be easily seen that the numerical dispersion of
modified HIE-FDTD method is the same as that of stan-
dard HIE-FDTD method. So we only consider the dis-
persion performance comparison between the modified
HIE-FDTD and standard HIE-FDTD method on other
planes.

Figures 1-4 show the normalized phase velocities
with respect to angle & for different CFLN values. ¢ is
set as 45° and 90° respectively. The CFLN is defined
as the ratio of the time-step size and the maximum
time-step size satisfied with the 3-D CFL condition of
conventional FDTD method. Parameter N equal to 1
represents the normalized phase velocity of standard
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Figure 1. When CFLN = 1, the normalized phase velocities
with respect to angle @ for different parameter N (¢ = 45°).
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Figure 2. When CFLN = 1.2, the normalized phase velocities
with respect to angle ¢ for different parameter N (¢ = 45°).
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Figure 3. When CFLN = 1, the normalized phase velocities
with respect to angle 8 for different parameter N (¢ = 90°).

Copyright © 2011 SciRes.

>
3
k<)
[5)
>
[0}
8
<
o
B 0.904) * Ty e
g % w
g - — - HIE-FDTD N=0.998 % .
& 0992| | -+ - HIE-FDTD N=1.000 v T
2 - —e - HIE-FDTD N=1.002 T
- —% - HIE-FDTD N=1.004 *
--G - HIE-FDTD N=1.006 %
0.99 FDTD S
0 20 40 €0 80

Theta(degree)

Figure 4. When CFLN = 1.2, the normalized phase velocities
with respect to angle 6 for different parameter N (¢ = 90°).

HIE-FDTD method. For comparison, the normalized
phase velocity of conventional FDTD method is also
plotted in these figures.

It can be seen from these figures that the numerical
dispersion error of the standard HIE-FDTD (N=1.000)
scheme is larger than that of the conventional FDTD
method, especially when 6 is close to 90°. When
CFLN = 1.2, the dispersion error along the y axis
(¢=90°6 = 90°) of standard HIE-FDTD method is
almost 4 times as that of conventional FDTD method.

For the modified HIE-FDTD method, the dispersion
error is reduced as the value of parameter N increase.
Under the CFLN = 1, with N = 1.004, the normalized
phase velocities of the modified HIE-FDTD is almost the
same as that of the conventional FDTD method for both
¢ =45° and ¢ =90° planes. Apparently, the dispersion
performance of HIE-FDTD method can be controlled by
selecting parameter N.

However, when the value of N exceeds the value 1.004,
the normalized phase velocities will exceed 1, which is
not the performance we expect. So, select a proper value
for parameter N is the key factor for reducing the disper-
sion error of HIE-FDTD method. It can be easily decided
by Equation (22) numerically.

6. Conclusions

A parameter optimized HIE-FDTD method is presented
in this letter. The parameter is introduced to minimize the
dispersion error. The stability analysis shows that this
algorithm is also weakly conditionally stable. Numerical
experiments show that this algorithm can dramatically
reduce the dispersion error without introducing addi-
tional computational cost.
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