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Abstract 
We tested an investment strategy based on the pricing error of the CAPM 
model. Starting with the Markowitz (1952) [1] methodology, we replaced the 
standard expected returns vector with the expected errors vector from the 
CAPM model, assuming that such errors are nonzero and persist over time. 
When evaluated over the entire examined period, all of the resulting portfolios 
outperformed the market portfolio. Except for some shorter periods, our hy-
pothesis was fully confirmed. That is, the performance of our alpha portfolios 
was significantly better than the market portfolio. In other words, the pricing 
error of the CAPM model seems to be nonzero and to have an inertial com-
ponent. 
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1. Introduction 

The goal of this study is to determine whether the pricing error of the CAPM 
model by William Sharpe (1964) [2] and Lintner (1965) [3] exhibits an inertial 
component. Fama and French (2004) [4] state that CAPM is still widely used for 
pricing in both academia and industry. There is, however, a vast literature, in-
cluding Banz (1981) [5], Rosenberg, Reid and Lanstein (1985) [6], Fama and 
French (1993) [7], Jegadeesh and Titman (1993) [8] and Fama and French 
(2014) [9], which shows that the model’s asset pricing is flawed.  

The CAPM model states that the expected return of a given asset satisfies the 
following formula: 

( ) ( )i f i i m fE R R E R Rα β− = + −  
where iR  is the return on asset i ; fR  is the risk-free return; mR  is the 
market return; and iα  is the expected pricing error of asset i .  

Note, however, that the model also assumes that the pricing error is zero, that 
is, that { }0,  1, 2, ,i i Nα = ∀ ∈ � , where N  is the number of available assets. 
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This paper, in contrast, assumes that the error is non-zero, and tests whether 
this pricing error is persistent and may be profitably traded on. Specifically, we 
test whether excess returns may be obtained by taking long and short positions 
in assets according to the proportions given by the model’s beta parameters, so 
that the portfolio returns reflect the model pricing error.  

Our motivation is as follows. Both the financial market as a whole and indi-
vidual investors generally assess the performance of a stock portfolio simply by 
comparing the portfolio return to that of a stock index. The portfolio is therefore 
evaluated solely by its market risk, disregarding other risk factors such as those 
specified in Fama and French (1993) [7]. 

We constructed optimal portfolios using the Markowitz (1952) [1] metho- 
dology, but replacing the expected returns vector and the variance and covari-
ance matrices with the expected pricing error and its respective variance and 
covariance matrices. We then compared the return of the resulting port- folios 
with the return of the market portfolio. 

The result was positive insofar as the constructed (“alpha”) portfolios yielded 
greater-than-market returns when considered over the entire period of available 
data. On the other hand, over some shorter periods, the performance of the al-
pha portfolios, as measured via Sharpe ratios and certain equivalents, did not 
significantly improve on that of the market portfolio. 

2. Literature Review 

The core of Modern Portfolio Theory is based on the work of Markowitz (1952) 
[1], which earned him the 1990 Nobel Prize in Economics. This core corre-
sponds to the set of Mean-Variance (MV) type models.  

The MV models analyse the behavior of a risk-averse investor over a finite 
time horizon. Starting from a given initial allocation the investor chooses a 
portfolio by selecting assets and their respective quantities from a set of N dis-
tinct available assets. This decision is made based on the investor’s knowledge of 
1) the expected returns and 2) the variances and covariances of the available as-
sets. The investor builds the portfolio so as to maximize expected returns for a 
given level of risk. 

While the basic insight of the MV models is relatively simple, their imple-
mentation presents two serious problems. First, as reported by De Miguel, Gar-
lappi and Uppal (2007) [10], it is difficult to obtain accurate estimates of the ex-
pected returns vector as well as of the variance and covariance matrices of the 
optimal portfolios. 

Second, the literature uses the capital asset pricing model (CAPM) developed 
by William Sharpe (1964) [2] and John Lintner (1965) [3] to explain the ex-
pected asset returns. CAPM relies on the assumption that there is a linear rela-
tionship between the market factor, represented by the excess return of the 
market portfolio, and the sensitivity of the asset to that market factor, known as 
the asset beta. 

However, while the CAPM model is widely used both in academia and in in-



J. C. de Souza Santos, E. C. Filho 
 

69 

dustry (see Fama and French (2004) [4]), several studies show that it substan-
tially fails to explain asset returns. Specifically, CAPM consistently yields non-
zero pricing errors. The aforementioned studies include for instance 1) Fama 
and French (1993) [7], who report that the CAPM is unable to explain some re-
turns which are related to the book-to-market ratio and the market value (they 
moreover propose a new, multifactor CAPM model to fix this problem); and 2) 
Jegadeesh and Titman (1993) [8], who show that asset returns are positively re-
lated to past performance and therefore cannot be explained solely by the asset 
beta and the market premium. 

Hence the CAPM, despite its widespread use, displays some serious empirical 
failures. It therefore might be possible to build portfolios whose positions take 
advantage of the model’s pricing failures. Specifically, we investigate whether it 
is possible to earn excess returns by applying the methodology proposed by 
Markowitz (1952) [1], but replacing the expected returns vector with the 
CAPM’s expected pricing error vector. 

3. Data 

In this paper we used BOVESPA (Bolsa de Valores de São Paulo-Brazil) stock 
prices, national Brazilian risk-free interest rates, and a series of theoretical port-
folio returns corresponding to actual market behavior during the 02/01/2001 to 
02/01/2015 period. Both the market return history and the risk-free rate were 
obtained from NEFIN1, while the asset prices were collected from Economatica2. 

The market return was defined as the excess return (i.e., return minus the 
risk-free rate) of a theoretical market portfolio developed by NEFIN. The risk 
free rate was given by the 30-day DI swap rate. Assets had to meet the following 
criteria to be included in the market portfolio: 

a) Be the most traded asset of the company, that is, the one with the highest 
trading volume during the previous year; 

b) Have been traded during at least 80% of the days of the previous year, with 
a mean financial volume greater than R$500,000.00 per day. If the asset was first 
listed in the previous year, the period begins on the listing day and ends on the 
last day of the year; 

c) The asset must have been listed before December of the previous year; 
The asset price history used the same criteria applied in the selection of the 

assets in the market portfolio, that is, on a given day the return of an asset was 
used only if on that day the asset belonged to the market portfolio. Moreover, if 
an asset was not traded in a given day then we assumed that its price remained 
constant at the last observed price. 

4. Methodology 

In this section we present the methodology applied in this work. First, we pre-

 

 

1Brazilian Center for Research in Financial Economics of the University of São Paulo (Núcleo de 
Pesquisas em Economia Financeira, www.nefin.com.br). 
2A platform which provides information about Latin America’s stock markets, government bonds, 
the fund industry and various indicators (https://economatica.com/). 

http://www.nefin.com.br/
https://economatica.com/
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sent how the portfolios were build. After that we show the performance measure 
used to compare the alphas portfolios with the benchmark used, the market re-
turn. 

4.1. Method for Alpha Portfolio Construction 

In order to build the alpha portfolios, we follow some steps. First, we select a 
time window, then, in this time window, we estimate the CAPM error for each 
asset in each period of time. Following, we forecast the expected alpha for the 
next period and we use this expected error as the expected return in a Markowitz 
portfolio framework. 

We apply some constrains on the portfolios weights, as consequence we have 
different sorts of portfolios, each one defined under different weights con-
straints. We also apply a stop mechanism in order to limit losses. In the next 
subsections we explained in detail how we perform the alphas estimation, the 
alpha forecast and how we define the portfolios weights. 

4.1.1. Alpha Vector and Variance and Covariance Alpha Matrices 
The main working hypothesis of this study is that the CAPM model exhibits in-
ertial pricing errors. That is, we assume that if the model underprices (over-
prices) an asset during a given period, then it tends to do likewise during the 
subsequent period. Given this assumption, we shall check whether it is possible 
to exploit this behavior to earn excess returns. 

Investors can take advantage of the pricing error of a given asset to the extent 
that this error is predictable. If the model is undervaluing the asset and the in-
vestor is aware of this, she should take a long position in the asset and simulta-
neously short a market position whose weight corresponds to the systemic risk 
of the asset, that is, to the β of the CAPM. We call this strategy investing in the 
assets alpha. 

Based on this strategy this paper studies portfolios that were constructed using 
not the calculated expected return and risk, but instead the expected forecast er-
ror and its corresponding variance and covariance matrices. 

In this section we explain first the estimation of the asset error and then the 
estimation of the variance and covariance matrices. 

4.1.1.1. Alpha Vectors 
To obtain the alpha estimated vector for a specific day h  it was necessary to 

estimate the CAPM model for each asset given the information available at that 
time, so as to yield the expected estimation error of the model. 

Consider the CAPM model 

( ) ( ) ( )e e
t i t m f t mi t i t i t i tE R E R R E Rα β α β= + − = +            (1) 

with 

( )
( )
( )

Cov ,

Var

e e
t i m

t ii t e
t m

R R
E

R
β β≡ =                    (2) 

( ) ( ) ( ) ( )ˆ ˆe e e e
t i t i t m t i mi t i t i tE E R E R E R Rα α β β≡ = − = −          (3) 
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where e
iR  is the excess return of asset i ; i tα  is the expected pricing error of 

asset i  conditional on the information available in period t ; i tβ  is the sys-
temic risk of asset i  conditional on period t ; mR  is the market return; and 

fR  is the risk-free return. 
Note that in order to estimate the expected pricing error i tα  of the CAPM 

model we must first compute each of its realized past values. Below we first 
summarize the process involved, and later detail its steps. 

We perform the following procedure to estimate the expected forecast error 
for a subsequent period. Given each asset { }1,2, ,i N∈ �  and each period 

{ }1, 2,h T T∈ + + � , where N  is the number of available assets; H  the set of 
days with available data; and T  the number of days used in the model estima-
tion: 
a) Set the value of T , the number of days used in the model estimation; 
b) Estimate ˆ

i hβ ;  
c) Calculate ( ), ,,

ˆˆ , , 1, 2, , 1e e
t i t mt i h i hR R t h h h h Tα β= − ∀ ∈ − − − +� , i.e., calculate 

each model error in the estimation sample; 
d) Given the sequence ( ), 1, 1,ˆ ˆ ˆ, , ,h i h h i h h T i hα α α− − +� , which was estimated in the 

previous step, estimate ˆi hα , the expected value of ˆi hα ; 
We now explain the details involved in the calculations above. 
4.1.1.2. Calculating β 
To obtain ˆ

i hβ  first define 

,
, ,,

,

e e
t i i h e e e e

t i t mt i h i h m he e
t m m h

R R
R R R R

R R

 −
  Σ = − − −  

             (4) 

where e
i tR  is the sample mean for asset i  during the estimation period, which 

covers from ( )1h T− +  to h . Therefore ,Σt i h  is the cross product of the de-

viation from the mean of the excess return of asset i  at time t .  
Hence  

( ) ( )
( ) ( )

,,
,

, , , ,

Var
Σ Σ Var ,  

Cov , Var

ee
h t it i

h hi h t i h e e e e
t m h t i t m h t m

RR
E t h

R R R R

    ≡ = = ∀ ≤       

⋅
  (5) 

so that Σi h  is the variance-covariance matrix conditional on h  of the excess 
returns vector of asset i . 

We now estimate Σi h  assuming that its value may be obtained via the 
EWMA (exponentially weighted moving average) of the sequence  

( )
( ) ( ) ( )

, |, 1,

2 T
, 1, 2, ,

, ,

ˆ 1

:

1

,

1

h i hh T i h h T i h

i h h i h h i h h i h h T i hδ δ δ δ δ δ δ

− − +

− − −

Σ Σ Σ

Σ = Σ + − Σ + − Σ + + − Σ

�

�
 

where Σ̂i h  estimates Σi h  and δ  was fixed at 0.96. 
We finally have that  

� ( )
� ( )

Cov ,ˆ
Var

e e
h i m

i h e
h m

R R

R
β =                     (7) 
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4.1.1.3. Calculating α  
Given { }ˆ ,  1, 2, ,i h i Nβ ∀ ∈ �  and { }1, 2, ,h T T H∈ + + �  we can obtain 

{ } { }
{ }

, ,,
ˆ ,

1, 2, , ,   1, 2, ,  and

, 1, , 1

e e
t i t mt i h i hR R

i N h T T H

t h h h T

α β= −

∀ ∈ ∈ + +

∈ − − +

� �

�

            (8) 

Analogously to what was done in the estimate of Σi h  we use EWMA to esti-
mate ˆi hα  as follows: 

( ) ( ) ( )2 T
, 1, 2, ,ˆ ˆ ˆ ˆ ˆ1 1 1i h h i h h i h h i h h T i hα λα λ λ α λ λ α λ λ α− − −= + − + − + + −�    (9) 

where ˆi hα  estimates i hα  and the value of λ  was chosen to minimize the es-
timate’s mean quadratic error. 

4.1.1.4. Alpha Variance and Covariance Matrices  
We now explain the steps involved in estimating the variance and covariance 

matrices of the alpha assets at each moment in time.  
We intend to estimate: 

( ) ( )

( ) ( )

1 1

1

Var Cov
Ω

Cov Var

N

h h

N N

E
α α α

α α α

 …
 =  
 … 

� � �              (10) 

Using the values of ˆit hα  which were estimated in the previous section we 
have that: 

( )

{ }

1 1

1 1

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ

, ,

t h h

t h t h h Nt h N h

Nt h N h

t h T h

α α

α α α α

α α

  −
  
  Ω = − … −
  
 −   

∀ ∈ −

�

�

        (11) 

where 1ˆ hα  is the sample mean of ˆt hα , { }, 1, , 1t h h h T∈ − − +� . 
Now, as in the previous section, we employ EWMA to obtain the following es-

timate: 

( ) ( ) ( )2 T
1 2

ˆ 1 1 1h h h h h h h h T hδ δ δ δ δ δ δ− − −Ω = Ω + − Ω + − Ω + + − Ω�    (12) 

where 0.96δ =  is the same decay exponent which we used to estimate Σ̂i h . 

4.1.2. Portfolios 
Let us now explain the rules used to build the portfolios. We employed three 
methods to assemble the portfolios: the first one, called Naïve, is the simplest of 
the three; the other two, which we call Markowitz and Long-only Markowitz, are 
based on the Markowitz (1952) [1] methodology of optimal portfolios. The latter 
two differ from each other in terms of the restrictions imposed on each of them. 

For each moment { }1, 2, ,h T T H∈ + + �  we computed the portfolios of all 
three methodologies using the values obtained as described in section 4.1. 

4.1.2.1. The Naïve portfolios 
The weigths of each assets alpha in the Naive portfolios are based solely on the 
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signs of the expected alphas. The procedure involves three steps: 1) the assets 
were classified according to the signs of their expected alphas; 2) assets with 
positive alphas were assigned a portfolio weight of ( )2 N + , where ( )N +  is the 
total number of assets with positive alphas; and 3) assets with negative alphas 
were assigned a portfolio weight of ( )2 N −− , where ( )N −  is the total number of 
assets with negative alphas. This thereby produced portfolios with (equally- 
weighted) long positions in assets with positive alphas and (equally-weighted) 
short positions in assets with negative alphas in every period. 

4.1.2.2. The Markowitz Portfolios 
The Markowitz portfolios were designed to maximize the expected return 

conditional on a specific level of risk. The risk level metric used was the standard 
deviation of the market portfolio observed in the last 252 days relative to the ref-
erence date ( market hσ ). 

The Markowitz portfolios were therefore obtained by solving the following 
optimization problem: 

market

min , max

        

   

max

. .

     
1

    
;

Ω ;

;

t
t h hw

t

t t t h

t i

w

s t
w
w w

w w w

α

ι
σ

′ =
′ ≤

≤ ≤

                   (13) 

where tw  is the (1 N× ) weight vector; ι  is an ( 1N × ) vector consisting of 1s; 

minw  is the minimum acceptable value of tw ; maxw  is the maximum accept-
able value of ;  t h hw α  is the ( 1N × ) expected alphas vector computed previ-
ously; and Ωt  is the ( N N× ) alpha variance and covariance matrix. 

4.1.2.3.The Long-Only Markowitz Portfolios 
The long-only Markowitz portfolios differ from the plain Markowitz portfo-

lios in that the former have an additional restriction on the portfolio weights: 
every weight must be positive, so that there are no short positions in individual 
assets. 

In the long-only case the weights therefore follow from the solution of the 
following optimization problem: 

market

,

max

. .
                  1;
                  Ω ;

                  

           

0

t
t h hw

t

t t t h

t i

w

s t
w
w w

w

α

ι
σ

′ =
′ ≤

≥

                  (14) 

4.1.2.4. Bounds on Leverage 
The short positions allowed by the Markowitz portfolios imply the possibility 

of leverage, in the sense that the sum of the weights of long positions of the 
portfolio may exceed 100%. 

We impose a lower bound minw  on the weights to limit the leverage of the 
portfolio. The goal was therefore to find a value for minw  that solved the fol-
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lowing problem: 

min 1

, max
1 1

max

. .

      ;   1;   ;

i

N

iw

N N

i i t
i i

i

w

s t

w L w w w

=

= =

≤ = ≤

∑

∑ ∑

              (15) 

where L  is the maximum leverage. Here we use the sum operator (over all as-
sets) instead of the vector ι  to highlight that the total number of available as-
sets affects the solution. 

We illustrate the issue with an example. Assume that we have 12 available as-
sets and that max 2w =  and 10L = . If min 1w = −  then the maximum leverage 
vector ( maxL

w )3 would be given by: 

( )max 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2
L

w = − − − − − − − − + + + + +
 

Note that all of the restrictions are satisfied except for the leverage bound, 
since the sum of the absolute values of the weights is equal to 13. This implies 
that the value of minw  must be set higher: in this example it must be equal to 

0.5− , as explained below. 

( )max 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 2, 2
L

w = − − − − − − − − − + + +
 

We use the following numerical procedure to find the required value of minw . 
Given values for maxw , ,N  and L  we obtain the vector of maximum leverage 
for a trial minw  by repeatedly (1) checking whether the restrictions were satis-
fied and then (2) changing the values of minw  until all of the restrictions were 
satisfied. 

In this study we chose to specify a reasonable value for L and at the same time 
pick a value for maxw  that is high enough that it does not constitute an active 
restriction for the solution of the problem. 

4.1.3. Stoploss 
We used a stoploss mechanism: the portfolio position was set to zero whenever 
the position accumulated a loss greater than or equal to 25%. 

4.1.4. Alpha Portfolios 
By following the previous steps, we have so far assembled a portfolio for each 
day of the period, except for the initial T early days, which were used only for the 
initial estimates. Thus, one can consolidate the 21 portfolios into a final portfolio 
as follows: 

a) using the weights obtained with the portfolio assembled with the informa-
tion available at the time T, we invest on date T + 1; 

b) on date T + 2 we accumulate the return obtained in the previous step and 
assemble a new portfolio using the information available on T + 1; 

d) we continue the procedure until we obtain 21 portfolios; 
e) on date T + 21 + 1 we set to zero the position of the portfolio that we have 

obtained during the previous 21 days and invest its cumulative value on a port-
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folio assembled using the information available up to date T + 21 + 2; 
f) we continue the procedure by every day discarding a portfolio and replacing 

it with a new one, so that we are always investing in a combination of 21 portfo-
lios. 

The end result is a portfolio consisting always of several portfolios with dis-
tinct maturities. The first portfolio was assembled using only the initial informa-
tion and is invested in for only one day, while the oldest portfolio belongs to the 
portfolio beginning 21 days ago and will be discarded the following day. The 
performance of the alpha portfolio is given by the average performance of the 21 
portfolios that constitute it. We choose to analyse the portfolios in this way, so 
our results were less sensitive to the data that the analysis begins. 

4.1.5. Constant Weights or Quantities 
We deal with various types of portfolios. Each alpha is a portfolio consisting of 
the asset and the market, which becomes more complex as we add more and 
more alpha assets. These in turn become even more elaborate when we consoli-
date portfolios of distinct maturities into a single portfolio. 

As we accumulate the portfolio returns, this process raises the following ques-
tion: what should be kept constant over time, the asset weights or the asset quan-
tities? 

We considered both approaches. We first kept weights constant—we call this 
the Equal Weight approach. Regardless of past performance all weights were 
kept fixed and equal to the originally calculated weights. This involves of course 
selling the outperforming assets and buying the underperforming assets so that 
so that they remain constant as portions of the whole portfolio.  

In the second approach, called Value Weight, the asset weights vary depend-
ing on their past performance. Outperforming assets gain weight and underper-
forming assets lose weight in the portfolio. This is equivalent to keeping constant 
the initially purchased quantities: no rebalancing trades are made. 

4.2. Performance Metrics Analysis 

In this section we discuss the metrics used to assess portfolio performance. As 
explained previously, our methodology yields various portfolio types, charac- 
terized by their restrictions on the maximum and minimum weights, the maxi-
mum amount of leverage, and other criteria.  

We apply a set of tests to compare the performance of each portfolio with that 
of the market portfolio. The metrics used in these comparisons are based on De 
Miguel, Garlappi and Uppal (2007) [10] and explained below. 

4.2.1. Sharpe Ratio Test 
We begin by computing the Sharpe ratio of each of the portfolios. For each 

{ }1,2, ,i N∈ �  we have: 

�
�

�SR ι
ι

ι

µ
σ

=                           (16) 

where �ιµ , �ισ  and �iSR  are respectively the mean return, the standard devia-
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tion, and the Sharpe ratio of portfolio i . 
We then use an approach suggested by Jobson and Korkie (1981) [11] and 

amended by Memmel (2003) [12] to test whether the differences among the 
Sharpe ratios are significant. Let 

� �
0 : 0j MH SR SR− =                       (17) 

where { }1,2, ,j N M∈ �  and M  is the market portfolio. We then compute 
the ˆiMz  statistic, whose asymptotic distribution is the standard normal distri-
bution4: 

ˆ ˆ ˆ ˆ
ˆ

ˆ
i i M M

iMz
σ µ σ µ

υ
−

=                      (18) 

such that 

2 2 2 2 2 2 2ˆ ˆ1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2
ˆ ˆ2 2

i M
i M i M IM i M M i iM

i MT
µ µ

υ σ σ σ σ σ µ σ µ σ σ
σ σ

 
= − + + − 

 
     (19) 

Therefore, just as in a t test, we need only compare the value obtained above 
with the critical value given by the normal distribution: if the critical value is 
lower than the computed value then we reject the null hypothesis that the Sharpe 
ratios of the two portfolios are equal. 

4.2.2. Certainty Equivalence Analysis 
The certainty equivalent test goes largely as above. It also consists in calculating 
a performance metric for all portfolios followed by a difference test between the 
assembled portfolios and the market portfolio. In this new case the metric is the 
certainty equivalent3 of the portfolio, obtained as follows: 

2ˆ ˆ
2i iEQ γµ σ= −                         (20) 

where { }1,2, ,i N∈ �  and γ  is the risk aversion parameter.  
Having first computed the certainty equivalent for all portfolios using (20), we 

perform a difference test on the values so obtained. 

Specifically, letting ( ) 2 2 
2 2iM i i M Mf v γ γµ σ µ σ   = − − −      

, we test the null hy-

pothesis ( )0 : 0H f v = , knowing that: 

( ) ( )( )
T

ˆ ˆΨ ~ 0,?iM iM iM
f fT f v f v N
v v

 ∂ ∂
= − Θ  ∂ ∂ 

           (21) 

where 
2

2

4 2

2 4

0 0
0 0

0 0 2 2
0 0 2 2

i iM

Mi M

i iM

Mi M

σ σ
σ σ

σ σ
σ σ

 
 
 Θ =  
 
  

                 (22) 

 

 

3The certainty equivalent is the increase in the risk-free rate that would render the agent indifferent 
between the risky investment and the risk-free investment. As was pointed out by De Miguel, 
Garlappi and Uppal (2007) [10], Equation (20) corresponds not to the certainty equivalent but 
instead to the expected utility of a mean-variance investor, which is in turn approximated by the 
certainty equivalent of a quadratic-utility investor. 
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We analyse the results as before: if the computed value is higher than the 
critical value then we reject the null hypothesis. Note that we are setting the risk 
aversion parameter γ  equal to 1.  

5. Results 

We now discuss the performance of the portfolios. The analysis is organized as 
follows: we first compare the returns of the alpha portfolios with the return of 
the market portfolio over the whole period; we then compare the alpha and 
market portfolios by using the performance metrics described in section 4.2. 

The various types of portfolios involved in this paper are summarized in Ta-
ble 1, which specifies for each portfolio the weighting convention (equal weight 
or value weight), the abbreviated names, and some explanatory remarks. 

The first portfolio is the market portfolio, whose performance is used as the 
benchmark. The portfolios are classified into four types, each containing two 
portfolios: one with equal weights and one with value weights as explained in 
section 4.1.5. 

The first of the four types are the Markowitz long-only portfolios, which con-
sist of portfolios without any short positions, as explained in section 4.1.2.3. 
Second, the naive portfolios follow the simpler procedure described in section 
4.1.2.1. Third, there are the (restricted-weight) Markowitz portfolios whose 
methodology has been described in section 4.1.2.2 and whose weights are re-
stricted to a specific range, displayed in Table 1 as going from −X to Y. Finally, 
the bounded leverage portfolios, which were described in section 4.1.2.4, have 
leverage limited to 10. 

5.1. Alpha Portfolio Analysis 

We now compare the returns of the alpha and market portfolios. Table 2 dis-
plays the cumulative average returns for each portfolio and the market portfolio  

 
Table 1. Analysed portfolios. 

Type Weight Abbreviation Remark 

Market - Mrkt - 

Markowitz long-only 
Equal m-long.E 

- 
Value m-long.V 

Markowitz leverage 
Equal m-lvrg.E 

Maximum leverage equal to 10 
Value m-lvrg.V 

Naïve 
Equal naive.E 

- 
Value naive.V 

Markowitz 
Equal m-X.Y.E 

Weights must be between −X and +Y 
Value m-X.Y.V 

The first column displays the name of the portfolio, the second column indicates whether the portfolio was 
assembled with constant weights (Equal) or weights varying according to past performance (Value), and the 
third column includes some explanatory remarks. 
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Table 2. Mean return rates. 

Mean returns (% per day)  

Portfolios 

Period  

2002 
2003 

2004 
2005 

2006 
2007 

2008 
2009 

2010 
2011 

2012 
2013 

Full period 

Mrkt 0.05 0.04 0.08 −0.03 −0.04 −0.01 0.01 

m-long.E 0.06 −0.02 −0.07 0.12 0.06 0.03 0.03 

m-long.V 0.06 −0.02 −0.08 0.15 0.05 0.05 0.03 

m-lvrg.E 0.24 0.03 0.04 −0.03 0.21 0.23 0.12 

m-lvrg.V 0.22 0.03 0.01 0.04 0.19 0.23 0.12 

naive.E 0.15 −0.01 0.01 −0.04 0.11 0.08 0.05 

naive.V 0.14 −0.02 0.00 −0.04 0.10 0.07 0.04 

m-10.10.E 0.14 −0.02 0.05 −0.01 0.22 0.19 0.10 

m-10.10.V 0.12 −0.02 0.05 −0.02 0.2 0.19 0.08 

m-10.30.E 0.25 0.03 0.04 −0.01 0.24 0.25 0.13 

m-10.30.V 0.23 0.03 0.02 0.00 0.22 0.25 0.13 

m-20.20.E 0.24 0.02 0.09 0.02 0.21 0.23 0.14 

m-20.20.V 0.22 0.02 0.07 0.03 0.19 0.25 0.12 

m-20.30.E 0.26 0.03 0.10 −0.02 0.23 0.23 0.13 

m-20.30.V 0.24 0.03 0.08 −0.03 0.21 0.24 0.12 

Average per-day (% p.d.) rates of cumulative returns of the alpha and market portfolios. The rates are 
grouped into two-year intervals. The “Full period” column displays the average per-day rates over the entire 
period. 

 
in terms of daily return (% p. d.) and the values were grouped into two-year in-
tervals.  

Note that the returns of the alpha portfolios are often much higher than those 
of the market portfolio. This is not true, however, between 2004 and 2009, when 
alpha returns generally tie with or are lower than the market returns. 

The results indicate a partial success in assembling portfolios that beat the 
market. Though the alpha returns are higher over the whole period, this does 
not occur consistently over time: there are fairly long periods during which the 
strategies do not accurately predict the asset alphas. 

It follows that inertial behavior of the asset alphas—which was used as a hy-
pothesis in this work—cannot be fully confirmed. On the other hand, this inertia 
did generate significant gains when the entire period is considered. As we shall 
see shortly, the results do show that the resulting gains justify the additional risk 
incurred. We now check this using the metrics which were discussed in sections 
2.3 and 2.4. 

5.2. Sharpe Ratio Analysis 

We now turn our attention to comparing the Sharpe ratio of the portfolios. The 
results are summed up in Table 3. The first column names the portfolios, the  
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Table 3. Sharpe ratio difference tests. 

Portfolio Sharpe ratio ˆ ˆi iµ σ  Statistic ( )ˆ ~  0,1iMz N  p-value 

Mrkt 0.015 - - 

m-long.E 0.028 0.47 0.638 

m-long.V 0.031 0.58 0.562 

m-lvrg.E 0.059* 1.66 0.097 

m-lvrg.V 0.059* 1.66 0.098 

naive.E 0.049 1.31 0.191 

naive.V 0.045 1.13 0.257 

m-10.10.E 0.057 1.58 0.114 

m-10.10.V 0.051 1.37 0.172 

m-10.30.E 0.061* 1.74 0.082 

m-10.30.V 0.059* 1.67 0.095 

m-20.20.E 0.057 1.60 0.110 

m-20.20.V 0.056 1.55 0.121 

m-20.30.E 0.055 1.54 0.124 

m-20.30.V 0.052 1.41 0.157 

Given each portfolio we tested the hypothesis 0 ˆ ˆ ˆ ˆ: 0i i M MH µ σ µ σ− = , where µ  is the mean portfolio 
return, σ  is its standard deviation, i  is the index of the alpha portfolio and M  is the market portfolio. 
Significance levels: ***1%, **5%, *10% 

 
second column lists their Sharpe ratios, and the third column shows the ˆiMz  
statistic regarding the difference test between the Sharpe ratios of the alpha and 
market portfolios that was discussed in section 4.2.1. Finally, the last column 
reports the test p-value. 

As shown in the Table, the market portfolio had a Sharpe ratio of 0.015, the 
lowest among all analysed portfolios. Here are the remaining portfolios in de-
creasing order of performance as measured by the Sharpe ratio: m-10.30.E, 
m-10.30.V, m-lvrg.E, m-lvrg.V m-10.10.E, m-20.20.E, m-20.20.V, m-20.30.E, 
m-20.30.V, m-10.10.V, naive.E, naive.V, m-long.V and m-long.E. Their Sharpe 
ratios ranged from 0.028 to 0.061. 

Although all of the alpha portfolios have higher Sharpe ratios than the market 
portfolio, only the top four were significantly higher, all four at the 10% signifi-
cance level. Note also that there was little difference in performance between the 
equal-weighted and value-weighted portfolios. As one can see the performance 
was essentially the same regardless of weight used. 

5.3. Certainty Equivalent Analysis 

We now analyse the alpha portfolios via the certainty equivalent differences tests 
discussed in section 4.2.2. As previously explained, these tests compare the cer-
tainty equivalent of each alpha portfolio with the market portfolio. We set out 
the results in Table 4, whose columns display the following information from 
left to right: abbreviated portfolio name, value of the certainty equivalent, value 
of the ΨiM  statistic, and the test p-value. 
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Table 4. Certainty equivalent difference tests. 

Portfolio Certainty equivalent 21ˆ ˆ
2K Kµ σ−  Statistic ( )Ψ ~  0,1iM N  p-value 

Mrkt 0.00018 - - 

m-long.E 0.00033 0.388 0.698 

m-long.V 0.00038 0.495 0.621 

m-lvrg.E 0.00128** 2.040 0.041 

m-lvrg.V 0.00127** 2.034 0.042 

naive.E 0.00049 0.876 0.381 

naive.V 0.00044 0.745 0.456 

m-10.10.E 0.00099* 1.756 0.079 

m-10.10.V 0.00086 1.511 0.131 

m-10.30.E 0.00140** 2.178 0.029 

m-10.30.V 0.00132** 2.082 0.037 

m-20.20.E 0.00144** 2.064 0.039 

m-20.20.V 0.00137** 1.995 0.046 

m-20.30.E 0.00152** 2.029 0.042 

m-20.30.V 0.00138* 1.861 0.063 

Given each portfolio we tested the hypothesis ( ) ( )( )0
ˆ ˆ:Ψ 0iM iM iMH T f v f v= − = , where  

( ) 2 2

2 2iM i i M Mf v γ γµ σ µ σ   = − − −      
, µ  is the mean portfolio return, σ  is the standard deviation, i  is 

the index of the alpha portfolio, M  is the market portfolio, and γ  is the risk aversion parameter, set at 
1γ = . Significance levels: ***1%, **5%, *10%. 

 
As in the previous test, the market portfolio had the worst result among all 

portfolios. The values for the alpha portfolios, however, are not always statisti-
cally higher than the market portfolio. 

Here are the remaining portfolios in decreasing order of performance as 
measured by the certainty equivalent: m-20.30.E, m-20.20.E, m-10.30.E, 
m-20.30.V, m-20.20.V, m-10:30.V, m-lvrg.E, m-lvrg.V, m-10.10.E, m-10.10.V, 
naive.E, naive.V, m-long.V and m-long.E. Nine of the top alpha portfolios values 
have certainty equivalents statistically above the market portfolio at a 10% sig-
nificance level. 

The certainty equivalent test results are in general very similar to the Sharpe 
ratio test results. The lists of portfolios ordered by decreasing performance are 
similar for the different metrics used. There is moreover little difference in per-
formance, again as measured by the various metrics, between equally-weighted 
and value-weighted portfolios of otherwise the same types. 

6. Conclusions 

We evaluated an investment strategy by betting on pricing errors made by the 
CAPM model, under the hypothesis that these errors are non-zero and persist 
over time. In order to do so, we first computed for each asset its expected pricing 
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error (the asset alpha), defined as the expected return when one takes a long po-
sition in the asset while shorting the market with weight equivalent to the asset 
risk (beta). We essentially built optimal Markowitz (1952) [1] portfolios, replac-
ing the expected returns vector by the expected error vector. 

Our results show that over the entire period of analysis, all of the alpha port-
folios obtained above-market returns. These results were not significantly af-
fected by the choice of equal-valued or value-weighted portfolios. Except over 
some shorter periods, our hypothesis was fully confirmed, that is, the perform-
ance of our alpha portfolios was significantly better than that of the market 
portfolio. Furthermore, two metrics were used to assess portfolio performance, 
the Sharpe ratio and the certainty equivalent. Both metrics confirmed that the 
performances of the alpha portfolios were better than that was observed for the 
market portfolio. In other words, the pricing error of the CAPM model has an 
inertial component that allows one to obtain returns that are significantly above 
market returns. 
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