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Abstract 
 
This paper presents a pivoting-based method for solving convex quadratic programming and then shows how 
to use it together with a parameter technique to solve mean-variance portfolio selection problems. 
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1. Introduction 
 
There are a variety of algorithms for solving convex 
quadratic programming (QP). The most well-known one 
is active set method [1,2]. However this method is diffi-
cult to learn for many people due to its operational man-
ner. In this paper we present a pivoting-based method for 
solving convex QP which is efficient for calculating and 
concise for understanding.  

The Karush-Kuhn-Tucker conditions (KKT conditions) 
of QP is a system of (in) equalities where all the expres-
sions are linear equalities or inequalities except for com-
plementarity conditions. Like Wolfe’s method [3] we 
solve the linear part by a kind of pivoting operation 
while maintaining the complementarity conditions in the 
computational process. However the system computed 
by our method has a much smaller size because many 
variables are deleted from the KKT conditions. 

In 1952 Harry Markowitz published the milestone pa-
per “Portfolio Selection” in which the portfolio selection 
problem is formulated as a convex quadratic program 
with nonnegative variables [4,5]. It is nearly 60 years. 
However most people still think the model is difficult to 
solve and few people conduct their investment activities 
by calculating efficient portfolios for references. We see 
that every investments textbooks have a figure to show 
portfolios which are formed by two assets with different 
correlation coefficients. But we can hardly see a book 
which has an example to show portfolios formed by three 

or more assets in the case of no short sale. We will pre-
sent a pivoting-based algorithm together with a parame-
ter technique to solve Markowitz’s portfolio selection 
model in a very simple form. The most important advan-
tage of our parameter technique is that it can continu-
ously obtain minimal risk portfolios at different levels of 
return in linear time after a portfolio is established by the 
pivoting algorithm.  

The rest sections of this paper are organized as follows. 
In Section 2, we introduce a pivoting-based algorithm for 
solving the system of linear inequalities and the parame-
ter technique for generating new basic solutions which 
are associated with different right-hand side terms. In 
Section 3, we introduce basic concepts and operations for 
solving the convex QP. In Section 4, we discuss how to 
solve Markowitz’s mean-variance portfolio selection 
model. For brevity, relative theorems and proofs as well 
as tedious reasoning processes are omitted. For details, 
the reader refers to [6-8]. 
 
2. The System of Linear Inequalities 
 
Consider a system of linear inequalities in the form: 

= , 1,2, , ,

, +1, + 2, ,
i i

i i

a x b i l

a x b i l l m



 




.        (2.1) 

where 1 2= ( , , , )T
nx x x x

1,2, ,i m
, and bi is 

a scalar, 
1 2= ( , , , )i i i ina a a a

  .  
In our algorithm, the following concepts are em-



 
230 Z. Z. ZHANG  ET  AL. 

ployed.  
A set of maximum linearly independent vectors of a1, 

a2, , am is called a basis of (2.1). Vectors in the basis 
are called basic otherwise called nonbasic. The equalities 
and inequalities associated with basic vectors are called 
basic otherwise called nonbasic. The system of basic (in) 
equalities is called a basic system and whose solution set 
is called a basic cone. The solution to the system of 
equations that are corresponding to basic (in) equalities, 
i.e., the vertex of the basic cone, is called basic solution. 



Geometrically, our algorithm begins with a basic cone 
whose vertex is denoted by x . If x  lies on the hy-
per-planes determined by every equalities and lies in the 
half-spaces determined by every inequalities of (2.1), it 
is a solution to the entire system. Otherwise there exists 
an inequality (or equality) such as r ra x  so that 

r  which is called a violating inequality against 
b

ra x b 
x . If the intersection of the half-space r r and the 
basic cone is empty, there is no solution for (2.1). Oth-
erwise 

a x b

x  is projected onto the boundary r  of 
the half-space where r r  replaces a basic inequal-
ity to constitute a new basic cone. Then the same process 
is repeated. 

=ra x b
a x  b

Algebraically, a nonbasic (in) equality replacing a ba-
sic inequality is accomplished by the following pivoting 
operation. 

Given a basis of (2.1), let I0, I1, I2 and I3 be the index 
sets for basic equalities, basic inequalities, nonbasic ine-
qualities and nonbasic equalities respectively. Let x  
be the basic solution, i.e., (1)

j ja x b , . Sup-
pose that 

0j I I  1

2I
0 1

3,i ij j
j I I

a w a i I
 

  .        (2.2) 

If wrs  0 for an r  I3I2 and an s  I1, from the rth 
expression of (2.2) we have 

  
0 1 \{ }

1 s rs r rj rs j
j I I s

a w a w w
 

   a .   (2.3) 

Substitute it into the other expressions of (2.2) to yield 

   

 
0 1 \{ }

3 2

,

\

i is rs r ij is rs rj j
j I I s

a w w a w w w w a

i I I r

 

    

 


(2.4) 

Now, we have a new basic cone whose index set is 

0 1 and the associated basic solution is 
denoted by 

\r I I s    
x . Multiply both sides of (2.4) by x  on 

the right to have 

 
 

   
0 1

0 1

(2) (2)

(2)

\{ }

.

i is rs r

ij is rs rj j
j I I s

is rs r ij is rs rj j
j I I

a x w w a x

w w w w a x

w w b w w w w b

 

 



   

    





 

Multiply both sides of (2.2) by x  to have 

0 1

(1)
i i

j I I

a x w b
 

  j j  

Therefore 

   

  
0 1

(2) (1)

.

i i is rs r is rs rj
j I I

is rs r r

a x a x w w b w w w b

w w b a x

 



  

 

 j

 

Rewrite the above expression as  

  i i i i is rs ra x b a x b w w a x b       r

i

 

and let i ia x b   , , r ra x b   r ii ia x b     
to have 

   3 2, \i i is rs rw w i I I r       . 

In the same way, from (2.3) we have  

  2 1s s rs ra x b w a x b      r  

or 

s r rsw    , 

where (2)
s s sa x b    . 

The above operational process is called a pivoting 
(operation) and wrs is called pivot (element). The row of 
wrs is called pivot row and the column of wrs is called 
pivot column. We say ar enters and as leaves the basis 
and the exchange of these two vectors is denoted by ar ↔ 
as. The process is simply shown by Tables 1 and 2. 
Where  

     
   

3 2 0 1

3 2

, \ \

= , \ .

ij ij is rs rj

i i is rs r

w w w w w i I I r j I I s

w w i I I r  

       

   

;
 

For Table 1, i i ia x b    is called the deviation of 
ai or the associated (in-) equality with respect to x . If 

(1)
30,i i ia x b i I     ; 

(1)
20,i i ia x b i I     , 

then x
(1a x
 is a solution to system (2.1). If  
) 0r r rb     for some r  I2, is called  ra x b r

 
Table 1. Initial table. 

 as aj  

ar rsw  wrj σr 

ai wis wij σi 

 
Table 2. The result of pivoting. 

 ar aj  

as 1/wrs wrj/wrs σr/wrs 

ai wis/wrs ijw  i   
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violating inequality against x  and r ra x b a
r       

is called the distance from x  to . r r

The computational steps for the system of linear ine-
qualities are as follows. 

a x b

Algorithm 2.1. Pivoting algorithm for system (2.1). 
Step 1. Construct initial table.  
If (2.1) has an inequality in the form of i ix l , 

i ix l  is an initial basic inequality; otherwise introduce 

ix M   into (2.1) and let ix M   be the initial ba-
sic inequality, i = 1, 2, , n. Where M is a number large 
enough, i


x M   is called artificial inequality and 

whose coefficient vector is called artificial vector. The  

initial basic solution is  (0) (0) (0)
1 , ,

T

nx x x   where  

i ix l   or M, i = 1, 2, , n. The initial basic vector is 
ei which is the ith row of the identity matrix of order n,  
i = 1, 2, , n. Other (in) equalities of (2.1) and their 
coefficient vectors are nonbasic whose deviation with 
respect to x  is . Thus we have an ini-
tial table as shown by Table 1. 

(0)
i ia x ib 

Step 2. Preprocessing. 
Let I3 be the index set of equalities, i.e., I3 = 1, , l. 
1) If I3 = , go to step 3. Otherwise, for an rI3 if the 

deviation σr of ar is negative, positive or zero, go to 2), 3) 
and 4) respectively. 

2) If there is no positive element in the row of ar that 
is corresponding to the basic inequality, (2.1) has no so-
lution; otherwise carry out a pivoting on one of the posi-
tive elements, let 3 3 \I I r    and return to 1). 

3) If there is no negative element in the row of ar that 
is corresponding to the basic inequality, (2.1) has no so-
lution, otherwise carry out a pivoting on one of the nega-
tive elements, let 3 3 \I I r    and return to 1). 

4) If all of the elements in the row of ar that are corre-
sponding to basic inequalities are zeros, let 3 3 \I I r    
and return to 1); otherwise carry out a pivoting on one of 
the non-zero elements, let 3 3 \I I r    and return to 1). 

Step 3. Main iterations. 
1) If all of the deviations of non-basic vectors are 

nonnegative, the current basic solution is a solution to 
(2.1). Otherwise 

2) select a non-basic vector with negative deviation to 
enter the basis. If there is no positive element in the row 
of entering vector that is corresponding to the basic ine-
quality, (2.1) has no solution, otherwise carry out a piv-
oting on one of the positive elements and return to 1). 

Note that step 1 of Algorithm 2.1 is just a simplified 
statement for constructing the initial table. In fact, if (2.1) 
has no inequality i ix l  but has i ix u  for a finite ui, 

i ix u    can serve as an initial basic inequality and no 
need to introduce the artificial ix M  . 

From steps 2 and 3 of Algorithm 2.1 we see that basic 
equalities never leave the basic system. Because if (2.1) 
has a solution, it must satisfy all the equalities. Therefore, 

once a non-basic equality enters the basic system, the 
corresponding column can be eliminated.  

Sometimes, a system of inequalities has inequalities in 
the form of i i ib a x b   , especially , which 
are formally written as i i and i i

i iu x l 
a x b

i

a x b     in our 
method. Let x  be the basic solution, then deviations of 
ai and ai are i ia x b and i i respectively and 
with a sum of i i

a x b
b b  . Since ai and ai are linearly de-

pendent, they cannot be basic simultaneously. If one of 
them is basic, the deviation of the other one is 

> 0i ib b  , hence can be ignored. If both of ai and ai 
are non-basic, they can share one row in the table since 
the coefficients in the expressions of ai and ai in terms 
of basic vectors have reversed signs. 

It should be noted that even though the basic solution 
is not explicitly presented in the table, it can be easily 
obtained from the table. Let 1= ( , , )T

nx x x be the basic 
solution which is obtained as follows. If xi  li or M is 

basic, i ix l  or M; otherwise ix  equals to the devia-
tion of this inequality plus li or M. Or if i ix u    is 
basic, i ix u ; otherwise ix  equals to ui minus the de-
viation of i ix u   . 

There are many rules for selecting a vector to enter or 
leave the basis. We will give several ones which are used 
in the main iterations stage. 

For a given basis of (2.1) let I0, I1 and I2 be index sets 
for basic equalities, basic inequalities and non-basic ine-
qualities respectively. Let (1)x  be the current basic so-
lution and  

0 1

(1)
2, = ,i ij j i i i

j I I

a w a a x b i
 

I   . 

Rule 1. (The smallest deviation rule). Among all the 
non-basic vectors with negative deviations, select a vec-
tor ar having the smallest deviation to enter the basis. 
That is if 2= min{ : < 0, }r i i i I    , then ar enters the 
basis.  

Rule 2. (The largest distance rule). Among all the 
non-basic vectors with negative deviations, select a vec-
tor ar whose associated inequality is farthest away from 
the current basic solution to enter the basis. That is if 

 2|| || = min || || : < 0,r r i i ia a   i I , then ar enters 
the basis. 

Rule 3. (Rule of the farthest distance along an edge). 
Among all the non-basic vectors with negative deviations, 
select a vector ar whose associated inequality is farthest 
away from the current basic solution along an edge of the 
basic cone to enter the basis. That is if r rsw  = 

 2min : < 0 and > 0,i is i isw w i   I  for an sI1, then 
ar enters the basis. 

Rule 4. (The smallest index rule). Among all the non- 
basic vectors with negative deviations, select a vector ar 
having the smallest index to enter the basis; and among 
all the basic vectors to leave the basis, select a vector as 
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having the smallest index to leave the basis. That is if 
, then ar enters the basis; and if   2min : < 0ir i I  

min : > 0s j I w  1 rj , then as leaves the basis. 

Like Bland’s anti-cycling rule [9], it can be proved 
that when the smallest index rule is used to solve system 
(2.1), cycling doesn’t occur. 

Now let us consider the parameter technique by which 
a new basic solution can be obtained from the current 
table by changing the right-hand side terms of some ba-
sic (in) equalities.  

For a basis of (2.1), let IB and IN denote the index sets 
of basic and nonbasic vectors respectively and x  be the 
basic solution. Suppose 

,
B

i ij j
j I

a w a i


  NI . 

Multiply both sides by x , since aj x  = bj, j  IB, to 
have 

B

i i
j I

a x w b


  j j . 

Therefore the deviation of the nonbasic ai is 

,
B

i i i ij j i N
j I

a x b w b b i I


     . 

If bj is changed to bj + j, j  IB, the deviation of ai 
becomes 

  ,
B B

i ij j j i i ij j
j I j I

w b b w i I   
 

       N . (2.5) 

The above operation is denoted by 
+ j
ja


, j  IB. 
Usually we just change the right-hand side of one ba-

sic (in) equality such as changing bs to bs +  for an s  
IB. Then the deviation of ai becomes 

,i i isw i IN      .          (2.6) 

It indicates that when the right-hand side of a basic (in) 
equality is increased by , deviations of nonbasic vectors 
with respect to the new basic solution can be obtained by 
multiplying the column of this basic (in) equality by , 
and then add it to the last column (the deviation column). 
We will use sa  to denote such an operation which 
gives the result (2.6). 
 
3. Convex Quadratic Programming 
 
3.1. Fundamental Concepts and Algorithm 
 
Consider quadratic programming in this form: 

1
min ( )

2
s.t. , 1,2, , ,

, 1, 2, ,

, 1, 2, , .

T

i i

i i

i i

f x x Hx cx

a x b i l

a x b i l l m

x l i n

 

 

   

 






where  1 2, ,
T

nx x x x  ,  is positive semi-   ij n n
H h




definite,  1 2, , , nc c c c  , , bi and li 
are real numbers. 

 1 2, , ,i i i ia a a a  n

Let λi be the Lagrange multiplier associated with 

i ia x b  or , i be the Lagrange multiplier as-
sociated with i i

ia x b i

x l , and ei be the ith row of the identity 
matrix of order n. The KKT conditions for (3.1) are as 
follows. 

1 1

m n
T T

i i i i
i i

THx c a e 
 

    , 

0, ( ) 0, 1, 2, ,i i i ia x b i l l m        , 

 0, 0, 1, 2, ,i i i ix l i      n

,

, 

, 1,2, ,i ia x b i l    

, 1, 2, ,i ia x b i l l m     , 

, 1, 2, ,i i .x l i n    

Since 

 1 2
1 1

, , , 0
m n

TT T T
i i i i n

i i

Hx a c e    
 

       , 

eliminate all the i from above KKT conditions to have 

 

 

1 1 1 1

1 1

1 1

1 1 1 1

1 1

, 1, 2, , ,

, 1,2, ,

, 1, 2, ,

, 1, 2, , ,

0, 1, 2, , ,

0

1, 2, , ,

0

i in n i mi i i

i in n i

i in n i

i i

i

i in n i mi i i i i

i in n i i

h x h x a a c i n

a x a x b i l

a x a x b i l l m

x l i n

i l l m

h x h x a a c x l

i n

a x a x b

 

 



 



       

   
     

 
   

       



   

 
 
 




 


 , 1, 2, , .i l l m   



(3.2) 

We will solve the linear part of (3.2) by Algorithm 2.1 
while maintaining all of the complementarity conditions. 

(3.2) has n + m variables where λ1, λ2, , λl are free. 
In order to initiate the computation, we introduce artifi-
cial inequalities 



1 2, , , lM M M         

into (3.2). The coefficient vectors of first n + m (in) 
equalities of (3.2) are 

 1 1, , , , 1, 2, ,i i in i mih h h a a i      n , 

 1, , ,0, ,0 , 1, 2, ,i i ina a a i    m , 

and the coefficient vectors of last n + m inequalities are 
denoted by ei which is the ith row of the identity matrix 
of order n + m, i = 1, 2, , n + m. ,

       (3.1) 

In system (3.2),  
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i1 1 1 1i in n i mi ih x h x a a c          and i ix l , 

0i   and 1 1i in na x a x bi    

are called complementary inequalities, and their coeffi-
cient vectors are called complementary vectors in which 

1 2 1 2, , , , , , ,n n n n m   h h h e e e  

are called Lagrange vectors and  

1 2 1 2, , , , , , ,n m e e e a a a  

are called constraint vectors, and the associated inequali-
ties are called Lagrange inequalities and constraint (in) 
equalities respectively. 

According to the definition of basic solution of the 
system of linear inequalities, if one of the complemen-
tary inequalities is basic, the corresponding complemen-
tarity condition is satisfied. Hence we will keep one of 
them basic and the other one nonbasic in the computa-
tional process. 

The initial basic system for solving (3.2) is 

1 1, , n nx l x  l , 

1 1, , , 0, , 0l l mM M          , 

i.e., e1, , en, en+1, , en+m are initial basic vectors, and  

(0)
1, , , , , ,0, ,0

T

ny l l M M     

i

 

is initial basic solution; hi and ai are initial nonbasic 
vectors with deviations 

 (0)
1 1 1i i i i in n i lih y c h l h l a a M c           , 

1, 2, ,i n  , 

and 
(0)

1 1n i i i i in n ia y b a l a l b        , 

1,2, ,i m  . 

The representation of nonbasic vectors in terms of ba-
sic ones and their deviations are given in Table 3. 

Since a1, , al are coefficient vectors of equalities, 
we first put them into the basis as many as possible. 
Without loss of generality, suppose that a1, , al are  




 

Table 3. Initial table for (3.2). 

 e1   en en+1   en+m  

h1 h11   h1n –a11   –am1 σ1 

                

hn hn1   hnn –a1n   –amn σn 

a1 a11   a1n 0   0 σn+1 

                

am am1   amn 0   0 σn+m

linearly independent and suppose l pivoting operations 
can be carried out along the diagonal of the sub-matrix 

11 1

1

l

l l

a a

a a

 
 
 
 
 


 

 l

l

. 

In order to maintain the complementarity conditions, 
another l pivoting operations are carried out along the 
diagonal of  

11 1

1

l

l l

a a

a a

  
 
 
   


 


 

which translate the l basic artificial vectors out of the 
basis. The above 2l pivoting operations are called pre-
processing. Since the basic solution must satisfy every 
equality constraints, once an equality enters the basic 
system, it is never selected to leave the basic system. For 
this reason, the columns of basic equalities and the asso-
ciated rows of artificial inequalities can be deleted from 
the table. It implies that the upper bound M of the artifi-
cial variable may be any number. For convenience of 
computation, we always take M = 0. 

The computational process following the preprocess-
ing is called main iterations where each table is called 
general (pivoting) table, as shown by Table 4.  

Where hN and hB are a partition of the Lagrange vec-
tors 1 nh h    , en+N and en+B are a partition of the La-
grange vectors 1 m, ,n ne e   , eN and eB as well as aN 
and aB are partitions of the constraint vectors 1, , ne e   
and 1, , ma a   respectively, and h, λ, e, a in the 
last column are vectors formed by deviations of the cor-
responding nonbasic vectors. 

We say the principal sub-matrix associated with non-
basic Lagrange vectors and basic constraint vectors to be 
Lagrange matrix and denote it by L, and say the principal 
sub-matrix associated with nonbasic constraint vectors 
and basic Lagrange vectors to be constraint matrix and 
denote it by . For the initial table, L = H and  = O; for 
Table 4,  

11 12
T
12 22

L L
L

L L

 
  
 

 and . 11 12

12 22
T

D D

D D

 
   

 
 

Table 4. The general table. 

 eB aB hB en+B  

hN L11 L12 11

TE  21

TE  h 

en+N 12

TL  L22 12

TE  22

TE  λ 

eN E11 E12 D11 D12 e 

aN E21 E22 D12
T D22 a 
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It can be proved that both Lagrange matrix and con-
straint matrix are positive semi-definite when the Hes-
sian matrix H of (3.1) is positive semi-definite. A posi-
tive semi-definite matrix has the property that if the ith 
diagonal entry is zero, then all the entries in the ith row 
and in the ith column are zeros. 

Main iterations involve two kinds of operations. One 
is called principal pivoting which is carried out on a pos-
itive diagonal element of the table. The other one is 
called double pivoting which is carried out on a pair of 
symmetric off-diagonal elements successively while the 
diagonal element is zero. The 2l pivoting operations in 
the preprocessing stage are l double pivoting operations.  

The basic solution associated with Table 4 is  

, , 0,B B N e N B Nx l x l        . 

Besides, we have 0B   and N h  . Where lB and 
lN are vectors formed by the right-hand side terms of 
basic and nonbasic i ix l , λB and λN are vectors formed 
by basic and nonbasic multipliers of λ1, λ2, , λm, B and 
N are vectors formed by basic and nonbasic multipliers 
of μ1, μ2, , μn respectively. 



Computational steps for the convex QP are as follows.  
Algorithm 3.1. Computational steps for (3.2). 
Step 1. Initial step.  
Let  

1 1 1, , , 0, , 0n n mx l x l        

be the initial basic system and construct initial table 
given by Table 3. 

Step 2. Preprocessing.  
For i = 1, 2, , l, when the deviation of ai is less than, 

greater than, or equal to 0, go to 1), 2) and 3) respec-
tively. 

1) If there is no positive elements in the row of ai that 
are corresponding to basic inequalities, there is no feasi-
ble solution, stop; otherwise carry out a pivoting on one 
of the positive elements and then carry out a pivoting on 
the symmetric element. 

2) If there is no negative elements in the row of ai that 
are corresponding to basic inequalities, there is no feasi-
ble solution, stop; otherwise carry out a pivoting on one 
of the negative elements and then carry out a pivoting on 
the symmetric element. 

3) If all the elements in the row of ai that are corre-
sponding to basic inequalities are zero, delete the row of 
ai and then delete the column of en+i; otherwise carry out 
a pivoting on one of the nonzero elements and then carry 
out a pivoting on the symmetric element.  

Step 3. Main iterations. 
1) If all the deviations of nonbasic vectors (except for 

nonbasic Lagrange vectors en+1, , en+l that are corre-
sponding to equality constraints) are non-negative, the 

current basic solution is the solution to (3.2), stop; oth-
erwise select a nonbasic vector with negative deviation 
to enter the basis. 



2) If there is no positive element in the row of the en-
tering vector that is corresponding to the basic inequality, 
(3.2) has no solution, stop. Otherwise  

3) if the diagonal element in the row of the entering 
vector is positive, carry out a pivoting on that diagonal 
element, return to 1); otherwise carry out a pivoting on 
the largest off-diagonal element in the row of the enter-
ing vector, and then carry out a pivoting on the symmet-
ric element, and return to 1). 

We will prove that the smallest index rule can prevent 
cycling even though it may involve more pivoting opera-
tions than the smallest deviation rule does. Here each 
pair of complementary vectors has the same index. For 
example, hi and ei have index i for i = 1, 2, , n, and ai 
and en+i have index n + i for i = 1, 2, , m. 

If cycling occurs, some vectors would enter and leave 
the basis repeatedly. Let s be the largest index of such 
vectors and consider two tables in the computational 
process. In one table the sth Lagrange vector enters and 
the sth constraint vector leaves the basis, and in the other 
table just reverse. Let P and Q be the principal sub-ma- 
trices associated with complementary nonbasic vectors 
of these two tables, and P and Q be deviations associ-
ated with P and Q respectively. Then Q P , Q  

PQ  and 

0T T
P Q P PQ       

where Q can be partitioned into a 2  2 matrix as shown 
in Table 4 or positive definite. It contradicts the assump-
tion that the components of P and Q with index s are 
negative and other components are nonnegative. 
 
3.2. Convex QP with Upper Bounded Variables 
 
Now let us consider the quadratic programming where 
variables are bounded from above: 

  1
min

2
s.t. , 1, 2, , ,

, 1, 2, ,

, 1,2, , .

T

i i

i i

i i i

f x x Hx cx

a x b i l

a x b i l l m

u x l i n

 

 

   

  





,
    (3.3) 

Let 

  1 1 1 1, ,

1, ,
i i in n i mi ih x h x h x a a c

i n

  i      



 


 

and let I1 and I2 be a partition of 1, , n, i.e., I1  I2 = 
1, , n and I1  I2 = , but empty I1 or I2 is allowed. 
It can be verified that if x  is a solution to the system 
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     
    

 

1

2

, 0, , , 0, ,

, 0, , , 0,

, 0, 0, 1, , ,

, 1,2, , ,

i i i i i i

i i i i i i

i i i i i i

i i

h x x l h x x l i I

h x x u h x x u i I

a x b a x b i l m

a x b i l

 

 

 

    

        

     

 




,
 

(3.4) 

and every components of x  satisfy i ix u    1i I  
and i ix l  2i I  , then x  is the optimal solution for 
(3.3). 

The solution of (3.4) is as follows. 
Firstly, let I1 = 1, 2, , n and I2 = , i.e., ignoring 

all the upper bounds ui, to solve (3.4) where the first two 
steps of Algorithm 3.1 are applied. In the following 
computational process we will make the basic solution 
satisfy not only i ix l  but also i ix u   . That is we 
should make deviations of both ei and ei non-negative. 
In other words, if the deviation of ei or ei is negative, 
then it is a candidate to enter the basis.  

If ei is entering the basis but it does not appear in the 
table, we change the table as follows. Replace the devia-
tion σi of ei with ui  li  σi, reverse signs of other entries 
in the row of ei, and then substitute ei for ei; reverse 
signs of entries in the column of hi and then substitute 
hi for hi. The above operation is called a vector substi-
tution for ei. It amounts to replacing the nonbasic i ix l  
with i ix u    and replacing the basic i , 0h x     
with ,ih x 0    . Similarly, if ei is entering the basis 
but it does not appear in the table, we update the table by 
conducting a vector substitution for ei.  

Another problem in solving (3.4) is that when a La-
grange vector hi, hi or en+i is entering the basis, all the 
entries in this row are non-positive. In this situation, the 
change of the table is stated in the following 1) and 2). 

1) Suppose that the Lagrange vector hi is entering the 
basis but all the entries in this row are non-positive. In 
this case we conduct a vector substitution for hi, i.e., re-
verse signs of all the entries in the row of hi and then 
substitute hi for hi; reverse signs of entries in the col-
umn of ei and then substitute ei for ei. It amounts to re-
placing the nonbasic ,ih x 0    with ,ih x 0     and 
replacing the basic i ix l  with i ix u  . The associ-
ated equalities of the last two inequalities are i ix l  and 

iix u , therefore the change of the right-hand side of 

i ix l  is ui  li. Considering signs of all the entries in the 
column of ei had been reversed, by (2.6) we multiply 
the column of ei by li  ui, and then add it to the devia-
tion column. Similarly, if hi is entering the basis but all 
the entries in this row are non-positive, we conduct a 
vector substitution for hi 

2) Suppose that the Lagrange vector en+i i = l + 1, , 
m is entering the basis but all the entries in this row are 
non-positive. We see that en+i is a n + m dimensional unit 

vector with 1 at the (n + i) th position, hi and hi are n + 
m dimensional vector whose last m components are not 
all zeros, and the last m components of constraint vectors 
are zeros. It implies that the expression of en+i in terms of 
basic vectors must contain hj or hj. Suppose that wij is a 
negative off-diagonal entry in the row of en+i and in the 
column of jh = hj or hj. We conduct a vector substi-
tution for en+i in this way: reverse signs of entries in the 
column of jh  and then substitute j for h jh ; replace 
the deviation j of je = ej or ej with uj  lj  j, re-
verse signs of other entries in the row of je , and then 
substitute je  for je . This substitution transforms wij 
into a positive number so that a regular pivoting en+i ↔ 

jh  can be carried out. 
Now let us give the algorithm for solving (3.3). In this 

algorithm, the non-basic vectors include not only those 
listed in the table but also those that are not listed in the 
table where ie  = ei or ei and  = hi or hi. i

Algorithm 3.2. Computational steps for (3.4). 
h

Step 1. Initial step, see step 1 of Algorithm.3.1. 
Step 2. Preprocessing, see step 2 of Algorithm 3.1. 
Step 3. Main iterations. 
1) If all the deviations of non-basic vectors except for 

en+1, , en+l are non-negative, the current basic solution 
is optimal for (3.3), stop. Otherwise 



2) select a non-basic vector with negative deviation to 
enter the basis. If the entering vector is ai, , i ie h  or en+i, 
go to a), b), c), d) respectively. 

a) If all the entries in the row of ai that are corre-
sponding to basic inequalities are non-positive, (3.3) has 
no feasible solution, stop. If the diagonal entry in the row 
of ai is positive, carry out a pivoting on that entry, return 
to 1); otherwise carry out a pivoting on the largest entry 
in the row of ai and then carry out a pivoting on the 
symmetric entry, return to 1). 

b) If ie  is not listed in the table, conduct a vector sub-
stitution for ie . In the row of the entering vector ei, if 
all the entries that are corresponding to basic inequalities 
are non-positive, (3.3) has no feasible solution, stop; 
otherwise if the diagonal entry is positive, carry out a 
pivoting on that entry, return to 1); otherwise carry out a 
pivoting on the largest entry and then carry out a pivot-
ing on the symmetric entry, return to 1). 

c) If the diagonal entry in the row of i is positive, 
carry out a pivoting on that entry, return to 1); otherwise 
if there is a positive entry in the row of i, carry out a 
pivoting on the largest entry and then carry out a pivot-
ing on the symmetric entry, return to 1); otherwise con-
duct a vector substitution for , return to 1). 

h

h

i

d) If the diagonal entry in the row of en+i is positive, 
carry out a pivoting on that entry, return to 1); otherwise 
if there is a positive entry in the row of en+i, carry out a 
pivoting on the largest entry and then carry out a pivot-

h
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ing on the symmetric entry, return to 1); otherwise con-
duct a vector substitution for en+i, return to 1). 
 
4. Mean-Variance Portfolio Optimization 
 
4.1. Markowitz’s Portfolio Selection Model 
 
Suppose that there are n assets for selection. The rates of 
return of these n assets are R1, , Rn (random variables) 
whose means are r1, , rn respectively and the covari-
ance matrix is ij n n




H      where ,ij i jCOV R R    . 
Let x1, x2, , xn be fractions of n assets. The problem is 
to determine the portfolio (x1, x2, , xn) so that it has a 
minimal variance risk at a certain level of expected re-
turn rate. It is formulated as follows. 




1 1

1

1

1
min

2
s.t. ,

1,

, , 0,

T

n n p

n

n

x Hx

r x r x r

x x

x x

  

  







          (4.1) 

where 1 2= ( , , )T
nx x x x  and rp is the expected return 

rate of the investor. Obviously, rp should satisfy  

  1 1min , , max , ,n p nr r r r r     

to ensure the feasibility. 
The KKT conditions of model (4.1) are  

 

1 1 1 2

1

1 1

1

1 1 1 2

0, 1, ,

1,

,

, , 0,

0, 1, , .

i in n i

n

n n p

n

i in n i i

x x r i n

x x

r x r x r

x x

x x r x i

   

   

     

  
  



     






 n





. (4.2) 

Add up the n complementarity conditions to have 
, thus  1 2 0T

px Hx r   

1 2
T

px Hx r   . 

This is another way to compute the variance risk of the 
portfolio. 

(4.1) is a special case of (3.1) mainly in that (4.1) has 
no general inequality constraints and has feasible solu-
tions. It makes the computation of (4.1) much easy. 

Algorithm 4.1. Pivoting algorithm for (4.2). 
Step 1. Initial step.  
Let  

1 10, , 0, 0, 0nx x 2      

be the initial basic system to construct initial table as 
shown by Table 5. 

Where e1, , en, en+1, en+2 are coefficient vectors of 
the initial basic system which are the n + 2 rows of the  



Table 5. Initial table. 

 e1 ... en en+1 en+2  

h1 σ11 ... σ1n 1 r1 0 

... ... ... ... ... ... ... 

hn σn1 ... σnn 1 rn 0 

e 1 ... 1 0 0 1 

r r1 ... rn 0 0 rp 

 
identity matrix of order n + 2, 1( , , , 1, )i i in ri  h   , 

1, 1,0,0  e   and 1( , , ,0,0)nr rr  . 
Step 2. Preprocessing.  
Suppose that  1 1min , , nr r  r ,  2 1max , , nr r  r

2

 
and 1r r . Carry out four pivoting operations as fol-
lows: 

e ↔ e1, h1↔ en+1, r ↔ e2, h2 ↔ en+2. 

Step 3. Main iterations. 
1) If all the deviations of nonbasic vectors except for 

en+1 and en+2 are nonnegative, the current basic solution is 
the solution of (4.2), stop. Otherwise 

2) select a nonbasic vector except for en+1 and en+2 
with the most negative deviation to enter the basis. If the 
diagonal entry in the row of entering vector is positive, 
carry out a pivoting on that entry, return to 1); otherwise 
carry out two pivoting operations first on the largest en-
try in the entering vector row and then carry out a pivot-
ing on the symmetric entry, return to 1). 

Denote rank (H) by the rank of H. It can be proved 
that among n basic vectors e1, , en at most rank (H) + 2 
ones may be pivoted out of the basis. It implies that at 
most rank (H) + 2 components of 



1( , , )nx x  may be 
nonzeros.  

Let ri1, , riT be the realization of Ri in T periods, 
then 

1

T

i t
r

 itr T

n

. Let  

11 1 21 2 1

12 1 22 2 2

1 1 2 2

n n

n n

T T nT

r r r r r r

r r r r r r
D

r r r r r r

   
    
 
 

   




   


, 

then the covariance matrix 1TH D D T    . Since D 
is an T  n matrix, rank (H) is no more than T. Therefore 
each portfolio obtained by Algorithm 4.1 contains no 
more than T + 2 assets no matter how larger n is.  

An experiment was conducted by using algorithm 4.1 
combining with the parameter formula (2.6) for 70 
weekend closed prices of 1072 stocks. Here n = 1072 and 
T = 70  1 = 69. It experiences about 80 pivoting opera-
tions to obtain one efficient portfolio and 314 pivoting 
operations to obtain 20 minimal variance portfolios with 
different values of rp which are evenly ranging from the 
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





minimal mean to the maximal mean of the 1072 stocks. 
Each pivoting requires about 1074  1075 multiplica-
tions and additions. Therefore the total amounts of com-
putation are 80  1074  1075 and 314  1074  1075 
multiplications and additions respectively. We know that 
it requires about 10723/3 multiplications and additions to 
solve a system of 1072 linear equations in 1072 variables 
by Gaussian elimination.  

Now let us give a small example to show how to solve 
the portfolio problem by using Algorithm 4.1 and the 
parameter technique introduced in section 2. 

Example 1. An investor is interested in three assets. 
The means of these three assets are 0.05, 0.11 and 0.08,  

and the covariance matrix is . Solve  

0.54 0.11 0.09

0.11 0.32 0.02

0.09 0.02 0.21







a portfolio with the minimal variance risk at expected 
return rate rp = 0.07, 0.08, 0.09 or 0.1. 

Solution. The model of this problem is 

1 2 3

1 2 3

1 2 3

1
min

2
s.t. 1,

0.05 0.11 0.08 ,

, , 0,

T

p

x Hx

x x x

x x x

x x x

  

  



r
 

where 1 2 3, , Tx x x x   , H is the covariance matrix and  
rp = 0.07, 0.08, 0.09 or 0.1. 

The initial table for rp = 0.07 is given by Table 6. 
Since the minimal mean is in the first column, we car-

ry out a double pivoting  to have Ta-
ble 7. 

1 1 4,e e h e   

Since the maximal mean is in the second column of 
the initial table, we carry out a double pivoting ( 2r e , 

 to have Table 8. 2h e 5

In Table 8, ignoring the deviations of e4 and e5 since 
they are associated with equalities, there is only one 
negative deviation 0.2217 taken by h3. Therefore h3 
enters the basis. Since the diagonal entry 0.37 in the row 
of h3 is positive, carry out a principal pivoting on 0.37 to 
yield Table 9 ignoring the last three columns.  

From the column rp = 0.07 we see that all the devia-
tions of nonbasic vectors except for e4 and e5 are positive, 
therefore the minimal risk portfolio for rp = 0.07 is 

1 2 3( , , )x x x  = (0.3671, 0.0338, 0.5991), and 1 = 0.4165 
and 2 = 3.2117. The variance risk of this portfolio is 

1 + 2rp = 0.4165  3.2117  0.07 = 0.1916. 

Now consider the portfolio with rp = 0.08. since  = 
0.08 – 0.07 = 0.01, by (2.6), we multiply the column of r 
by 0.01 and then add it and the column of rp = 0.07 to get 
the column of rp = 0.08. We see that the last three numbers 
of the column of rp = 0.08 are still positive. Therefore the 

minimal risk portfolio for rp = 0.08 is 1 2 3( , , )x x x  = 
(0.2095, 0.2095, 0.5811), and 1 = 0.2607 and 2 = 
1.4459. The variance risk of this portfolio is 

1 + 2rp = 0.2607  1.4459  0.08 = 0.1451. 

For rp = 0.09, since  = 0.09 – 0.08 = 0.01, we multi-
ply the column of r by 0.01 and then add it and the col-
umn of rp = 0.08 to get the column of rp = 0.09. We see 
that the last three numbers of the column of rp = 0.09 are 
positive also. Therefore the minimal risk portfolio for  
rp = 0.09 is 1 2 3( , , )x x x  = (0.0518, 0.3851, 0.5631), and 
1 = 0.1050 and 2 = 0.3198. The variance risk is 

1 + 2rp = 0.1050 + 0.3198  0.09 = 0.1338. 

In the same way, we can get the column of rp = 0.1. 
We see that the deviation of e1 is negative and the di-
agonal entry is positive. Carry out a pivoting e1 ↔ h1 to 
have Table 10. 

From Table 10 we see that the last three deviations are 
positive. Therefore the minimal risk portfolio for rp = 0.1 
is 1 2 3( , , )x x x  = (0, 0.6667, 0.3333), and 1 = 0.2811 
and 2 = 4.5556. The variance risk of this portfolio is 

1 + 2rp = 0.2811 + 4.5556  0.1 = 0.1744. 
 
4.2. Portfolio of Upper Bounded Assets 
 
For institutional investors some asset such as a stock is 
not allowed greater than a limited ratio of the total capi-
tal. In this situation the model with upper bounded vari-
ables is required. Let ui be the upper bound for asset xi 
that satisfies 1 1nu u    and  for i = 1, 

, n. This problem is formulated as  
0 < 1iu 


 

Table 6. Initial table for rp = 0.07. 

 e1 e2 e3 e4 e5  

h1 0.54 0.11 0.09 1* 0.05 0 

h2 0.11 0.32 0.02 1 0.11 0 

h3 0.09 0.02 0.21 1 0.08 0 

e 1* 1 1 0 0 1 

r 0.05 0.11 0.08 0 0 0.07

 
Table 7. Result of first double pivoting. 

 e e2 e3 h1 e5  

e4 0.54 0.43 0.45 1 0.05 0.54 

h2 0.43 0.64 0.36 1 0.06* 0.43

h3 0.45 0.36 0.57 1 0.03 0.45

e1 1 1 1 0 0 1 

r 0.05 0.06* 0.03 0 0 0.02
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Table 8. Result of second double pivoting. 

 e r e3 h1 h2  

e4 1.7011 –16.0556 –0.2683 –1.8333 0.8333 0.5722 

e5 –16.0556 177.7778 0.6667 16.6667 –16.6667 –3.6111 

h3 –0.2683 0.6667 0.37* 0.5 0.5 –0.2217 

e1 1.8333 –16.6667 –0.5 0 0 0.6667 

e2 –0.8333 16.6667 –0.5 0 0 0.3333 

 
Table 9. Result of first principal pivoting. 

 e r h3 h1 h2 rp = 0.07 rp = 0.08 rp = 0.09 rp = 0.1 

e4 1.5065 –15.5721 –0.7252 –1.4707 1.1959 0.4165 0.2607 0.1050 –0.0507 

e5 –15.5721 176.5766 1.8018 15.7658 –17.5676 –3.2117 –1.4459 0.3198 2.0856 

e3 0.7252 –1.8018 2.7027 –1.3514 –1.3514 0.5991 0.5811 0.5631 0.5450 

e1 1.4707 –15.7658 –1.3514 0.6757* 0.6757 0.3671 0.2095 0.0518 –0.1059 

e2 –1.1959 17.5676 –1.3514 0.6757 0.6757 0.0338 0.2095 0.3851 0.5608 

 
Table 10. Result of principal pivoting for rp = 0.1. 

 e r h3 e1 h2  

e4 4.7078 –49.8889 –3.6667 –2.1767 2.6667 –0.2811 

e5 –49.8889 544.4445 33.3333 23.3333 –33.3333 4.5556 

e3 3.6667 –33.3333 0 –2 0 0.3333 

h1 –2.1767 23.3333 2 1.48 –1 0.1567 

e2 –2.6667 33.3333 0 1 0 0.6667 

 

1 1

1

1
min

2
s.t. ,

1,

0 , 1,

T

n n p

n

i i

x Hx

r x r x r

x x

, .x u i n

  

  

  






         (4.3) 

where min maxp  to ensure the feasibility. The 
minimal value of rp is obtained as follows. Suppose that 

1 2 . Distribute 1 to x1, x2, , xn sequentially 
such that 

r r r 

nr
1 1

r r  
x u 2, 2x u ,, 1 1k kx u  , kx v  where 

 and 0 . Then  1 2u u 1 1ku v     kuv 

min 1 1 2 2 1 1k k kr r u r u r u r      v . 

Similarly, we can obtain the maximal value rmax of rp. 
The algorithm for (4.3) is as follows. 
Algorithm 4.2. Computational steps for (4.3). 
Step 1. Initial step, see step 1 of Algorithm 4.1. 
Step 2. Preprocessing, see step 2 of Algorithm 4.1. 
Step 3. Main iterations. 
1) If all the deviations of non-basic vectors except for 

en+1 and en+2 are non-negative, the current basic solution 
is optimal for (4.3), stop. Otherwise 

2) select a non-basic vector with negative deviation to 
enter the basis. If this vector is not listed in the table, 
conduct a vector substitution. If the diagonal entry in that 
row is positive, carry out a pivoting on that entry, return 
to 1); otherwise carry out a pivoting on the most positive 
entry in that row and then carry out a pivoting on the 
symmetric entry, return to 1). 

Example 2. In Example 1, each asset is not allowed to 
exceed 50%. Solve a minimal risk portfolio with rp = 

0.09. 
Solution. The initial form is given by Table 11. 
As done for Example 1, carrying out 4 pivoting opera-

tions e ↔ e1, h1 ↔ e4, r ↔ e2, h2 ↔ e5, and then carrying 
out a principal pivoting h3 ↔ e3, we have Table 12 
where the columns of e and r and the rows of e4 and e5 
are deleted. 

We see that the third asset 0.5631 is greater than 0.5. 
Therefore we let e3 enter the basis. But e3 is not listed  
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Table 11. Initial table for rp = 0.09. 

 e1 e2 e3 e4 e5  

h1 0.54 0.11 0.09 –1 –0.05 0 

h2 0.11 0.32 0.02 –1 –0.11 0 

h3 0.09 0.02 0.21 –1 –0.08 0 

e 1 1 1 0 0 –1 

r 0.05 0.11 0.08 0 0 –0.09

 
Table 12. Result of 5 pivoting operations. 

 h3 h1 h2  

e3 2.7027 –1.3514 –1.3514 0.5631 

e1 –1.3514 0.6757 0.6757 0.0518 

e2 –1.3514 0.6757 0.6757 0.3851 

 
Table 13. Result of vector substitution for e3. 

 h3 h1 h2  

e3 2.7027* 1.3514 1.3514 0.0631 

e1 1.3514 0.6757 0.6757 0.0518 

e2 1.3514 0.6757 0.6757 0.3851 

 
Table 14. Final table. 

 e3 h1 h2  

h3 0.37 –0.5 –0.5 0.0233 

e1 0.5 0 0 0.0833 

e2 0.5 0 0 0.4167 

 
in the current table. For this we conduct a vector substi-
tution for e3: replace the deviation 0.5631 of e3 with 0.5 
 0.5631 = 0.0631, reverse signs of other entries in the 
row of e3, and then substitute e3 for e3; reverse signs of 
entries in the column of h3 and then substitute h3 for h3. 
It results in Table 13.  

In Table 13 we carry out a pivoting on the diagonal 
entry 2.7027 to yield Table 14. 

Now all the deviations are positive and no assets are 
greater than 0.5. Hence we get the required portfolio. 
Since e3 is basic, x3 = u3 = 0.5, and x1 = 0.0833, x2 = 
0.4167. The variance risk xTHx = 0.1353. 

An experiment was conducted by using the same data 

with n = 1072 and T = 69. For ui = 0.1, i = 1, 2, , n, it 
experiences about 95 pivoting operations to obtain one 
efficient portfolio and 347 pivoting operations to obtain 
20 minimal variance portfolios with different values of rp. 
Each pivoting requires about 1074  1075 multiplica-
tions and additions. Therefore the total amounts of com-
putation are 95  1074  1075 and 347  1074  1075 
multiplications and additions respectively. 
 
5. Conclusions 
 
In this paper we proposed a series of pivoting-based al-
gorithms for solving the following problems: 
 the system of linear inequalities; 
 convex quadratic programming; 
 mean-variance portfolio selection problems. 

These algorithms are concise for understanding and 
efficient for computing as shown by the numerical ex-
amples and computer experiments for 1072 stocks. We 
also proved the convergence of the smallest index rule 
for convex QP therefore for mean-variance portfolio op-
timization for the first time. 
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