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Abstract 
 
In this paper, a full treatment of homogeneous discrete time Markov reward processes is presented. The 
higher order moments of the homogeneous reward process are determined. In the last part of the paper, an 
application to the bonus-malus car insurance is presented. The application was constructed using real data. 
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1. Introduction 
 
In the sixties and seventies, Markov reward processes 
were developed, mainly in the engineering fields in dis-
crete and continuous time [1]. In [2] an application of 
Continuous Time Markov Reward Processes in life in-
surance was presented. 

In this paper, we present the Discrete Time Markov 
Reward Processes (DTMRWP) as given in [3]. The evo-
lution equation of the expected value of the DTMRWP is 
presented with different reward structures. Furthermore, 
the relations useful for the computation of the higher 
order moments of the Markov reward process are pre-
sented and they are given in matrix form too. To the au-
thors’ knowledge, it is the first time that higher moments 
of a discrete time Markov reward process and the matrix 
approach for the first n moments are given. The matrix 
approach facilitates the algorithm construction as for 
example it is explained in [4] for semi-Markov reward 
processes. 

We believe that DTMRWP can describe any kind of 
premiums or benefits involved in a generic insurance 
contract then they represent tool to approach in a general 
way actuarial problems. 

In the last section an example on the application of 
DTMRWP in the motor car insurance is given using real 
data applied to the bonus-malus Italian rules. 
 

2. Reward Structure, Classifications and 
Notation 

 
The association of a sum of money to a state of the sys-
tem and to a state transition assumes great relevance in 
the study of financial phenomena. This can be done by 
linking a reward structure to a stochastic process. This 
structure can be thought of as a function associated with 
the state occupancies and transitions [1]. 

In this paper the rewards are considered as amounts of 
money. These amounts can be positive, if they are bene-
fits for the system and negative if they are costs. 

A classification scheme of different kinds of DTM 
RWP is reported in [5] page 150. 
 
2.1. Discounting Factors 
 
The following notations will be used: 

(1), (2), , ( ),r r r t 

0,

,

, for the discrete time homogeneous 

interest rates and 

  1

1

1 if
( )

1 ( ) if 0
t

h

t
t

r h t
 




   

  for the discrete time 

discount factors. 
See [6] or [7] for further details on this topic. 

 
2.2. Reward Notation 
 

, ( ),i i t   denote the reward that is given for the per-*Work supported by a MURST grant. 
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manence in the i-th state; it is also called rate reward, see 
[8]; the first is paid in the cases in which the period 
amount in state i is constant in time, the second when the 
payment is a function of the state and the time of pay-
ment.   represents the vector of these rewards. 

, (ij ),ij t   denote the reward that is given for the tra- 

nsition from the ith state to the jth one (impulse reward). 
 is the matrix of the transition rewards. Γ
The different kinds of   rewards represent an annu-

ity that is paid because of remaining in a state. This flow 
is to be discounted at starting time. In the immediate case, 
the reward will be paid at the end of the period before the 
transition; in the due case the reward will be paid at the 
beginning of the period. On the other hand,   repre-

sents lump sums that are paid at the instant of transition. 
As far as the impulse reward   is concerned, it is only 

necessary to compute the present value of the lump sum 
paid at the moment of the related transition. 

Reward structure can be considered a very general 
structure linked to the problem being studied. The reward 
process evolves together with the evolution of the 
Markov process which it is linked. When the studied 
stochastic system is in a state then a reward of type   

is paid; once there is a transition an impulse reward of 
  type is paid. 

This behaviour is particularly efficient at constructing 
models which are useful to follow, for example, the dy-
namic evolution of insurance problems e.g. [9] and [10]. 
 
2.3. Matrix Operations 
 
We give some matrix operation notation useful to de-
scribe the equations of the moments of the Markov re-
ward processes in matrix form. 

Given the two matrices A, B with the notations 

and   A B A B  

are denoted, respectively, the usual row column product 
and the element by element product. 

Definition 2.1 Given two matrices  that have 
row order equal to m and column order equal to n, the 
following operation is defined: 

,A B

c A B  

where c is the m elements vector in which the i-th com-
ponent is obtained in the following way: 

1

( )
n

ij ij i i
j

c i a b  


   a b  

 
3. Homogeneous DTMRWP 
 
Markov reward processes are a class of stochastic proc-

esses each of them with different evolution equations. 
The differences from the analytic point of view can be 
considered irrelevant but from the algorithmic point of 
view they are very significant and must be taken into 
account in the construction of the algorithms. 

Let consider a discrete time homogeneous Markov 
chain with state space  1,2,...,I m

,ij i j I
p

 and transition prob-

ability matrix 


  P . As it is well known the 

n-step transition probability matrix is given by .  ( )
n

n P P

Definition 1: Let denote by ( )i n  the discounted 

rewards accumulated in n periods given that at time 0 the 
system was in the state i and the reward are paid in the 
immediate case. It is defined recursively as follows: 

   ( 1) , ( )
, 1

( ) ( 1) ( ) 1 ( ) ( )
m

i i j ijX n i X n j
i j

n n n n n      


     

(1) 

where (0) 0i   

Similar relations can be easily written for discounted 
homogeneous due cases. We denote by: 

 ( ) ( ) ;i iV n E n   
'

1 2( ) ( ), ( ),..., ( )mn V n V n V n   V

With  ( ) ( ) ;i iV n E n

)n

 the mean present value of 

the rewards paid in the investigated horizon time in the 
due cases is represented. In this case, in the definition of 
the (i  process we put (0)i i  . 

For the sake of understanding, first we present the 
simplest case in immediate and due hypotheses after only 
the general relations in the discrete time environment 
will be given. 

The immediate homogeneous Markov formula in the 
case of fixed permanence and without transition rewards 
is the first relation presented. The DTMRWP present 
value after one payment is: 

1 1(1) (1 ) (1 )i iV r r i       

after two payments, 

1 2 (1) 2 (1)

1 1

(2) (1 ) ( )
m m

i i ik k i ik k
k k

V r p V n p    

 

       

and in general, taking into account the recursive nature 
of relations, at n-th period it is: 

( 1)

1

( ) ( 1)
m

n n
i i ik

k

V n V n p k 



     

that in matrix form becomes: 

   ( 1) ( 1)( ) ( 1) n n n nn n           V V P ψ ψ P ψ  

The general case with variable permanence, transition 
rewards and interest rates is presented. The present value 
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j













n





n

after one period is: 

1

(1) (1) (1) (1) ,
m

i i ij ij
j

V p  


 
  

 
  

after two payments, 

1

1 1

1 1

(2) (1) (1) (1)

(2) (2) (2)

(1) (2) (2) (2) ,

m

i i ij ij
j

m m

ik k kj kj
k j

m m

i ik k kj k
k j

V p

p p

V p p

  

  

  



 

 

 
   

 






  





 

 

 

and in general, taking into account the recursive nature 
of relation, at n-th period it is: 

( 1)

1 1

( ) ( 1)

( ) ( ) ( ) .

i i

m m
n

ik k kj kj
k j

V n V n

n p n p n  

 

  





 

  (2) 

This relation can be written in matrix notation in the 
following way: 

 
     

( 1)

( 1)

( ) (1) (1) ( ) ( )

(1) (1) ( ) ( ) .

n

n

n n n

n

 

 





    

  

V ψ P ψ

P Γ P P Γ



  
 

In the case of payment due the permanence reward is 
paid at beginning of the period and the transition reward 
at the end. It results: 

1

(1) (1) (1) (1),
m

i i ij ij
j

V p  


    

1 1

1 1

1 1 1

(2) (1) (1) (1) (1) (2)

(2) (2)

(1) (1) (1) (2) (2).

m m

i i ik ik ij j
k j

m m

ik kj kj
k j

m m m

i ik k ik kj kj
k k j

V p p

p p

V p p p

    

 

   

 

 

  

   

  

 

 

  





 

( 1)

1 1

( 1)

1

( ) ( 1) ( ) ( )

( 1) ( ).

m m
n

i i ik kj kj
k j

m
n

ik k
k

V n V n n p p n

n p n

 

 



 





  



 



 

       (3) 

That in matrix notation is: 

 
   

   

( 1)

( 1)

( ) (1) (1) (2)

( 1) ( ) (1) (1)

( ) ( ) .

n

n

n

n n

n n





     

   



V I ψ P ψ

P ψ P Γ

P P Γ

 

 





 



 

Remark 3.1 In this section, general formulas were 
presented. In the construction of the algorithms the dif-

ferences between the possible cases should be taken into 
account. For example in the non-discounting case the 
following can be stated ( ) 1, 1, ,k k   . 

 
4. The higher Order Moments of Markov 

Reward Processes 
 
In [11] relations for higher order moments of the integral 
of a generic function that evolves following a semi- 
Markov process were given. In more recent works (see 
[4] and [12]), the relations for higher moments of re-
wards associated to a semi-Markov backward system 
were presented. 

In this section, following the methodology used in the 
last two quoted papers, the recursive relations useful for 
computing the higher moments in a Markov reward en-
vironment are provided. 

It should be stated that the equations of this paper are 
different from that of [4] and [12] because we consider 
the conditioning on the starting state but also on the ar-
riving state. 

We will give only the discounted case. 
According to Section 3 let us define the following 

stochastic process: 
Definition 2: Let denote by ( )ij n  the accumulated 

discounted rewards in n periods given that at time 0 the 
system was in the state i and at time  it will be in state 
j: 

n

 

     

 

   

( )

( ) ( 1) , ( )
, 1

( )

( 1) , ( )
1

( ) 1 ( 1)

1 ( ) 1 ( ) ( )

1 ( 1)

( ) 1 ( ) ( ) .

ij iX n j

m

b abX n j X n a X n b
a b

iX n j

m

a ajX n a X n j
a

n n

n n

n

n n n

 

 



  



   




  


   

 

   







n
 

(4) 
Moreover we denote 

 ,0( ) ( ) | (0) ( ) ;i i iiV n E n X i E n           

'

1 2( ) ( ), ( ),..., ( )mn V n V n V n   V  

    ,0 ; ,
( ) [ ( ) | (0) , ( ) ] [ ( )];ij ij iji j n

V n E n X i X n j E n      

 , 1,2,...,
( ) ( )ij i j m
n V n


   W  

and the higher order moments are defined as 

   ( )
,0( ) ( ) ;

rr
i iiV n E n     

'( ) ( ) ( ) ( )
1 2( ) ( ), ( ),..., ( )r r r r

mn V n V n V n   V  

        ( )

,0 ; ,
( ) ( ) | (0) , ( ) ( ) ;

r rr
ij ij iji j n

V n E n X i X n j E n       
      
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 
( ) ( )

, 1,2,...,
( ) ( )r r

ij i j m
n V n


   W  

and it results for all r that  ( ) ( ) ( )

1

( ) ( ).
m

r n r
i ij ij

j

V n p V n


 
Similar relations can be easily written for non dis-

counted cases 
Theorem 4.1 The moments of ( )ij n  in the dis-

counted immediate case, in matrix form, are given by: 

  
 

    
    

( ) ( 1) ( ) ( )

1

1

( 1) ( ) ( ) ( )

( 1) ( ) ( )

( ) ( 1) ( )

!
( )

!( )!

( 1) ( )

( ) ( )

r n r n

r
r l

l

n l r l n

r n r n

n n n

r
n

l r l

n n

n n







 



 



     




    

   



W P W P P

P W P C P

P P C P










 (5) 

where: 

  

( )
( )

,

( ) ( )

1
,

( ) ( ) ( ) ( )

n
n

ij i j E

ll l
ij i ij

p

n c n n n 



 
   
 

 

P

C





 

Proof From (4.1) it results: 

      

      

   

( )
,0 ; ,

( ),0 ; ,

( 1) , ( )
1

( ) ( )

1 ( 1)

( ) 1 ( ) ( ) .

rr
ij ii j n

iX n ji j n

rm

a ajX n a X n j
a

V n E n

E n

n n





  



  


   
  


n


 

 


 

         

   

              

   

( ),0 ; ,
0

( 1) , ( )
1

( ),0 ; , ,0 ; ,
0

( 1) , ( )
1

!
1 ( 1)

! !

( ) 1 ( ) ( )

!
[ [ 1 ( 1

! !

( ) 1 ( ) ( )

| ( 1)]]

r l

iX n ji j n
l

r lm

a ajX n a X n j
a

r l

iX n ji j n i j n
l

r lm

a ajX n a X n j
a

r
E n

l r l

n n n

r
E E n

l r l

n n n

X n



  



  






  







  



 

)




 
  

  

 


 
 

 
















  

The random variables ( 1)i n    and ( 1)ij n    

( 1)i n   are independent given  then we get 

in: 

(X n 1)

           

  
,0 ; , ,0 ; ,

0

( )

!
[

! !

[ 1 ( 1) | ( 1)]

r

i j n i j n
l

l

iX n j

r
E E

l r l

n X n








 







 

        ( 1) , ( ),0 ; ,
1

[ ( ) 1 ( ) ( )

( 1)]]

r lm

a ajX n a X n ji j n
a

E n n n

X n

 


  


 
 

 



 

by independence between  and  ( )1 X n ( 1)i n   given 

( 1)X n  and by measurability of  with respect to 

the information set 

 ( )X n 1

 (0) , ( 1) , ( )X i X n k X n j     it 

results: 

             

    

        

( ),0 ; , ,0 ; ,
0

,0 ; ,

( 1) , ( ),0 ; ,
1

!
[1 | ( 1)]

! !

[ ( 1) | ( 1)]

[ ( ) 1 ( ) ( )

( 1)]

[

]

r

X n ji j n i j n
l

ii j n

r lm

a ajX n a X n ji j n
a

r
E E X n

l r l

E n X n

E n n n

X n



  






  


 


  

 
  

 

 




 

      

  

   

  

 
  

 


( )
, ( 1),0 ; ,

0

( 1) ( 1)

0 1

( )
,

0 1

(
,

!
( 1)

! !

( ) ( ) ( )

!
( 1) | ( )

! !

( 1) ( ) ( ) ( )

( ) | ( 1) ( 1)!

! ! ( )

[

]

r
l

i X ni j n
l

r l

X n X n j

r m

i
l k

r l
l

i k k kj

r m
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Consequently we obtain: 
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that in matrix form gives (5) 

Now since , by direct compu-

tation we get  
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m
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Corollary 4.1 The evolution equation of the higher 
order moment of the ( )i n  process in the discounted 

immediate case, in matrix form is: 

 
  

  
 

( ) ( )

( 1) ( )

1
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1
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!( )!
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rr r

n r

r
r l n l

l

r l

n n n

n

r
n n

l r l
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  
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V V

P P C

P W

P C










  (6) 

By means of similar procedures, the following corol-
laries can be obtained. 

Corollary 4.2 The higher moments of ( )ij n  in the 

discounted due case, in matrix form, are given by the 
following relation: 
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

 

(7) 

where:   ( ) ( )( ) ( ) ( 1) ( ) .
ll l

ij i ijn c n n n   C  

Remark 4.2 The possibility of computing the second 
order moments permits the obtaining of the variance and 
the sigma square, having in this way the opportunity to 
have a risk measure. 
 
5. Motorcar Insurance Application 
 
As it is well known, the bonus-malus motor car insur-
ance model can be studied by means of Markov chains, 
see [13] for a complete description of bonus-malus sys-
tems. As far as the authors know, the premiums received 
and the benefits paid by the insurance company have 
never been studied simultaneously inside the evolution 
equation of the model as we propose here. In this way it 
is possible to have information on the future evolution of 
cash flows of the insurer and the possibility of computing 
higher order moments permits the obtaining of risk 
measures. 

In order to apply DTMRWP we will construct a bo-
nus-malus Markov reward model. 

It should be noted that, as explained in [14], motor car 
insurance premiums could be a function of many factors 
such as type of car, mileage, age of the driver, region, 
sex and so on. 

In Italy the only official distinctions are the province 
in which the car is insured and the power of its engine. 

This example will use a transition matrix related to the 
motor car bonus-malus insurance rules that apply in Italy. 
In this case, the Markov model fits quite well because: 

1) the position of each insured person is given at the 
beginning of each year, 

2) there are precise rules that give the change of states 
in function of the behaviour of the policyholder person 
during the year, 

3) the future state depends only on the present one. 
The Italian bonus-malus rules are expressed by the 

function :T I I   that to each rating class i I  
and number of accidents  associates a new rating 
class 

k 
j I  by means of the following law: 

   

   
    

0

0 4

4

( , ) 1 max 1, 1

1 min 18, 1 3

1 min 18, 1 4

k

k

k

T i k i

i k

i k



 



  

  

 





      (8) 

The range of values of T is  expressing 

the classes of risk in which all drivers are classified. The 
stochastic process 

1,2,....,18

( )X t  describing the rating risk class 

evolution of the policyholder is assumed to be a Markov 
chain with state space . This choice is 

determined by the fact that the next risk class is deter-
mined through rule (5.1) as a function of the current risk 
class  and the number of accidents  the policy-
holder carried out in the current year. 

 ,...,18

k

1, 2I 

i

The authors are in possession of the history of 105627 
insured persons over a period of three years. This means 
that it was possible consider 316881 real or virtual tran-
sitions. The data are related to the years 1998, 1999 and 
2000. The estimated Markov transition matrix obtained 
from the available data taking into account the bo-
nus-malus Italian rules is given in the Table 1. In this 
table we report only the transition probability that are 
possible to be observed, the remaining are impossible 
due to the Italian BMS rules. Then for example, in one 
step, from state 1 it is possible to migrate only towards 
state 1 (0 accident), to state 3 (1 accident), to state 6 (2 
accident), to state 9 (3 accident) and to state 12 (4 or 
more accident). The other transitions are not allowable 
and then their probabilities are zero and then not reported 
in the table. 

The payment of a claim by the insurance company can 
be seen as a lump sum (impulse or transition reward) 
paid by the insurer to the insured person. 

In Figure 1 the premiums (they can be seen as per-
manence rewards) that are paid in Naples for a car of 
2300 c.c. and in Oristano (a small Sardinian province) 
for a small car (about 1000 c.c.) are reported. 
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Table 1. One step transition probability matrix. 

Starting 
state 

Next state and related probability 

1 
1 

0.941655 
3 

0.056264 
6 

0.001973 
9 

0.000081 
12 

0.000027

2 
1 

0.935097 
4 

0.062379 
7 

0.002427 
10 

0.000097 
13 
0 

3 
2 

0.941646 
5 

0.056611 
8 

0.001574 
11 

0.000169 
14 
0 

4 
3 

0.948892 
6 

0.049364 
9 

0.001744 
12 
0 

15 
0 

5 
4 

0.945231 
7 

0.052354 
10 

0.002314 
13 

0.000067 
16 

0.000034

6 
5 

0.949204 
8 

0.04908 
11 

0.00157 
14 

0.000146 
17 
0 

7 
6 

0.934685 
9 

0.061856 
12 

0.00339 
15 

0.000069 
18 
0 

8 
7 

0.92227 
10 

0.073137 
13 

0.004246 
16 

0.00026 
18 

0.000087

9 
8 

0.914103 
11 

0.082621 
14 

0.003185 
17 
0 

18 
0.000091

10 
9 

0.923854 
12 

0.071989 
15 

0.003827 
18 

0.00033 
 

11 
10 

0.92933 
13 

0.066723 
16 

0.003696 
18 

0.000251 
 

12 
11 

0.930156 
14 

0.066697 
17 

0.002994 
18 

0.000153 
 

13 
12 

0.937854 
15 

0.059651 
18 

0.002495 
  

14 
13 

0.920681 
16 

0.074704 
18 

0.004615 
  

15 
14 

0.885204 
17 

0.107143 
18 

0.007653 
  

16 
15 

0.777568 
18 

0.222432 
   

17 
16 

0.876733 
18 

0.123267 
   

18 
17 

0.888614 
18 

0.111386 
   

 

 

Figure 1. Naples and Oristano premiums. 

 
The example is constructed from the point of view of 

the insurance company and premiums are an entrance for 
the company. It is to precise that these values correspond 
to the real premiums (that is loaded premiums covering 
costs and risk) paid by an insured in the year 2001 and 

officially given in the internet site of Assicurazioni Gen-
erali for that year. 

In the example we suppose that the rewards are fixed 
in the time. Furthermore we suppose to have a yearly 
fixed discount factor of 1/1.03. 

Table 2 gives the mean values of the expenses that the 
insurance company should pay for the claims made by 
the insured person. 

More clearly stated, the element –7772.51 represents 
the expenses that, on average, the company has to pay 
for the two accidents that an insured person that was in 
the state 1 (lowest bonus-malus class) had and which 
then took him to state 6. 

This table was constructed starting from the observed 
data in the authors’ possession. 

From the point of view of the model, the elements of 
this table are transition rewards. More precisely, as al-
ready mentioned, they can be seen as lump sums (im-
pulse rewards) paid by the company at the time of the 
accident. In this case, being expenses for the company, 
they result negative. 

 
Table 2. Mean insurance payments. 

State Expenses mean values in function of next state 

1 
3 

–2185.57 
6 

–7772.51 
9 

–3240.77 
12 

–7728.78 

2 
4 

–1956.4 
7 

–3196.16 
10 

–9004.43 
13 
0 

3 
5 

–2188.25 
8 

–2846.52 
11 

–4498.34 
14 
0 

4 
6 

–2853.19 
9 

–2920.39 
12 
0 

15 
0 

5 
7 

–2245.02 
10 

–3945.44 
13 

–3240.77 
16 

–6274.95 

6 
8 

–2676.12 
11 

–3076.05 
14 

–6703.61 
17 
0 

7 
9 

–2086.66 
12 

–3391.18 
15 

–1572.09 
18 
0 

8 
10 

–2198.02 
13 

–4027.26 
16 

–3286.39 
18 

–3629.14 

9 
11 

–2017.77 
14 

–6397.63 
17 
0 

18 
–3687.5 

10 
12 

–2103.01 
15 

–4931.93 
18 

–5165.44 
 

11 
13 

–3110.63 
16 

–4710.94 
18 

–5993.19 
 

12 
14 

–3048.69 
17 

–3893.94 
18 

–11602.3 
 

13 
15 

–2613.27 
18 

–8271.51 
  

14 
16 

–3564.01 
18 

–4145.45 
  

15 
17 

–2468.23 
18 

–7356.78 
  

16 
18 

–2883.68 
   

17 
18 

–3764.32 
   

18 
18 

–2578.55    
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In Figure 2 are resumed in the first part the reward 
mean present values and in the second the related sigma 
square. 

The permanence reward (insurance premium) in-
creases in function of the state and, therefore, the money 
earned by the company increases in function of the start-
ing state too. It is to observe that the Insurance company 
always earns. Only in one case in Oristano (the first year 
of the 16th rank) it looses some small sum. 

The illustrated case is very particular. In Naples the 
premiums are higher than in the other part of Italy, the 
car is big and also for this reason the premiums are very 
high. In Oristano the premiums are among the lowest in 
Italy and we consider a small car. 
 
6. Conclusions 
 
The description of homogeneous Markov reward proc-
esses was presented. For the first time, at author knowl-

edge, the relations useful to compute the higher moments 
for homogeneous Markov reward processes conditioned 
on the starting and arriving states are given. By means of 
the higher order moments it is possible to obtain vari-
ability indices.  

The model was applied to motor car insurance regula-
tions in Italy. The mean present values of rewards were 
computed. The results related to Naples and Oristano 
provinces were shown. 

The authors hope to get a wider data set to construct a 
more reliable example and to understand if these first 
results that were obtained by the available data could be 
confirmed. 
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Figure 2. Mean present values and variances of Naples and Oristano rewards. 
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