
Theoretical Economics Letters, 2019, 9, 511-529
http://www.scirp.org/journal/tel

ISSN Online: 2162-2086
ISSN Print: 2162-2078

DOI: 10.4236/tel.2019.93036 Mar. 15, 2019 511 Theoretical Economics Letters

Neural Nets for Stock Indices: Investigating
Effect of Change in Hyperparameters

Sonali Agarwal1, Jwaad Akhtar Khan2

1Department of Management, Netaji Subhash University of Technology (Formerly Netaji Subhash Institute of Technology) Sector
3, Dwarka, New Delhi, India
2School of Management and Business Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, India

Abstract

Artificial neural networks have seen an outburst of interest in past decade.
There has been an increasing use of ANNs in prediction based studies owing
to their huge performance accuracy. They have been successfully applied
across various domains like medicine, geology, finance, physics, engineering
etc. The system of neural nets witnesses rise in complexity with increase in
number of layers and number of neurons and possesses the capacity to solve
intricate problems. The researchers, world over, consider the neural network
with three layers (input, hidden and output) a universal approximator of
functions as it has given outstanding results in data validation, price fore-
casting, sales forecasting, customer research etc. over the years. In most of the
previous studies, either a standard ANN model has been taken or a default
model has been tested using various softwares. But as we understand, a lot of
hit and trial should be done by altering the hyperparameters to get the best
performance model. In our study we attempt to prove the same point and try
to find the best model for our data set wherein we predict the BSE sensex
closing price of the next day using previous day data (high price, low price,
open price, close price and trade volume). We use deep neural networks with
backpropagation and have altered the hyperparameters: number of nodes in
hidden layers, the activation function of hidden layers, Number of epochs, the
batch size and hence the iterations in each epoch. The model performance
was measured with the help of root mean square error on test set of the mod-
el. We are able to bring out the differences of tuning of hyperparameter and
ultimately find the best predictor model for BSE sensex close value.

Keywords

Deep Neural Networks, Multi-Layer Perceptron, Feed Forward Neural
Network, Prediction Models, Hyperparameters, Backpropagation, Activation

How to cite this paper: Agarwal, S. and
Khan, J.A. (2019) Neural Nets for Stock
Indices: Investigating Effect of Change in
Hyperparameters. Theoretical Economics
Letters, 9, 511-529.
https://doi.org/10.4236/tel.2019.93036

Received: January 27, 2019
Accepted: March 12, 2019
Published: March 15, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/tel
https://doi.org/10.4236/tel.2019.93036
http://www.scirp.org
https://doi.org/10.4236/tel.2019.93036
http://creativecommons.org/licenses/by/4.0/

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 512 Theoretical Economics Letters

Function, Hidden Layer, RBF Neural Network, Epoch, Iteration, Batch Size,
Stock Market, BSE Sensex

1. Introduction

Of late, neural networks have been very popular in the prediction based studies.
They have been successful across various domain areas like medicine, geology,
finance, physics, engineering etc. The system of neural nets becomes more com-
plex with increasing number of neurons and hidden layers. But at the same time,
these complex models also enhance the prediction ability of complex problems
which are otherwise difficult or unsatisfactory. Till now, a three layered neural
network has been christened to be a universal approximator of functions and has
been used successfully in data validation, price forecasting, sales forecasting,
customer research etc. Neural networks are a relatively new concept that has
emerged from the field of Artificial intelligence and is now getting used univer-
sally in almost all fields owing to their high performance rates.

One of the decade-long paradox in finance and investment is the “prediction
of stock market” and that too with full accuracy. There have been a lot of propo-
sitions by various renowned researchers on this topic and a lot of models with
various combinations of theories have been introduced, yet the puzzle stands.
No model has been found to be fully accurate and reliability of models has been
a big concern. Sometimes it has been seen that researchers got satisfied with the
model that gave a good result and failed to test alternatives, which if considered
could have given better results. This was the biggest gap that we found in pre-
vious literature/research. Thus in our study, we try to propose machine learning
models with varied alternatives and test them. The effect of change of hyperpa-
rameters on the model can drastically affect the model performance. We could
not trace any significant previous literature on hyperparameter testing and this
itself speaks for the uniqueness of our work. By the end of the study, we were
able to conclude the best model with high predictability and very less error. This
model if used by investors to predict the future sensex closing value, can help
them make good profits or at least prevent the losses from unanticipated rupee
depreciation.

1.1. Deep Neural Networks

Feed forward neural networks are the simplest and the basic types of artificial
neural networks. Here the connections between nodes do not form a cycle, ra-
ther, the information travels only in one direction which is forward from input
layer to the output layer. A single layer perceptron uses step function as activa-
tion function and uses delta rule for training of neurons. Its drawback is that it
cannot learn a XOR function. But an improvement of it, called the multilayer
perceptron (MLP) is capable of processing XOR function and computing a con-

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 513 Theoretical Economics Letters

tinuous output. Here the activation function is commonly logistic function (also
known as a sigmoid function).

() ()
1

1 x
f x

e−
=

+

Since the sigmoid function has a continuous derivative, it allows backpropa-
gation in multilayer perceptrons.

() () ()()1f x f x f x′ = −

Multilayer perceptron is in fact capable of producing any possible Boolean
function. It also satisfies the universal approximation theorem. Thus we also use
it in our research. When there are multiple hidden layers, it is called a Deep
neural network. More layers mean more processing time but sometimes better
results. Large data sets can be churned with efficiency using Deep neural net-
works (Figure 1).

1.2. Back Propagation

It is a popular method which helps in training of neural networks. Backpropaga-
tion optimizes the weights in multiple back passes and helps the network of
neurons to correctly map the given inputs to their outputs. For illustration let’s
consider a neural network with one input layer, one hidden layer and one output
layer. Here we are talking of supervised learning, and therefore have the data of
inputs and their target outputs with us. The whole process starts with forward
feeding of input/output data to the neural network input layer. As the input passes

Figure 1. Structure of a deep neural network. (Source: Researcher’s own work)

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 514 Theoretical Economics Letters

through the hidden layer, it gets crushed with the activation function of the
layer. The compressed output of the hidden layer passes as input into the output
layer. Here it gets crushed by the activation function of this layer. The output of
this crushing gives the output of the forward pass of inputs through the select
neural network. This output is compared to the target output that we want. De-
pending on the difference between the two, the error is backpassed through the
network, starting from the output layer. The weights in the network are updated,
so that the output from the neural network gets closer to the target output. The
delta rule is used for error backpropagation.

For a neuron “i”, with activation function f(x), the delta rule (gradient des-
cent) for i’s jth weight wij is given as follows

() ()ij i i i jw l t y f h x′∆ = −

where l is learning rate
f(x) is the activation function of neuron “I” in question

it is the target output

iy is the produced output

jx is the jth input

ih is the weighted sum of neuron’s inputs
Once the error reaches the input layer, the weights of the network have got

updated. The output from the network is then again compared to the target
output. This process goes on till the error is decreased substantially. There can
be various ways to terminate training of the network e.g. when the learning rate
decreases beyond a predefined limit, or after a predefined number of epochs, or
when the relative change in training error falls a defined limit etc.

Different termination ways of the training algorithm and different settings of
hyperparameters can give different results differing in accuracy and efficiency.

1.3. Hyperparameter

A hyperparameter is a special class of parameter whose value we set before the
beginning of learning process. The value of other parameters is otherwise de-
rived from training.

1.4. Activation Functions

Different activation functions can be used in deep neural networks. Different ac-
tivation functions can be used in different layers (i.e. in hidden layers and output
layers).

Unipolar logistic function

()

1
1 l xf x

e−=
+

This function gives the output between 0 and 1.
Bipolar logistic function

()

2 1
1 l xf x

e−= −
+

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 515 Theoretical Economics Letters

This function gives the output between −1 and 1.
Hyperbolic Tangent function

()

l x l x

l x l x

e ef x
e e

−

−

−
=

+

This function gives the output between −1 and 1.
Radial basis function

()
()2 221

2

xef x
µ σ

σπ

− −

=

This function gives the output between 0 and 1
2σ π

.

In the algorithm that we used to train our neural networks, we set aside 20%
data set for crossvalidation step to measure the error of each iteration and help
in gradient descent of error. Test error and the training errors are calculated
separately in each constructed neural network.

We calculate SSE i.e. sum of square error and RE i.e. relative error for both
sets. SSE gives an indication of the RMSE (root mean square error) which is by
far the most reliable method to measure performance of a neural network. The
lesser the error, the better the network.

This research paper has been organized in sections, where Section 1 introduces
the title and the subject under consideration in this research, Section 2 talks
about previous works done in the similar areas, the need for the study and the
research gap are explained in Section 3 under research objectives. Section 4 gives
a detailed structure of methodology used in this research followed by Section 5,
which explains all the different models with the variations of hyperparameters
and the results of all these variations. At the end of Section 5, the best fit model
for our research BSE Sensex is described. Finally, Section 6 concludes the paper.

2. Literature Review

Some noteworthy researches in the area of financial modelling using machine
learning have been done over past few decades. Few of them are worth men-
tioning. A pioneering work was done by Kimoto et al. [1] wherein they applied
modular neural networks to the price indices data of Tokyo stock exchange and
developed a prediction system for best time of stock buying and selling and
achieved accurate predictions. The simulation showed excellent profits. The re-
search done by Ghiassi and Saidane [2] was commendable since they designed a
new model of ANN where in they used the entire data set simulataneously for
model parameter estimation. The model was appraised using marketing data set
and compared it with traditional feed forward methods. The new model was
found to perform better. Ghiassi et al. [3] compared the traditional iterative back
propagation feed forward method of time series forecasting with the dynamic
model of neural network and established the supremacy of the latter method.
One of the highly acclaimed research was performed by Chang et al. [4]. They

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 516 Theoretical Economics Letters

developed an integrated system for stock forecasting in which neural network,
case based reasoning and dynamic time windows were combined. The predic-
tion of sell/buy deciding points was found to be better than with any of the three
methods used alone. Hamzacebi et al. [5] compared two methods (direct and
iterative) of artificial neural network for time series forecasting. In iterative me-
thod one period value is forecasted from the past period one, and then this value
is used to predict the next period value. In the direct method all the values of
successive periods can be predicted in one go. The researchers compared the two
methods using grey relational analysis and found that direct method was better
than the iterative method. An innovative empirical study was attempted by
Cheng et al. [6] wherein they used fundamental and technical analysis and in-
tergrated them with artificial neural network system and set theory to develop
market timing investment strategy model. Forecasting accuracy and returns
from investments were used for evaluating the model. Liao and Wang [7] stu-
died the fluctuations of Chinese stock Index and make an improvised forecasting
neural network model by introducing stochastic time effective function. They
suggest that the closer is the time of the past data is to the current time, the
stronger is its effect on the prediction model. The model is also appraised by dif-
ferent parameters of volatility. In another research by Guresen et al. [8], the re-
searchers tried to cut through traditional linear and nonlinear approaches to
forecast stock market rates and analysed three new models: Multi-layer percep-
tron (MLP), Dynamic artificial neural network (DAN) and a Hybrid nuerual
network. The Mean square error used for appraisal of models showed that the
MLP model gave the best predictions when used on the same data set. Moghad-
dam et al. [9] investigated the stock forecasting ability of artificial neural net-
work using NASDAQ stock exchange. Two types of input sets four prior days
and nine prior days were used, although both methods were found to be equally
meritorious.

In most of the studies, either a standard ANN model has been taken or a de-
fault model has been tested using various softwares. But as we understand, a lot
of hit and trial should be done by altering the hyperparameters to get the best
performance model. In our study we attempt to prove the same point and try to
find the best model for our data set.

3. Research Objectives

In this research, we wanted to see the effect of change of some hyperparameters
on the model’s prediction ability and efficiency. The testing is useful as it points
out the effect of taking some hyperparameters as default and getting the results
without realizing that the model could be tuned for further better results.

4. Research Methodology

We took the daily data of BSE Sensex from yahoo finance website for a time pe-
riod 1 January 2014 to 31 December 2018. The daily data contained volume

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 517 Theoretical Economics Letters

traded, the high price, low price, close price and open price. Raw data was
cleaned for any missing values and standardized using Z scores.

Input-meanZ score
variance

=

A total of 1231 readings (observations) were retrieved for analysis using deep
neural networks. Cases with user missing values on factors and categorical de-
pendent variables were excluded during analysis.

We used SPSS for analysing the data and constructing different networks. The
input or independent variables consisted the high price, low price, open price,
close price and the volume traded. The dependent variable or the output value
was the closing value of index (labelled closenext here) on the successive day.
We set the data partitions as 60% training set, 20% validation set and another
20% as test set. We used batch training for each epoch so as to see the effect of
change in iterations on the prediction capacity. The training momentum was set
at default value of 0.9. The maximum training time was set to 15 minutes (for
the worst scenario if the termination criteria is not reached). The stopping crite-
ria was 6 consecutive training steps with no change in training error or relative
change of 0.0001 in training error achieved. Both training and test data were
used to compute prediction errors.

The learning rate was set at 0.4 and the lower boundary of learning rate was
fixed to 0.001. Gradient descent was used for backpropagation.

The hyperparameters we changed in different models were:
• The number of hidden layers
• Number of nodes in hidden layers
• The activation function of hidden layers
• Number of epochs
• The batch size and hence the iterations in each epoch

The model performance was measured with the help of root mean square er-
ror on test set of the model. Both the training and test data sets were used for
computing prediction error.

Error Calculation
In the algorithm that we used to train our neural networks, we set aside 20%

data set for crossvalidation step to measure the error of each iteration and help
in gradient descent of error. Test error and the training errors are calculated
separately in each constructed neural network.

We calculate SSE i.e. sum of square error and RE i.e. relative error for both
sets. SSE gives an indication of the RMSE (root mean square error) which is by
far the most reliable method to measure performance of a neural network. The
lesser the error in the test set, the better the network. As a rule of thumb, if the
training error is more, we increase the number of neurons in the hidden layer or
the number of hidden layers. If the training error is satisfactory, but test error is
more, we presume that the training has led to over-fitting, and therefore we re-
duce the number of neurons in the hidden layer or the number of hidden layers.

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 518 Theoretical Economics Letters

5. Analysis and Results

Case 1. Effect of Change in number of hidden layers and the activation
function of hidden layers

In our first variation, we changed the number of hidden layers to 1 and 2. The
number of nodes in the single hidden layer were taken as 3 while in the model
with two hidden layers, the first layer had 3 nodes and the second had 2 nodes.
The number of layers was restricted to 2 as on further increasing, the test error
was getting very high. Also, for both the model types (two variations in number
of hidden layers) we tested two activation functions for the layers, first one was
the sigmoid function and the second one was the hyperbolic tangent function.
The performance metrics of the (four total) models is shown in Table 1.

The errors of prediction are elaborated graphically in Figure 10. Figures 2-5
below show the regression results of predicted and actual test set values for

Table 1. Performance metrics of variation in number of hidden layers and its activation functions.

Number of hidden layers

(activation function of hidden layers is sigmoid)
Number of hidden layers

(activation function of hidden layers is hyperbolic tangent)

1

(hidden nodes = 3)

2
(hidden nodes in first layer =3,

hidden nodes in second layer = 2)

1
(hidden nodes = 3)

2
(hidden nodes in first layer =3,

hidden nodes in second layer = 2)

Train SSE 1.266 1.964 25.509 1.286

Train RE 0.004 0.005 0.070 0.004

Training time taken 0:00:00.41 0:00:00.58 0:00:00.10 0:00:00.62

Test SSE 0.647 0.761 7.065 1.198

Test RE 0.006 0.007 0.070 0.012

Holdout RE 0.008 0.009 0.090 0.010

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data).

Figure 2. MLP FFN model with Hidden (3) sigmoid: Predicted test value vs. actual test labels. (Source: Reasearcher’s analysis of
data)

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 519 Theoretical Economics Letters

Figure 3. MLP FFN model with Hidden (3, 2) sigmoid: Predicted test value vs. actual test labels. (Source: Reasearcher’s
analysis of data)

Figure 4. MLP FFN model with Hidden (3) hyperbolic tangent: Predicted test value vs. actual test labels. (Source: Rea-
searcher’s analysis of data)

Figure 5. MLP FFN model with Hidden (3, 2) hyperbolic tangent: Predicted test value vs. actual test labels. (Source:
Reasearcher’s analysis of data)

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 520 Theoretical Economics Letters

the four models taken in our case 1. The more clean the regression line, the bet-
ter the results. Along with this, the figures on the right side show the residual
distribution with predicted value. The more centered and closer the residuals,
the better is the model.

The graphs shown in Figures 6-9 below show the hits and miss of the actual
values and the predicted values for the four models of case 1. The more the visi-
bility of blue line in the graph, the more the misses in the prediction.

From Figure 6, it can be seen that most of the predicted values coincide with
the actual values. A few mismatches in between Jan 2014 and March 2014,
around August 2018 etc. can be easily identified from the graph plot. There are
very few mismatches and outliers. The training time from the data Table 1

Figure 6. Hidden (3), sigmoid: graph showing actual data values and predicted values.
(Source: Reasearcher’s analysis of data)

Figure 7. Hidden (3, 2) sigmoid: graph showing actual data values and predicted values.
(Source: Reasearcher’s analysis of data)

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 521 Theoretical Economics Letters

Figure 8. Hidden (3) hyperbolic tangent: graph showing actual data values and predicted
values. (Source: Reasearcher’s analysis of data)

Figure 9. Hidden (3, 2) hyperbolic tangent: graph showing actual data values and pre-
dicted values. (Source: Reasearcher’s analysis of data)

can also be seen to be low. Overall it is a good model with less error in testing.

It can be seen from Figure 7 that the predicted values and the actual values
of closing sensex coincide for most of the study period. Also from Table 1, it
can be deduced that both the SSE and RE for both training and testing are
more than the previous model. Also, this model has taken more time for
training than the previous one with 3 hidden sigmoid neurons. The mis-
matched areas can be prominently seen in blue colour in the graph (Jan
2014-March 2014, March 2015, April 2017-July 2017, around August 2018 and
November 2018).

This model with 3 hidden hyperbolic tangent neurons shows a lot of deviation

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 522 Theoretical Economics Letters

between the actual and the predicted closing sensex values. The error rate in
both training and testing is high. The disagreement patches are also large and
clear (seen in big blue colour lines around January 2014-May 2014, June 2018-Nov
2018 etc.). Also from the graph is messy since the scatter plot shown in Figure 4
shows huge scatter between residuals and predictions. Thus the model is not ap-
propriate for the prediction in current research. Table 1 shows that this model
has high SSE in training process. This means that there is requirement to in-
crease the number of hidden layers, or number of hidden neurons or both. To
test this we check another model seen in Figure 5 & Figure 9.

When we see Figure 9 along with Figure 8, we can see the difference. There is
a lot of improvement in the predictability of model with two hidden hyperbolic
tangent layers (3, 2). The training and test error show drastic reduction from the
previous model where there was only one hyperbolic tangent layer. Also, the
mismatches seen are less (less blue visible lines in above graph). The most
prominent deviation seen is from June 2018 to Nov 2018. Though this model is
appraised to be good, but the training time taken is more.

As can be seen from the Figure 10, both the test and train error are low in
ANN with sigmoid function activated hidden layer. Also, the model with sig-
moid function gives best result with one hidden layer with three hidden neurons.
The training time in 3 unit single sigmoid activated layer model has less training
time of 0.41 seconds with good performance.

Case 2. Effect of change of training batch size
The batch size used for one iteration was varied to see the effect on model

performance. We took the number of records as 10, 20, 30 and 50 for a composi-
tion of a batch in successive variations of model. The number of units were 192
and the number of hidden layers was 1 (taken as default setting for case 2 varia-
tion). The number of nodes in hidden layer was 3. The activation function used
was sigmoid. The output activation function was linear.

Figure 10. Effect of change in number of hidden layers and change in hidden layer acti-
vation function. (Source: Reasearcher’s analysis of data)

1.266
1.964

25.509

1.286
0.647 0.761

7.065

1.198

0

5

10

15

20

25

30

Sigmoid (3) Sigmoid (3,2) Hyperbolic tangent (3) Hyperbolic tangent (3,2)

SS
E

Activation function of hidden layer (no. of layers with neurons)

Performance metrics

Train error Test error

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 523 Theoretical Economics Letters

The results of the performance of models with different batch size iterations is
explained through graph in Figure 11.

The batch size was restricted to 50 and no further increase was reported as the
error was increasing at exponential rates.

From Figure 11, it can be seen that the least error for both training set and the
test set is in 10 records. Also from Table 2, it can be seen that the training time
of 0.41 seconds is also comparable with 20 and 30 batch size training time.
Hence 10 records is the best size to train the current data set.

Case 3. Effect of change in number of nodes in one hidden layer
In this case, we varied the number of nodes (neurons) in the hidden layer. The

number of units were 192 and the number of hidden layers was 1 (taken as de-
fault for case 3 variations). The activation function of hidden layer was sigmoid.
The output activation was linear. The hidden nodes varied being 3, 10, 20 and 30
in different models tested. On further increase in number of nodes, the error in-
creased immensely.

The performance results of case 3 are explained graphically in Figure 12.

Table 2. Performance metrics of variation in batch size used for training.

 Batch size

 10 20 30 50

Train SSE 1.266 1.468 2.211 8.118

Train RE 0.004 0.004 0.006 0.022

Training time taken 0:00:00.41 0:00:00.52 0:00:00.32 0:00:00.19

Test SSE 0.647 0.717 0.628 2.343

Test RE 0.006 0.007 0.007 0.022

Holdout RE 0.008 0.007 0.011 0.024

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data).

Figure 11. Effect of change of training batch size (no. of records). (Source: Reasearcher’s
analysis of data)

1.266 1.468 2.211

8.118

0.647 0.717 0.628

2.343

0

1

2

3

4

5

6

7

8

9

10 20 30 50

SS
E

Training batch size

Performance metrics

Train error Test error

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 524 Theoretical Economics Letters

Figure 12. Effect of change in no. of hidden units (nodes) in the single hidden layer.
(Source: Reasearcher’s analysis of data)

From Figure 12 it can be seen that the training error increases with the num-
ber of increasing nodes in the hidden layer. The test set error remains more or
less same when the no. of hidden units is 3, 10 and 20. It increase when the no.
of nodes is increased to 30. Thus the best model is one with 3 hidden units
(nodes) where both the test and train errors are less. Also, from Table 3 it can be
seen that the training time is also least when the number of nodes is 3.

Case 4. Effect of change in number of training epochs
In case 4, we attempted to study the effect of change in number of training

epochs. One epoch is defined as one pass of the complete data set through the
neural network. The number of units were 192 and the number of hidden layers
was 1 (taken as default for case 4 variation analysis). The number of nodes in
hidden layer was 3. The activation function used was sigmoid. The output acti-
vation was linear. We tested a varied number of epochs (starting from 10, 20, …
upto 100). There was change in error at each change and also the training time
varied across all cases (Table 4).

The performance of case 4 variations is explained further through graph in
Figure 13.

From Figure 13 it can be seen that both training and test error are less when
the number of epochs used for training are 10, 75 and 80. But the least error is
when the number of epochs used is 10. Also the time taken for training is less
when seen along with the error rate. Thus the best model for our data set in this
research is the one using 10 epochs for training. This is suggested keeping in
mind both the model error and the training time taken.

Case 5. Using radial basis function
We tried to use radial basis function network in place of multilayer perceptron

feed forward model to check if it gives a better result. In radial basis function,
the number of hidden layers is always 1. Hidden layer’s number of nodes is va-
ried. The activation function of hidden layer is softmax function. We varied the

1.266

1.723

2.2

2.942

0.647 0.699 0.637

0.826

0

0.5

1

1.5

2

2.5

3

3.5

3 10 20 30
SS

E

Number of hidden nodes

Performance metrics

Training error Test error

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 525 Theoretical Economics Letters

Table 3. Performance metrics of variation in number of hidden layer nodes.

 Number of nodes

 3 10 20 30

Train SSE 1.266 1.723 2.200 2.942

Train RE 0.004 0.005 0.006 0.008

Training time taken 0:00:00.41 0:00:00.76 0:00:01.49 0:00:03.06

Test SSE 0.647 0.699 0.637 0.826

Test RE 0.006 0.007 0.008 0.007

Holdout RE 0.008 0.008 0.006 0.007

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data).

Table 4. Performance metrics of variation in number of training epochs.

 Number of epochs

 10 20 50 75 76 77 80 100

Train SSE 1.554 8.641 10.912 1.547 4.298 6.491 1.725 5.042

Train RE 0.004 0.023 0.030 0.004 0.012 0.018 0.005 0.014

Training time
taken

0:00:00.37 0:00:00.16 0:00:00.15 0:00:00.56 0:00:00.30 0:00:00.22 0:00:00.60 0:00:00.17

Test SSE 0.718 2.238 3.444 0.788 1.679 2.667 0.920 2.314

Test RE 0.007 0.023 0.036 0.007 0.017 0.024 0.009 0.021

Holdout RE 0.007 0.022 0.029 0.009 0.014 0.026 0.011 0.020

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data).

Figure 13. Effect of change in no. of training epochs. (Source: Reasearcher’s analysis of
data)

number of hidden units (nodes) in the single hidden layer from 10, 20, up to 50.
Further increase was giving high errors. The performance statistics are reported
in Table 5.

The results of variations done in case 5 are explained through graph in Figure
14.

1.554

8.641

10.912

1.547
4.298

6.491

1.725

5.042

0.718

2.238

3.444

0.788
1.679

2.667

0.92

2.314

0

2

4

6

8

10

12

10 20 50 75 76 77 80 100

SS
E

Number of training epochs

Performance metrics

Training error Test error

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 526 Theoretical Economics Letters

Table 5. Performance metrics of variation in number of nodes in hidden layer when RBF
function model is used.

 Number of hidden units in the hidden layer

 10 20 29 30 31 32 35 50

Train SSE 6.906 2.262 2.401 2.030 2.489 2.354 2.498 2.555

Train RE 0.019 0.006 0.007 0.006 0.007 0.006 0.007 0.007

Test SSE 1.868 0.587 0.817 0.494 0.746 0.803 0.623 0.842

Test RE 0.019 0.005 0.007 0.006 0.007 0.007 0.005 0.008

Holdout RE 0.016 0.005 0.005 0.008 0.007 0.006 0.006 0.008

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data).

Figure 14. Effect of changing no. of hidden units in radial basis function model. (Source:
Reasearcher’s analysis of data)

As we can see from Figure 14, the training and testing error co-vary as the no.
of hidden units is increased from 20 to 50. The highest error is when the number
of units is 10. If we compare these results with our best fit MLP FFN (one hidden
layer, with three nodes, sigmoid activation function, 10 record iteration, 10
epochs for training), the training error is high in all cases of RBF network. The
test error is although comparable in few of the RBF network cases, overall we
can say that a MLP FFN is best suited for BSE Sensex prediction with both
training and test errors at their minimum. They show the best performance.

The best fit model for BSE Sensex prediction
Based on the above results from Cases 1 - 5 (represented in Tables 1-5 and

Figures 2-15), we can easily say that the best performance is given by MLP FFN
model for prediction of BSE sensex and the network with one hidden layer hav-
ing 3 neurons gave the best results. We also suggest that the hidden layer should
be activated with sigmoid function and the output layer by linear function. We
get best results with batch training having 10 records per iteration and 10 epochs
for whole training. The detailed summary of the model is given below in Table 6.

From the above statistics (Table 7), we can see that closing value of the previous

6.906

2.262 2.401 2.03 2.489 2.354 2.498

2.5551.868

0.587 0.817
0.494

0.746 0.803 0.623
0.842

0

1

2

3

4

5

6

7

8

10 20 29 30 31 32 35 50

SS
E

Number of hidden units

Performance metrics

training error test error

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 527 Theoretical Economics Letters

Table 6. Case processing summary.

 N Percent

Sample

Training 707 60.3%

Testing 239 20.4%

Holdout 227 19.4%

Valid 1173 100.0%

Excluded 58

Total 1231

(Source: Reasearcher’s analysis of data)

Table 7. Independent variable importance.

 Importance Normalized Importance

Volume 0.077 20.4%

Open 0.155 41.2%

High 0.293 77.8%

Low 0.098 26.0%

Close 0.377 100.0%

(Source: Reasearcher’s analysis of data)

Figure 15. Graph showing variable importance in prediction of closing value of BSE Sen-
sex on the next day. (Source: Reasearcher’s analysis of data)

day has the highest effect on the closing value of the successive day. Highest pre-
vious day values have a little less importance.

6. Conclusion

In our attempt to investigate the effects of change in hyperparameters in the
performance of neural network model for BSE Sensex prediction, we discuss 5
different cases. In our first case, we saw the effect of change in number of hidden

https://doi.org/10.4236/tel.2019.93036

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 528 Theoretical Economics Letters

layers and their activation functions. In the second case we changed the batch
size of each iteration. Next we probed the effects of change in number of units in
hidden layer. Case 4 assessed the change in number of training epochs used in
the model. Lastly we changed the multilayer perceptron feed forward network to
radial bases function network and tapped its performance and predictive ability.
From all the above experiments, we conclude that the best model for prediction
of BSE sensex next day close value is a multilayer perceptron feed forward net-
work with gradient descent based back propagation. MLP FFN with one hidden
layer, having three nodes and sigmoid activation function gave the best predic-
tion, with least performance error and best trade-off training time. The network
activation should use sigmoid function for hidden layers and linear function for
output layers. 10 records per iteration and 10 epochs of training gave the most
accurate results with feasible training time. Also from our study we conclude
that the most important variable for prediction of next day sensex closing value
is the closing value of the previous trading day. This result is in line with the
previously established theories where it is said that the stock markets follow a
random walk process and the trading strategy is a martingale process. Today’s
price is the best prediction for tomorrow’s price. Thus using the best fit neural
network model discovered in our research, we can use today’s close price to pre-
dict tomorrow’s best value.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References

[1] Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M. (1990) Stock Market Prediction
System with Modular Neural Networks. 1990 IJCNN International Joint Conference
on Neural Networks, San Diego, 17-21 June 1990.
https://doi.org/10.1109/IJCNN.1990.137535

[2] Ghiassi, M. and Saidane, H. (2005) A Dynamic Architecture for Artificial Neural
Networks. Neurocomputing, 63, 397-413.
https://doi.org/10.1016/j.neucom.2004.03.014

[3] Ghiassi, M., Saidane, H. and Zimbra, D.K. (2005) A Dynamic Artificial Neural
Network Model for Forecasting Time Series Events. International Journal of Fore-
casting, 21, 341-362. https://doi.org/10.1016/j.ijforecast.2004.10.008

[4] Chang, P.-C., Liu, C.-H., Lin, J.-L., Fan, C.-Y. and Ng, C.S.P. (2009) A Neural Net-
work with a Case Based Dynamic Window for Stock Trading Prediction. Expert
Systems with Applications, 36, 6889-6898.
https://doi.org/10.1016/j.eswa.2008.08.077

[5] Hamzacebi, C., Akay, D. and Kutay, F. (2009) Comparison of Direct and Iterative
Artificial Neural Network Forecast Approaches in Multi-Periodic Time Series Fo-
recasting. Expert Systems with Applications, 36, 3839-3844.
https://doi.org/10.1016/j.eswa.2008.02.042

[6] Cheng, J., Chen, H. and Lin, Y. (2010) A Hybrid Forecast Marketing Timing Model

https://doi.org/10.4236/tel.2019.93036
https://doi.org/10.1109/IJCNN.1990.137535
https://doi.org/10.1016/j.neucom.2004.03.014
https://doi.org/10.1016/j.ijforecast.2004.10.008
https://doi.org/10.1016/j.eswa.2008.08.077
https://doi.org/10.1016/j.eswa.2008.02.042

S. Agarwal, J. A. Khan

DOI: 10.4236/tel.2019.93036 529 Theoretical Economics Letters

Based on Probabilistic Neural Network, Rough Set and C4. 5. Expert Systems with
Applications, 37, 1814-1820. https://doi.org/10.1016/j.eswa.2009.07.019

[7] Liao, Z. and Wang, J. (2010) Forecasting Model of Global Stock Index by Stochastic
Time Effective Neural Network. Expert Systems with Applications, 37, 834-841.
https://doi.org/10.1016/j.eswa.2009.05.086

[8] Guresen, E., Kayakutlu, G. and Daim, T.U. (2011) Using Artificial Neural Network
Models in Stock Market Index Prediction. Expert Systems with Applications, 38,
10389-10397. https://doi.org/10.1016/j.eswa.2011.02.068

[9] Moghaddam, A.H., Moghaddam, M.H. and Esfandyari, M. (2016) Stock Market In-
dex Prediction Using Artificial Neural Network. Journal of Economics, Finance and
Administrative Science, 21, 89-93. https://doi.org/10.1016/j.jefas.2016.07.002

https://doi.org/10.4236/tel.2019.93036
https://doi.org/10.1016/j.eswa.2009.07.019
https://doi.org/10.1016/j.eswa.2009.05.086
https://doi.org/10.1016/j.eswa.2011.02.068
https://doi.org/10.1016/j.jefas.2016.07.002

	Neural Nets for Stock Indices: Investigating Effect of Change in Hyperparameters
	Abstract
	Keywords
	1. Introduction
	1.1. Deep Neural Networks
	1.2. Back Propagation
	1.3. Hyperparameter
	1.4. Activation Functions

	2. Literature Review
	3. Research Objectives
	4. Research Methodology
	5. Analysis and Results
	6. Conclusion
	Conflicts of Interest
	References

