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Abstract 
Statistical Arbitrage (SA) is a common financial term. However, there is no 
common definition in the literature while investors use the expression SA for 
a variety of different strategies. So, what is SA? In order to answer this ques-
tion, we investigate SA strategies across equity, fixed income and commodity. 
The analysis of strategies’ key features indicates that no existing definition 
fully describes them. To bridge this gap, we identify a general definition and 
propose a classification system that encompasses the current forms of SA 
strategies while facilitating the inclusion of new types as they emerge. 
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1. Introduction 

The concept of arbitrage is fundamental in financial literature and has been used 
in classical analysis of market efficiency [1] [2], whereby arbitrage opportunities 
are quickly exploited by investors. However, pure arbitrage opportunities are 
unlikely to exist in a real trading environment [3] [4]. An arbitrageur typically 
engages in a trade that involves some risks. In the specific case where these risks 
are statistically assessed, then it is appropriate to use the term statistical arbitrage 
(SA). SA has been broadly investigated in literature, however, scholars either 
focus on definitions or on developing and testing investment strategies, while we 
are not aware of any attempt to reconcile these two areas of research. On the one 
hand, several studies introduce definitions extending the concept of arbitrage 
through statistics but with little emphasis on strategies [5]-[11]. On the other 
hand, research on statistically determined arbitrage strategies focuses on models 
and investment opportunities [12] [13] with little or no discussion on definitions 
and theoretical framework. This leads us to our research question. What is SA? 

This paper addresses this question with an in-depth investigation of SA. We 

How to cite this paper: Lazzarino, M., 
Berrill, J. and Šević, A. (2018) What Is Statis-
tical Arbitrage? Theoretical Economics Let-
ters, 8, 888-908. 
https://doi.org/10.4236/tel.2018.85063 
 
Received: February 2, 2018 
Accepted: April 6, 2018 
Published: April 9, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/tel
https://doi.org/10.4236/tel.2018.85063
http://www.scirp.org
https://doi.org/10.4236/tel.2018.85063
http://creativecommons.org/licenses/by/4.0/


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 889 Theoretical Economics Letters 
 

begin by reviewing existing definitions of arbitrage, which are reduced to a 
common framework to analyze and compare them. We survey statistically de-
termined arbitrage strategies analyzing both the academic and financial industry 
research. In total, we review 165 articles on the subject, published between 1995 
and 2016. Particular attention is paid to hedge funds techniques, market neutral 
investment strategies and algorithmic trading. The strategies are discussed in a 
standardized way analyzing equity, fixed income and, for the first time, com-
modity. We find that these strategies show significant similarities and common 
features that define them. The comparison of theoretical definitions and strate-
gies’ key features indicates that no available definition appropriately describes 
SA strategies. To bridge this gap, we propose a general definition, which more 
closely reflects investors’ strategies. In addition, we suggest that, instead of 
searching for a definitive theoretical definition of SA, scholars should instead 
agree on a classification system that encompasses the current forms of SA while 
facilitating the inclusion of new types as they emerge. We propose a simple sys-
tem for classifying strategies that takes into account the strategies’ risk and re-
turn profile. We illustrate the advantages of this approach by demonstrating how 
it can guide theoretical development and empirical testing. We also provide ex-
amples of potential future research directions. 

We make several contributions to the existing literature. We identify a general 
definition, which encompasses all SA strategies and introduce a classification 
system that facilitates their study. This is achieved through an innovative inves-
tigation of SA both in academic and financial industry research. In our review, 
for the first time, we analyze SA across all asset classes (equity, fixed income and 
commodity) to identify common features and defining elements. Our analysis 
brings clarity in SA investing and allows investors to have a common framework 
to assess different investment opportunities. 

The paper is organized as follows. In Section 2, we review existing definitions 
of SA producing a comprehensive mapping. In Section 3, we report a survey of 
statistically determined arbitrage strategies. In Section 4, we identify the key 
features which are common to the various strategies. We combine the findings 
of the previous sections and propose a general definition and classification sys-
tem. Section 5 concludes the paper. 

2. Review of Definitions 

It is commonly accepted that Statistical Arbitrage (SA) started with Nunzio Tar-
taglia who, in the mid-1980s, assembled a team of quantitative analysts at Mor-
gan Stanley to uncover statistical mispricing in equity markets [14]. However, 
SA came to the fore as a result of Long-Term Capital Management (LTCM), a 
hedge fund founded in 1994, where Nobel Prize winners Sholes and Merton 
both worked. The company developed complex SA strategies for fixed income 
[15] which were initially extremely successful. However, in 1998, as a result of 
the financial crises in East Asia and Russia, LTCM’s arbitrage strategies started 
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producing large losses which endangered global markets and forced the Federal 
Reserve Bank of New York to organize a bailout in order to avoid a wider finan-
cial collapse. Nevertheless, SA continued to grow in popularity with applications 
progressively expanding to all asset classes. SA has become one of the main in-
vestment strategies in investment banks and mostly for hedge funds [16]. In par-
ticular, the term SA is used to denote hedge funds that aim to exploit pricing 
anomalies in equity markets [17]. Technological developments in computational 
modelling have also facilitated the use of SA in high frequency trading and with 
the so-called machine learning methods, such as neural networks and genetic 
algorithms [18] [19] [20] [21]. In more recent years, SA has seen renewed inter-
est in emerging areas such as bitcoin [22] [23], big data [24] [25] [26] and factor 
investing [27]. 

The literature on the limits of arbitrage is quite broad and provides some in-
sights on why SA opportunities exist. Mou [28] reports how arbitrageurs have to 
face three different types of risks: fundamental risk [3], noise trader risk [29] and 
synchronization risk [30]. Duffie [31] describes the risks arising from inattentive 
investors. Finally, behavioral effects can generate additional risk and asset bub-
bles. On the one hand, these risks create SA opportunities. On the other hand, 
the same risks can undermine arbitrageurs’ efforts and cause delays in correcting 
market anomalies. 

In this section, we review all definitions of arbitrage available in literature 
which may be suitable to define SA. Our analysis encompasses both alternative 
definitions of arbitrage as well as definitions of statistical arbitrage. Before re-
viewing the various definitions, we briefly recall the four types of definitions that 
are commonly used: 1) lexical, 2) conceptual, 3) abstract and 4) operational [32] 
[33]. Lexical definitions use simple terms for a wide audience. Conceptual defi-
nitions describe a concept in a way that is compatible with a measurable occur-
rence. Abstract definitions are used when the meaning cannot be measured em-
pirically. Finally, operational definitions provide a clear and concise meaning of 
a concept in a way that can be measured. Operational definitions clearly specify 
the object and criteria of measurement which makes them particularly suitable 
for scientific investigation. We find that existing definitions can be categorized 
as lexical, conceptual or operational while there are no abstract definitions. 

2.1. Lexical Definitions of SA 

Some lexical definitions tend to be vague and lack formalism because traders, for 
good commercial reasons, tend to be obscure about their investment methods. 
Pole [13] for example writes that SA uses mathematical models to generate re-
turns from systematic movements in securities prices. According to Avellaneda 
and Lee [34], the term statistical arbitrage encompasses a variety of strategies 
characterized by systematic trading signals, market neutral trades and statistical 
methods. Montana [35] defines SA as an investment strategy that exploits pat-
terns detected in financial data streams. Burgess [36] defines statistical arbitrage 
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as a framework for identifying, modelling and exploiting small but consistent 
regularities in asset price dynamics. Other definitions are centered on the con-
cept of mispricing. Thomaidis and Kondakis [37] define SA as an attempt to 
profit from pricing discrepancies that appear in a group of assets. Do, Faff and 
Hamza [38] claim that SA is an equity trading strategy that employs time series 
methods to identify relative mispricings between stocks. Burgess [36] also de-
scribes statistical arbitrage as a generalization of a traditional arbitrage where 
mispricing is statistically determined through replicating strategies. In using de-
rivatives, Zapart [39] describes statistical arbitrage as an investment opportunity 
when perfect hedging is not possible. 

A general definition of SA strategy should describe what SA is and its objec-
tives. We find instead that some definitions focus on specific implementations 
and techniques. In particular, in a broad range of papers, SA is associated with 
pairs trading [14] [40]-[46] and cointegration [47] [48] [49] [50] [51]. 

2.2. Conceptual Definitions of SA 

Another set of definitions can be classified as conceptual as they can be asso-
ciated with specific measures. In reviewing Hedge Funds (HFs) strategies, Con-
nor and Lasarte [52] use the probability of a loss in defining SA as a zero-cost 
portfolio where the probability of a negative payoff is very small but not exactly 
zero. Stefanini [12] uses the expected value in noting that SA seeks to capture 
imbalances in expected value of financial instruments, while trying to be market 
neutral. For Saks and Maringer [53], SA accepts negative payoffs as long as the 
expected positive payoffs are high enough and the probability of losses is small 
enough. Focardi, Fabozzi and Mitov [54] focus on uncorrelated returns report-
ing that SA strategies aim to produce positive, low-volatility returns that are un-
correlated with market returns. 

2.3. Operational Definitions of Arbitrage 

We next discuss the various extensions of arbitrage available in the literature 
that are used mainly in asset pricing. All definitions can be classified as opera-
tional and are mathematically formulated. Here, we provide a description of the 
various arbitrages while we refer to the relative papers for a more rigorous for-
mulation. 

We first introduce the classical definition of arbitrage, defined as a zero-cost 
trading strategy with positive expected payoff and no possibility of a loss. The 
absence of arbitrage is a necessary condition for equilibrium models, however 
this condition alone is often too weak to be practically useful for certain applica-
tions such as option pricing [10]. 

A first attempt to provide a new definition of arbitrage is made by Ledoit [5] 
who defines δ-Arbitrage (δA) using the Sharpe ratio [55] [56]. Ledoit [5] defines 
δA as an investment strategy having a Sharpe ratio above a constant and strictly 
positive level δ. In the context of incomplete markets, Chochrane and Saa-Requejo 
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[6] independently apply the same concept as Ledoit to derivatives. They define a 
strategy as a Good Deal (GD) if its market price lies outside the range of plausi-
ble prices as determined by the various discount factors. 

Bernardo and Ledoit [7] introduce the Approximate Arbitrage (AA) as they 
note that the Sharpe ratio is not a good measure of the attractiveness of an in-
vestment opportunity. If returns are not normally distributed strategies can have 
arbitrarily low Sharpe ratios, hence the introduction of a gain-loss ratio. AA is 
defined as an investment strategy whose maximum gain-loss ratio is above a 
predefined constant value greater than one. Instead of using the Sharpe ratio or 
the gain-loss ratio, Carr, Geman and Madan [9] base their definition of Accepta-
ble Opportunity (AO) on two distinct sets of probability measures (valuation and 
stress measures). AO is defined as an investment strategy having a non-negative 
expected value under each valuation measure and losses capped under a set of 
stress measures. In other words, AO is an investment opportunity acceptable to 
a wide variety of reasonable individuals as it has expected non-negative payoff 
with losses capped under probability measures reflecting stressed conditions 
(stress measures). Bertsimas, Kogam and Lo [8] introduce 𝜀𝜀-Arbitrage (εA) re-
ferring to replication strategies for derivatives. An εA occurs whenever the price 
of a derivative significantly differs from the least costly optimal replication 
strategy. 

In the literature, there are two definitions of Statistical Arbitrage (SA) which 
differ significantly from each other. Bondarenko’s SA [10] is a trading strategy 
which can have negative payoffs, as long as the average payoff is non-negative 
for given augmented information set. Key in the definition is the introduction of 
the augmented information set, which, in addition to the market information at 
time t, also includes the knowledge of the final price. Hogan et al. [11] provide 
an alternative definition of SA which focuses on long horizon trading opportun-
ities. Hogan’s SA is a long horizon trading opportunity that, at the limit, gene-
rates a risk-less profit. According to this definition SA satisfies four conditions 
1) it is a zero-cost, self-financing strategy, that in the limit has 2) positive ex-
pected discounted payoff, 3) a probability of a loss converging to zero, and 4) a 
time averaged variance converging to zero if the probability of a loss does not 
become zero in finite time. The fourth condition only applies when there always 
exists a positive probability of losing money. 

As a summary, we provide a high-level description of all the reviewed arbi-
trage definitions in Table 1. Most of them are intended to describe only specific 
types or aspects of SA and will be discussed and compared to SA strategies in 
Section 4.2. 

3. Literature Review of Strategies 
3.1. Literature Review 

The existing literature on SA includes a small number of reviews of arbitrage 
strategies which cover only single asset classes. In fixed income, Duarte,  

https://doi.org/10.4236/tel.2018.85063


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 893 Theoretical Economics Letters 
 

Table 1. Definitions. 

Author/Name Definition 

Panel A: Lexical definitions 

Burgess (2000) 
SA is a framework for identifying, modelling and exploiting small but  
consistent regularities in asset price dynamics 

Zapart (2003) SA is an investment opportunity arising from the choice of models for hedging 

Do et al. (2006) 
SA is an equity trading strategy that employs time series methods  
to identify relative mispricing between stocks 

Thomaidis and 
Kondakis (2006) 

SA is an attempt to profit from pricing discrepancies that appear in a  
group of assets 

Pole (2007) 
SA uses mathematical models to generate returns from systematic  
movements in securities prices 

Avellaneda and Lee 
(2008) 

SA encompasses a variety of strategies characterized by: i) systematic  
trading signals, ii) market neutral trades and iii) statistical methods 

Montana et al. 
(2008) 

SA is an investment strategy that exploits patterns detected in  
financial data streams 

Panel B: Conceptual definitions 

Connor and  
Lasarte (2003) 

SA is a zero-cost portfolio where the probability of a negative  
payoff is very small but not exactly zero 

Stefanini (2006) 
SA seeks to capture imbalances in expected value of financial  
instruments, while trying to be market neutral 

Saks and 

Maringer (2008) 
SA accepts negative pay-outs with a small probability as long as the expected 
positive payouts are high enough and the probability of losses is small enough 

Focardi, Fabozzi 
and Mitov (2016) 

SA strategies aim at producing positive, low-volatility returns  
that are uncorrelated with market returns 

Panel C: Operational definitions 

δ-Arbitrage Is a strategy with a Sharpe ratio above a constant and positive δ 

Good Deal 
Consists in buying (selling) securities whose market price lies  
outside a range of plausible prices 

Approximate 

Arbitrage 
Is a strategy whose gain-loss ratio is above a predefined  
constant value greater than 1 

Acceptable  
Opportunity 

Is a strategy with a non-negative expected value under each  
valuation measure and losses capped under the set of stress measures 

ε-Arbitrage 
Consists in buying (selling) those derivatives strategies whose price  
significantly differs from the least costly optimal replication strategy 

SA (Bondarenko) 
Is a strategy with expected positive payoff and expected non-negative  
payoff conditional on the augmented information set 

SA (Hogan et al.) 
With time the strategy has positive expected payoff, probability of a loss  
which tends to zero and time averaged variance which converges to zero 

 
Longstaff and Yu [15] conduct an analysis of the risk and return characteristics 
of the most widely-used fixed income arbitrage strategies. In equity, Do, Faff and 
Hamza [38] analyze different approaches to pairs trading: distance approach, 
cointegration approach, stochastic spread approach and stochastic residual 
spread approach. Again, focusing on equities, Pole [13] elaborates on pairs trad-
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ing as well as statistical models for time series analysis. There are no reviews for 
commodities, where studies primarily focus on modelling spreads and term 
structures for single commodities [57]. 

In our review, for the first time, we look at SA across all asset classes to iden-
tify common features and defining elements. We review the existing literature 
on statistically determined arbitrage strategies and, particularly, on those la-
belled as SA. We identify 165 articles in literature discussing SA strategies span-
ning from 1995 to 2016 (see Table 2). The surveyed studies focus on equities 
(104 studies), followed by bonds (40) while other asset classes appear only in a 
small number of articles: commodities (9), volatility (9) and FX (1). Just two ar-
ticles discuss pairs trading across asset classes (mix): investment grade credit de-
fault swaps versus equity [58] and gold miners versus gold [59]. 

We categorize the various strategies based on the classification proposed by 
Duarte, Longstaff and Yu [15] who identify five different types of SA strategies 
in fixed income: 1) swap arbitrage strategies, 2) term structure arbitrage (or yield 
curve arbitrage), 3) mortgage arbitrage, 4) volatility arbitrage and 5) capital 
structure arbitrage. We add equity pairs trading to the classification for fixed 
income of Duarte, Longstaff and Yu [15]. The term SA is used very frequently in 
particular in relation to pairs trading (112) which includes pairs trading between 
indices (13), ETFs (4) and spread trading between commodities (6). Various ar-
ticles focus on cointegration (21), the Ornstein-Uhlenbeck1 stochastic process 
(10) and, more recently, high frequency trading (9). Pairs trading is predomi-
nantly an equity strategy (103). Capital structure arbitrage is the second most 
documented strategy (30) which includes primarily convertible arbitrage strate-
gies (19). Term structure strategies are documented only in eight studies of 
which four analyze bonds. Swap spread arbitrage and mortgage arbitrage are 
discussed in three studies each. 
 
Table 2. Studies on arbitrage strategies. The table reports the breakdown by asset class of 
existing studies on statistically determined arbitrage opportunities. 

SA strategy Equities Bonds Commodities Volatility FX Mix Total 

Pairs trading 103  6  1 2 112 

Capital structure 
arbitrage 

 30     30 

Volatility 
arbitrage 

   9   9 

Term structure 
arbitrage 

1 4 3    8 

Swap spread  
arbitrage 

 3     3 

Mortgage 
arbitrage 

 3     3 

Total 104 40 9 9 1 2 165 

 

 

1Ornstein-Uhlenbeck is a model used to describe the multivariate dynamics of financial variables 
[44]. 
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3.2. Review of Strategies 

We next describe the six identified trading strategies. Pairs trading is a SA strat-
egy which is particularly popular in equity [41]. In its simplest formulation, pairs 
trading aims to identify pairs of stocks whose prices have historically moved to-
gether. When the spread between the two components of the pair significantly 
widens, the strategy sells the best performing security to buy the laggard. If the 
spread reverts to the mean the trade will be profitable regardless of market 
trends. This strategy relies on the assumption of a (long-term) equilibrium in the 
investigated spreads [60] which can be detected through a variety of statistical 
methods [14] [34] [38] [40] [41] [42] [61]. Long and short positions can be 
combined in a ratio which makes the trade market-neutral (with a neutral beta 
position versus the market) or dollar-neutral. The use of pairs trading is not li-
mited to stocks. There are applications to other areas such as spreads between 
different commodities [62]-[67], commodity future contracts [68] and freight 
markets [69] [70]. Pairs trading can also be used to model the spread between 
different portfolios [71] [72] [73]. 

Term structure arbitrage is a common SA strategy which typically involves 
taking market-neutral long-short positions at different points of a term structure 
as suggested by a relative value analysis [15]. Positions are held until the trade 
converges and the mispricing disappears. Term structure arbitrage is particularly 
common in fixed income (also called yield curve arbitrage) and commodities. In 
spite of being one of the most common SA strategies, the literature on imple-
mentations of yield curve arbitrage is quite limited and mostly focuses on inter-
est rates models [15] [74]. Term structure arbitrage in commodities uses models 
(similar to the one used in rates) to identify relative value opportunities across 
the curve [57]. An implementation of term structure arbitrage in commodities is 
described by Mou [28] who identifies investment opportunities arising from the 
futures rolling of the main commodity indices. In credit, SA opportunities in the 
term structure of CDS are studied by Jarrow, Li and Ye [75]. 

Volatility arbitrage is a popular and widely used strategy [76] [77] [78] [79] 
[80]. Its implementations are structured to be pure bets on volatility and should 
not be influenced by the actual direction of the underlying. Similarly to other 
types of arbitrage, volatility arbitrage refers to a wide range of different strategies 
which can be classified into 1) gamma trading, 2) volatility surface arbitrage, 3) 
cross asset volatility trading and 4) dispersion trading. Gamma trading plays the 
implied volatility versus the historical volatility on the same asset [9]. If the rea-
lized volatility exceeds the volatility implied in the option price, arbitrageurs can 
profit by buying an option and hedging the delta in the underlying market. The 
positive income is proportional to 20.5 ΓS⋅ ⋅ ⋅ (Realized Variance-Implied Va-
riance) where S is the price of the underlying, and Γ is the gamma of the option 
[78]. Volatility surface arbitrage is a relative value strategy trading the implied 
volatilities on the same underlying in different points of the volatility surface. 
Arbitrageurs identify anomalies in implied volatilities across different strike 
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prices and maturities and profit from buying (selling) options whose implied 
volatility is excessively low (high) [81]. Cross-asset volatility trading plays the 
implied volatility of an asset versus the implied volatility of another asset 
through traditional long-short trades. Finally, dispersion trading (also known as 
decorrelation trading) trades the volatility of a basket of securities (generally and 
index) against the volatilities of the components of the same basket [81]. The 
volatility of an index is a function of the volatilities of the constituents and the 
correlations between them. Greater correlations translate into less diversification 
and higher index volatility. Decorrelation is traded by selling index variance 
swaps and buying single stock variance swaps [82]. 

Swap spread arbitrage is another popular fixed income strategy which bets on 
the difference between a fixed and a floating yield [15] [83]. It is structured in 
two parts. On the one hand, the arbitrageur enters a par interest rate swap pay-
ing a fixed coupon rate SR and receiving the floating LIBOR rate tL . On the 
other hand, the arbitrageur buys a treasury bond, with the same maturity as the 
swap, with the money borrowed through a repurchase agreement known as re-
po. Entering this part of the trade the arbitrageur earns the treasury rate TR and 
pays the repo rate tr . The overall cash flow of the trade is ( ) ( )t tL r SR TR− − −  
where SR TR−  is the fixed interest rate component (also known as swap 
spread) and t tL r−  is the floating rate part which needs to be rolled periodically 
(typically every three months). The strategy generates a positive income as long 
as the floating yield exceeds the fixed one. Swap spread arbitrage is immune 
from interest rate risk if both the repo rate and LIBOR (which generally have the 
same maturity and rolling dates) react similarly to a move in rates. 

Mortgage arbitrage consists of buying mortgage-backed securities (MBSs) 
while hedging their interest rate exposure primarily through derivatives [84]. 
The strategy provides a positive carry as the yield on MBSs is typically higher 
than that of comparable treasury bonds. As the spread earned is generally small, 
arbitrageurs use leverage to enhance returns. Mortgage arbitrage strategies can 
be classified based on the different types of MBS used. A popular implementa-
tion of the strategy is with pass-through MBSs which pass all of the interest and 
principal cash flows of a pool of mortgages to the pass-through investors [12]. 

Capital structure arbitrage involves taking long and short positions in the 
various instruments of a company’s capital structure [15] [85] [86] [87] [88]. 
This includes a variety of strategies between equity, debt and credit instruments 
of a given company. Some of the most popular strategies are credit arbitrage and 
convertible arbitrage. Credit arbitrage (also known as capital structure arbitrage) 
usually refers to strategies that aim to exploit mispricing between a company’s 
credit default swap (CDS) and its equity. Arbitrageurs use the information on 
the equity price and the capital structure of an obligor to compute its theoretical 
CDS spread. The theoretical CDS is then compared with the level quoted in the 
market. If the market spread is higher (lower) than the theoretical spread, then 
the strategy goes short (long) on the CDS contract while simultaneously hedging 
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the equity with a short (long) position [89]. 
Convertible Arbitrage is one of the most popular capital structure strategies 

and involves buying a portfolio of convertible bonds while selling short the un-
derlying stocks [90] [91]. Intuitively, if the stock increases in price, the bonds 
will appreciate and if the stock falls the short position will profit. In some ver-
sions, the interest rate risk is hedged with treasury futures or interest rate swaps. 
In addition to credit arbitrage and convertible arbitrage, other capital structure 
arbitrage strategies focus on the spread between bonds and equities of the same 
company. In particular Schaefer and Strebulaev [89] show that structural models 
provide accurate predictions of the sensitivity of corporate bond returns to 
changes in the value of equity (hedge ratios). Other strategies instead focus on 
the spread between CDS and corporate bonds or different types of credit default 
swaps [92] [93]. 

This review allows us to identify the defining features of the different strate-
gies across asset classes. They are summarized in Table 3. 

4. What Is SA? 

In this section, we define SA strategies. We identify those features which are 
common to the surveyed arbitrage strategies. We compare them with the availa-
ble definitions and provide a new definition in conjunction with a classification 
scheme. The new definition incorporates all strategies’ key elements and the 
classification scheme encompasses the important dimensions of SA while being 
flexible and easy to use. 

4.1. Strategies Key Features 

All strategies aim to exploit relative value opportunities through the implemen-
tation of long-short positions. Pairs trading invests in the spread between two 
stocks. Term structure models the spread between yields or future prices. 

 
Table 3. Arbitrage trading strategies. The table reports the defining features of the 
surveyed strategies. 

Strategy Descriptions 

Pairs trading Plays mean reversion in the spreads of two securities 

Term structure 
arbitrage 

Takes long-short positions across the term structure 

Volatility 
arbitrage 

Plays the spread of implied vs. realized volatility of the same security or  
implied vs. implied volatility of the same or different securities 

Swap spread 
arbitrage 

Profits from the spread between a fix and a floating leg by entering a  
short (long) Treasury position and simultaneously buying (selling) an IRS 

Mortgage 
arbitrage 

Buys MBS hedging the interest rates exposure 

Capital structure 
arbitrage 

Takes long-short positions on different instruments of a company  
(credit arbitrage and convertible arbitrage) 
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Volatility arbitrage identifies relative value opportunities between volatilities. 
Swap spread plays a fixed spread versus a floating spread. Mortgage arbitrage 
models the spread of MBS over treasury. Capital structure arbitrage profits from 
the spread between various instruments of the same company. Spreads trading 
involves taking long-short positions in order to profit from spreads or simply to 
bet on a security while being market-neutral. 

However, not all strategies need mean reversion. Pairs trading and term 
structure arbitrage need spreads to revert to their mean to be profitable. Other 
strategies instead need a persistent positive spread-carry: between implied and 
realized volatility (volatility arbitrage), between the fixed and the floating spread 
(swap spread arbitrage), in the MBS spread over treasury (mortgage arbitrage) 
and between various instruments of the same company (capital structure arbi-
trage). If spreads narrow these strategies are less profitable and can turn into a 
loss. In addition, not all strategies are zero-cost. This is not only due to market 
frictions or trading costs but it is true by construction. For example, pairs trad-
ing (in the market-neutral form) may require a net payment and mortgage arbi-
trage requires the purchase of MBSs. 

It is not possible to clearly define whether SA strategies are market-neutral. 
All strategies invest in some risk factors while hedging others. For example, term 
structure arbitrage may hedge only against parallel shifts of the term structure. 
Volatility arbitrage hedges against movements of the underlying but not of the 
underlying volatility. Swap spread arbitrage hedges against changes in treasury 
and swap rates but not against credit risk. Mortgage arbitrage hedges against 
movements in treasury rates but not mortgage spreads. 

Not all strategies guarantee gains but rather offer positive expected excess re-
turns with an acceptably small potential loss. Arbitrageurs require a positive ex-
pected excess return over the risk free to compensate for risk. The potential loss 
must be acceptably small in order to qualify the strategy as arbitrage rather than 
simple investment. Although not all the academic literature reports it, trades al-
ways have take profit and stop loss features. The take profit identifies when a 
trade no longer offers positive expected excess returns. A take profit is triggered 
in case there is reversion to the mean (pairs trading, term structure arbitrage, 
volatility arbitrage and capital structure arbitrage) or when the positive carry 
disappears (swap spread arbitrage and mortgage arbitrage). The stop loss quan-
tifies when a loss is no longer acceptably small and results from investors’ risk 
tolerance. 

From the previous analysis, it is possible to conclude that three key factors de-
fine statistically determined arbitrage opportunities: 1) relative value, 2) positive 
expected excess returns and 3) acceptably small potential loss. Take profit and 
stop loss are features which enable to operationalize SA strategies (see Table 4). 

4.2. Definition of SA Strategy 

From the review of strategies and definitions, we find that both in the definitions 
and strategies, statistics are used to explain securities mispricing. In particular, 
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Table 4. Surveyed features of statistically determined arbitrage strategies. For each trad-
ing strategy, the table reports whether the listed features are present or not. Where there 
is no clear assessment (−) is reported. 

Main features 

by strategy 
Pairs 

trading 

Term  
structure 
arbitrage 

Volatility 
arbitrage 

Swap 
spread 

arbitrage 

Mortgage 
arbitrage 

Capital 
structure 
arbitrage 

Relative value Yes Yes Yes Yes Yes Yes 

Mean reversion Yes Yes - No No - 

Market neutral - - - - - - 

Zero cost - - - Yes No - 

Expected positive 

excess return 
Yes Yes Yes Yes Yes Yes 

Acceptably small 

potential loss 
Yes Yes Yes Yes Yes Yes 

Take profit Yes Yes Yes Yes Yes Yes 

Stop loss Yes Yes Yes Yes Yes Yes 

 
they focus on the same observable phenomenon but from different perspectives. 
Definitions focus primarily in strengthening the concept of arbitrage introduc-
ing additional constraints that can make theory more consistent with financial 
markets. In some cases, they use tools common to practitioners, such as the 
Sharpe ratio in δA. In other cases, instead the focus is more on the theoretical 
framework, such as in the augmented information set in Bondarenko’s defini-
tion [10]. Strategies instead use quantitative models as a tool to have a more effi-
cient approach to uncover mispricing. Starting from the empirical evidence of 
market inefficiency, investors use different techniques to identify arbitrages with 
a given statistical confidence. It is evident how both academics and practitioners 
look at the same issue: academics rule out those investment opportunities which 
are not compatible with a rigorous pricing, while investors try to identify in-
vestment opportunities resulting from inaccurate pricing. In both cases statistic-
al methods have been used. Now the question is: do they come to the same con-
clusions? And more particularly, is there a definition of SA which encompasses 
the various strategies? 

We aim to create a definition which is measurable. That rules out lexical defi-
nitions which focus generically on systematic strategies [13] [35] [36] [94] and 
relative value [37] [39] [95]. We compare the key features of SA strategies with 
conceptual and operational definitions (see Table 5). 

The available conceptual definitions do not capture all key features: Connor 
and Lasarte [52] and Saks and Maringer [53] do not mention relative value, 
while Stefanini [12] and Focardi, Fabozzi and Mitov [54] do not require small 
potential losses. The analysis of available operational definitions reveals that, 
singularly, no definition requires long-short trading nor spread modelling. More 
generally, with the exception of εA no definition refers to relative value analysis.  
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Table 5. SA definitions versus strategies’ key features. 

Key feature 
Relative 

value 
Expected positive 

excess return 
Acceptably small 

potential loss 
Take 
profit 

Stop 
loss 

Panel A: Conceptual definitions 

Connor and Lasarte (2003) No - Yes Yes Yes 

Stefanini 
(2006) 

Yes Yes No Yes No 

Saks and Maringer (2008) No Yes Yes Yes Yes 

Focardi et al. 
(2016) 

- Yes - Yes No 

Panel A: Conceptual definitions 

δ–Arbitrage 
(Ledoit, 1995) 

No Yes No Yes No 

Good Deal 
(Cochrane and 

Saa-Requejo, 1998) 
No Yes No Yes No 

Approximate Arbitrage 
(Bernardo and Ledoit, 

2000) 
No Yes Yes Yes - 

Acceptable Opportunity 
(Carr et al., 2001) 

No - Yes Yes Yes 

ε-Arbitrage 
(Bertsimas et al., 2001) 

Yes - No Yes No 

SA 
(Bondarenko, 2003) 

No - No Yes No 

SA 
(Hogan et al., 2004) No - Yes Yes Yes 

 
Only δA, GD and AA incorporate the feature of positive excess returns while the 
other definitions generically refer to positive expected returns as there is no ini-
tial cost involved. AA embeds the feature of acceptably small potential loss but 
this is limited to a specific measure (gain-loss ratio). AO limits losses through 
the use of generic stress measures. Hogan’s SA partially requires acceptably small 
potential losses as the probability of a loss converges to zero with time. All defi-
nitions embed the concept of take profit as long as it is assumed that a strategy is 
closed at maturity or when the expected returns are no longer positive. AOs can 
be closed in stop loss if the realized loss is higher than what is acceptable ac-
cording to the stress measures. Hogan’s SA has the concept of stop loss if it is 
assumed that a strategy is closed when the constraints on the probability of a loss 
are no longer satisfied. AA trades are closed in stop loss only if the gain-loss ra-
tio is lower than one. According to the other definitions instead a trade is closed 
only when the defining criteria are no longer met and this does not necessarily 
involve a stop loss. In conclusion, there are some differences across definitions. 
Although some definitions are compatible with various strategies’ common fea-
tures, nevertheless they fail to incorporate all of them as defining elements. 

As no available definition fully captures what is done in practice, we identify a 
conceptual definition that incorporates all strategies’ key elements. We choose to 
use a conceptual definition as it clearly defines SA while leaving each analyst to 
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select the most appropriate measure as explained below. 
We define a SA strategy as a relative value strategy with a positive expected 

excess return and an acceptably small potential loss. We note the following in 
relation to our proposed new definition. First, SA is a relative value strategy. 
This reflects the fact that all the reviewed strategies play the spread of a security 
against another one. It should be noted that, while the concept of relative value is 
universally accepted, its boundaries are not clearly defined. A priori a total re-
turn strategy can be considered a relative value strategy of an investment against 
the overnight rate (which is close to zero). It is using the common understand-
ing that we refer to relative value strategies as strategies aiming to find mispric-
ing using historical relationships. As a relative value strategy, SA requires that 
the underlying securities are combined in a long-short portfolio. This allows to 
more accurately isolate some sources of risk (expected to deliver positive excess 
returns) while hedging others. The underlying securities may or may not belong 
to the same asset class. 

Another element is given by the expected positive excess return. This part of 
the definition incorporates two features. The first one is given by the fact that the 
strategy focuses on the expected return. This differs from the definition of arbi-
trage where the strategy has no admissible possible negative outcomes. Losses 
are allowed in our definition of SA. The second one is given by the excess return. 
This reflects the fact that every arbitrageur embarks on a strategy involving some 
risk only if there are expectations of returns higher than the risk free whenever 
an initial investment is required. 

The last requirement is given by the acceptably small potential loss. This ele-
ment is fundamental in order to differentiate SA from a simple investment 
strategy. To be called arbitrage, a strategy needs to have a constrained loss pro-
file. A strategy is closed whenever the defining criteria are no longer satisfied: 1) 
in stop loss, if the loss is no longer acceptably small or 2) in take profit, if the 
performance is positive and the expected excess return is no longer positive. 

This definition cannot be operational unless we define how to measure a posi-
tive expected excess return and an acceptably small potential loss. The need for 
clarity on this issue is critical. However, the complex and dynamic landscape of 
financial markets suggests that no definitive theoretical or operational definition 
of SA is likely to be agreed. Because of this we propose to use the definition in 
conjunction with a classification scheme. 

A positive expected excess returns requires defining the risk free and a proba-
bility measure. The risk free can be the cost of financing (for unfunded strate-
gies) or the cash rate (for funded strategies). In the case of a zero-cost trading 
strategy, the risk free is equal to zero. Defining an acceptably small potential loss 
requires identifying a set of suitable risk measures and criteria to establish what 
is acceptably small. Examples of risk measures are the probability of a loss, the 
Value at Risk (VaR) and the Conditional Value at Risk (CVaR), see [96]-[99]. It 
is left to each investor to define what is acceptably small according to his utility 

https://doi.org/10.4236/tel.2018.85063


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 902 Theoretical Economics Letters  
 

function. 
This classification scheme aims to be sufficiently detailed to encompass the 

important dimensions of SA while at the same time being intuitive and easy to 
use. To be widely accepted, a definition should also appeal to practitioners and 
other stakeholders by reflecting the world as it is perceived. Our definition, with 
annexed classification scheme, satisfies the four canons of a good definition: 
adequacy, differentiation, impartiality and completeness [32]. It is adequate as it 
clarifies a substantial portion of the meaning of SA. It shows differentiation as it 
eliminates confusions including all the terms which distinguish SA from a ge-
neric investment strategy. Impartiality in the definition is guaranteed as all key 
elements receive similar significance while assuring the necessary completeness. 
Our definition of SA compares favorably to existing SA definitions. The defini-
tion of Bondarenko [10] is not suitable to describe this wider range of strategies. 
Hogan’s SA definition instead seems to be more focused on investors’ strategies 
and this is reflected by its broader use in more recent literature [54] [100]. 
However, Hogan’s definition does not emphasize the need for positive excess 
return and the peculiarity of relative value. Additionally, it is not flexible enough 
to include SA strategies based on specific ratios, see for example the Sharpe ra-
tios used by Bertram [101], Cummins and Bucca [67] and Goncu [100]. Our de-
finition reformulates the definition of Saks and Maringer [53] adding relative 
value. This addition is fundamental to rule out investing in short term govern-
ment bonds (with positive expected return and low probability of a loss) as a SA 
strategy. 

Our definition and classification system could guide future research. For ex-
ample, the use of a common classification system allows investigating the prof-
itability and riskiness of SA strategies across asset classes and time. This enables 
mapping pricing anomalies and can provide directions on how to improve pric-
ing models. The existence of persistent SA opportunities in selected strategies 
can be used as an indicator to direct future research to less studied asset classes 
and instruments. Having a framework brings transparency to the term SA, 
helping investors in making investment decisions. For example, our definition of 
SA can be used in the hedge funds industry where there is no agreement on a 
standardized classification system of strategies [102]. This can help address the 
issue of a lack of uniform definitions in hedge funds where several classification 
systems are still in use with significant differences among them [103] [104]. 

5. Conclusions 

In this paper, we investigate the concept of statistical arbitrage (SA). As there is 
no agreement in literature on a common definition, we review both the theoret-
ical and empirical works on SA since its introduction. In particular, we look at 
all those definitions, which may be suitable to identify this class of strategies. We 
produce a review of all strategies which may be associated with the concept of 
statistically determined arbitrage opportunities. We identify those common fea-
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tures which define the concept embedded in investors thinking. As no definition 
is suitable to describe this type of strategies, we introduce a general definition 
and propose a classification system that encompasses the current forms of SA 
strategies while facilitating the inclusion of new types as they emerge. 

Our study makes several contributions to the existing literature. We bridge 
the gap existing between the literature on arbitrage definitions and SA strategies. 
We perform an innovative investigation of SA both in academic and financial 
industry research analyzing, for the first time, SA across all asset classes (equity, 
fixed income and commodity). We find a general definition, which includes all 
SA strategies and propose a classification system measuring the strategies’ risk 
and return profile. This facilitates the inclusion of new strategies and measures 
as they emerge. Our analysis allows investors to have a common framework to 
evaluate investment opportunities and brings clarity in SA investing, guiding 
theoretical development and empirical testing. We also provide examples of po-
tential future research directions. 

References 
[1] Fama, E. (1969) Efficient Capital Markets: A Review of Theory and Empirical Work. 

The Journal of Finance, 25, 383-417. https://doi.org/10.2307/2325486 

[2] Ross, S. (1976) The Arbitrage Theory of Capital Asset Pricing. Journal of Economic 
Theory, 13, 341-360. https://doi.org/10.1016/0022-0531(76)90046-6 

[3] Shleifer, A. and Vishny, R. (1997) The Limits of Arbitrage. The Journal of Finance, 
52, 35-55. https://doi.org/10.1111/j.1540-6261.1997.tb03807.x 

[4] Alsayed, H. and McGroarty, F. (2014) Ultra-High-Frequency Algorithmic Arbitrage 
Across International Index Futures. Journal of Forecasting, 33, 391-408.  
https://doi.org/10.1002/for.2298 

[5] Ledoit, O. (1995) Essays on Risk and Return in the Stock Market. Massachussetts 
Institute of Technology, Cambridge, MA. 

[6] Chochrane, J.H. and Saa-Requejo, J. (1998) Beyond Arbitrage: Good Deal Asset 
Price Bounds in Incomplete Markets. Journal of the Political Economy, 108, 79-119.  
https://doi.org/10.1086/262112 

[7] Bernardo, A. and Ledoit, O. (2000) Gain, Loss and Asset Pricing. Journal of the Po-
litical Economy, 108, 144-172. https://doi.org/10.1086/262114 

[8] Bertsimas, D., Kogam, L. and Lo, A. (2001) Hedging Derivative Securities and In-
complete Markets: An Epsilon Arbitrage Approach. Operational Research, 49, 
372-394. https://doi.org/10.1287/opre.49.3.372.11218 

[9] Carr, P., Geman, H. and Madan, D. (2001) Pricing and Hedging in Incomplete 
Markets. Journal of Financial Economics, 62, 131-167.  
https://doi.org/10.1016/S0304-405X(01)00075-7 

[10] Bondarenko, O. (2003) Statistical Arbitrage and Securities Prices. Review of Finan-
cial Studies, 16, 875-919. https://doi.org/10.1093/rfs/hhg016 

[11] Hogan, S., Jarrow, R., Theo, M. and Warachka, M. (2004) Testing Market Efficiency 
Using Statistical Arbitrage with Application to Momentum and Value Strategies. 
Journal of Financial Economics, 73, 525-565.  
https://doi.org/10.1016/j.jfineco.2003.10.004 

[12] Stefanini, F. (2006) Investment Strategies of Hedge Funds. John Wiley & Sons, Ho-

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.2307/2325486
https://doi.org/10.1016/0022-0531(76)90046-6
https://doi.org/10.1111/j.1540-6261.1997.tb03807.x
https://doi.org/10.1002/for.2298
https://doi.org/10.1086/262112
https://doi.org/10.1086/262114
https://doi.org/10.1287/opre.49.3.372.11218
https://doi.org/10.1016/S0304-405X(01)00075-7
https://doi.org/10.1093/rfs/hhg016
https://doi.org/10.1016/j.jfineco.2003.10.004


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 904 Theoretical Economics Letters  
 

boken, NJ. 

[13] Pole, A. (2007) Statistical Arbitrage. John Wiley & Sons, Hoboken, NJ. 

[14] Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G. (2006) Pairs Trading: Perfor-
mance of a Relative-Value Arbitrage Rule. The Review of Financial Studies, 19, 
797-827. https://doi.org/10.1093/rfs/hhj020 

[15] Duarte, J., Longstaff, F.A. and Yu, F. (2006) Risk and Return in Fixed Income Arbi-
trage: Nickerls in Front of a Steamroller? The Review of Financial Studies, 20, 
769-811. https://doi.org/10.1093/rfs/hhl026 

[16] Preqin (2016) Global Hedge Fund Report.  

[17] HFR (2016) HFR Hedge Fund Strategy Classification System.  

[18] Brogaard, J., Hendershott, T. and Riordan, R. (2014) High-Frequency Trading and 
Price Discovery. The Review of Financial Studies, 27, 2267-2306.  
https://doi.org/10.1093/rfs/hhu032 

[19] Chaboud, A.P., Chiquoine, B., Hjalmarsson, E. and Vega, C. (2014) Rise of the Ma-
chines: Algorithmic Trading in the Foreign Exchange Market. The Journal of 
Finance, 69, 2045-2084. https://doi.org/10.1111/jofi.12186 

[20] Orteg,a L. and Khashanah, K. (2014) A Neuro-Wavelet Model for the Short-Term 
Forecasting of High-Frequency Time Series of Stock Returns. Journal of Forecast-
ing, 33, 134-146. https://doi.org/10.1002/for.2270 

[21] Payne, B. and Tresl, J. (2015) Hedge Fund Replication with a Genetic Algorithm: 
Breeding a Usable Mousetrap. Quantitative Finance, 15, 1705-1726.  
https://doi.org/10.1080/14697688.2014.979222 

[22] Brandvold, M., Molnár, P., Vagstad, K. and Valstad, O. (2015) Price Discovery on 
Bitcoin Exchanges. Journal of International Financial Markets, Institutions and 
Money, 36, 18-35. https://doi.org/10.1016/j.intfin.2015.02.010 

[23] Lintilhac, P. and Tourin, A. (2016) Model-Based Pairs Trading in the Bitcoin Mar-
kets. Quantitative Finance, 1-14. 

[24] McAfee, A., Brynjolfsson, E., Davenport, T., Patil, D. and Barton, D. (2012) Big Da-
ta. The Management Revolution. Harvard Business Review, 90, 61-67. 

[25] Lazer, D., Kennedy, R., King, G. and Vespignani, A. (2014) The Parable of Google 
Flu: Traps in Big Data Analysis. Science, 343, 1203-1205.  
https://doi.org/10.1126/science.1248506 

[26] Nardo, M., Petracco, M. and Naltsidis, M. (2016) Walking down Wall Street with a 
Tablet: A Survey of Stock Market Predictions Using the Web. Journal of Economic 
Surveys, 30, 356-369. https://doi.org/10.1111/joes.12102 

[27] Maeso, J. and Martellini, L. (2017) Factor Investing and Risk Allocation: From Tra-
ditional to Alternative Risk Premia Harvesting. The Journal of Alternative Invest-
ments, 20, 27-42. https://doi.org/10.3905/jai.2017.20.1.027 

[28] Mou, Y. (2010) Limits to Arbitrage and Commodity Index Investment: Front-Running 
the Goldman Roll.  

[29] De Long, B., Shleifer, A., Summers, L. and Waldmann, R. (1990) Noise Trader in 
Financial Markets. Journal of Political Economy, 98, 703-738.  
https://doi.org/10.1086/261703 

[30] Abreu, D. and Brennermeier, M. (2002) Synchronization Risk and Delayed Arbi-
trage. Journal of Financial Economics, 66, 341-360.  
https://doi.org/10.1016/S0304-405X(02)00227-1 

[31] Duffie, D. (2010) Presidential Address: Asset Price Dynamics with Slow-Moving 

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.1093/rfs/hhj020
https://doi.org/10.1093/rfs/hhl026
https://doi.org/10.1093/rfs/hhu032
https://doi.org/10.1111/jofi.12186
https://doi.org/10.1002/for.2270
https://doi.org/10.1080/14697688.2014.979222
https://doi.org/10.1016/j.intfin.2015.02.010
https://doi.org/10.1126/science.1248506
https://doi.org/10.1111/joes.12102
https://doi.org/10.3905/jai.2017.20.1.027
https://doi.org/10.1086/261703
https://doi.org/10.1016/S0304-405X(02)00227-1


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 905 Theoretical Economics Letters 
 

Capital. The Journal of Finance, 65, 4.  
https://doi.org/10.1111/j.1540-6261.2010.01569.x 

[32] Borsodi, R. (1967) The Definition of Definition. Porter Sargent, Boston, MA. 

[33] Aggarwal, R., Berrill, J., Hutson, E. and Kearney, C. (2011) What Is a Multinational 
Corporation? Classifying the Degree of Firm-Level Multinationality. International 
Business Review, 20, 557-577. https://doi.org/10.1016/j.ibusrev.2010.11.004 

[34] Avellaneda, M. and Lee, J. H. (2008) Statistical Arbitrage in the U.S. Equities Mar-
ket.  

[35] Montana, G. (2009) Flexible Least Squares for Temporal Data Mining and Statistical 
Arbitrage. Expert Systems with Applications, 36, 2819-2830.  
https://doi.org/10.1016/j.eswa.2008.01.062 

[36] Burgess, A.N. (2000) Statistical Arbitrage Models of the FTSE 100. In: Abu-Mostafa, 
et al., Computational Finance 99, MIT Press, Cambridge, MA, 297-312. 

[37] Thomaidis, N.S. and Kondakis, N. (2006) An Intelligent Statistical Arbitrage Trad-
ing System. In: Lecture Notes in Computer Science, Springer-Verlag, Berlin. 

[38] Do, B., Faff, R. and Hamza, K. (2006) A New Approach to Modelling and Estima-
tion for Pairs Trading.  

[39] Zapart, C. (2003) Statistical Arbitrage Trading with Wavelets and Artificial Neural 
Networks. IEEE International Conference on Computational Intelligence for Finan-
cial Engineering, Hong Kong, 20-23 March 2003, 429-435. 

[40] Nath, P. (2003) High Frequency Pairs Trading with U.S. Treasuries Securities: Risks 
and Rewards for Hedge Funds. Working Paper. London Business School, London. 

[41] Vidyamurthy, G. (2004) Pairs Trading. John Wiley & Sons, Hoboken, NJ. 

[42] Elliott, R.J., Van Der Hoek, J. and Malcom, W.P. (2005) Pairs Trading. Quantitative 
Finance, 5, 271-276. https://doi.org/10.1080/14697680500149370 

[43] Bolgün, K.E., Takasbank, E.K. and Güven, S. (2010) Dynamic Pairs Trading Strate-
gy for the Companies Listed in the Istanbul Stock Exchange. International Review 
of Applied Financial Issues and Economics, 1, 37-57. 

[44] Meucci, A. (2010) Review of Statistical Arbitrage, Cointegration and Multivariate 
Ornstein-Uhlenbeck. 

[45] Cummins, M. (2010) Optimal Statistical Arbitrage: A Model Specification Analysis 
on ISEQ Dates. Irish Accounting Review, 17. 

[46] Reiakvam, O.H. and Thyness, B. (2011) Pairs Trading in the Aluminum Market. A 
Cointegration Approach. Norwegian University of Science and Technology, 
Trondheim. 

[47] Alexakis, C. (2010) Long-Run Relations among Equity Indices under Different 
Market Conditions: Implications on the Implementation of Statistical Arbitrage 
Strategies. Journal of International Financial Markets, Institutions and Money, 20, 
389-403. https://doi.org/10.1016/j.intfin.2010.05.003 

[48] Chiu, M.C. and Wong, H.Y. (2013) Optimal Investment for an Insurer with Coin-
tegrated Assets: CRRA Utility. Insurance: Mathematics and Economics, 52, 52-64.  
https://doi.org/10.1016/j.insmatheco.2012.11.004 

[49] Chen, H. and Zhu, Y. (2015) An Empirical Study on the Threshold Cointegration of 
Chinese A and H Cross-Listed Shares. Journal of Applied Statistics, 42, 2406-2419.  
https://doi.org/10.1080/02664763.2015.1034660 

[50] Mighri, Z. and Mansouri, F. (2016) Asymmetric Price Transmission within the Ar-
gentinean Stock Market: An Asymmetric Threshold Cointegration Approach. Em-

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.1111/j.1540-6261.2010.01569.x
https://doi.org/10.1016/j.ibusrev.2010.11.004
https://doi.org/10.1016/j.eswa.2008.01.062
https://doi.org/10.1080/14697680500149370
https://doi.org/10.1016/j.intfin.2010.05.003
https://doi.org/10.1016/j.insmatheco.2012.11.004
https://doi.org/10.1080/02664763.2015.1034660


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 906 Theoretical Economics Letters  
 

pirical Economics, 51, 1115-1149. https://doi.org/10.1007/s00181-015-1029-5 

[51] Rad, H., Low, R.K.Y. and Faff, R. (2016) The Profitability of Pairs Trading Strate-
gies: Distance, Cointegration and Copula Methods. Quantitative Finance, 16, 
1541-1558. https://doi.org/10.1080/14697688.2016.1164337 

[52] Connor, G. and Lasarte, T. (2003) An Overview of Hedge Fund Strategies.  

[53] Saks, P. and Maringer, D. (2008) Genetic Programming in Statistical Arbitrage. 

[54] Focardi, S., Fabozzi, F. and Mitov, I. (2016) A New Approach to Statistical Arbi-
trage: Strategies Based on Dynamic Factor Models of Prices and Their Performance. 
Journal of Banking and Finance, 65, 134-155.  
https://doi.org/10.1016/j.jbankfin.2015.10.005 

[55] Sharpe, W.F. (1964) Capital Asset Prices. Journal of Finance, 19, 425-442. 

[56] Lo, A. (2002) The Statistics of Sharpe Ratios. Financial Analysts Journal, 58, 36-52.  
https://doi.org/10.2469/faj.v58.n4.2453 

[57] Lautier, D. (2005) Term Structure Models of Commodity Prices. Journal of Alterna-
tive Investments, 8, 42-64. https://doi.org/10.3905/jai.2005.523082 

[58] Gadiraju, P. (2009) CDXIG Index, VIX and the Swap Curve Slope: A Study in 
Cross-Market Statistical Arbitrage. 

[59] Yu, J. and Wang, Z. (2014) China’s Gold Statistical Arbitrage. no. Meic, 1414-1418.  

[60] Ardeni, P. (1989) Does the Law of One Price hold for Commodity Prices? American 
Journal of Agricultural Economics, 71, 661-669. https://doi.org/10.2307/1242021 

[61] Do, B. and Faff, R. (2010) Does Simple Pairs Trading Still Work? Financial Analysts 
Journal, 66, 83-95. https://doi.org/10.2469/faj.v66.n4.1 

[62] Monroe, M. and Cohn, A. (1986) The Relative Efficiency of the Gold and Treasury 
Bill Futures Markets. The Journal of Futures Markets, 6, 477-493.  
https://doi.org/10.1002/fut.3990060311 

[63] Johnson, R., Zulauf, C., Irwin, S. and Gerlow, M. (1991) The Soybean Complex 
Spread: An Examination of Market Efficiency from the Viewpoint of a Production 
Process. The Journal of Futures Markets, 11, 25-37.  
https://doi.org/10.1002/fut.3990110104 

[64] Wahab, M., Cohn, R. and Lashgari, M. (1994) The Gold-Silver Spread: Integration, 
Cointegration, Predictability and Ex-Ante Arbitrage. The Journal of Futures Mar-
kets, 14, 709-756. https://doi.org/10.1002/fut.3990140606 

[65] Barrett, W. and Kolb, R. (1995) Analysis of Spreads in Agricultural Futures. The 
Journal of Futures Markets, 15, 69-86. https://doi.org/10.1002/fut.3990150107 

[66] Girma, P. and Paulson, A. (1999) Risk Arbitrage Opportunities in Petroleum Fu-
tures Spreads. The Journal of Futures Markets, 19, 931-955.  
https://doi.org/10.1002/(SICI)1096-9934(199912)19:8<931::AID-FUT5>3.0.CO;2-L 

[67] Cummins, M. and Bucca, A. (2012) Quantitative Spread Trading on Crude Oil and 
Refined Products Markets. Quantitative Finance, 12, 1857-1875.  
https://doi.org/10.1080/14697688.2012.715749 

[68] Cui, L., Huang, K. and Cai, H. (2015) Application of a TGARCH-Wavelet Neural 
Network to Arbitrage Trading in the Metal Futures Market in China. Quantitative 
Finance, 15, 371-384. https://doi.org/10.1080/14697688.2013.819987 

[69] Roehner, B. (1996) The Role of Transportation Costs in the Economics of Com-
modity Markets. American Journal of Agricultural Economics, 78, 129-176.  
https://doi.org/10.2307/1243707 

[70] Alizadeh, A. and Nomikos, N. (2002) Cost of Carry, Causality and Arbitrage be-

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.1007/s00181-015-1029-5
https://doi.org/10.1080/14697688.2016.1164337
https://doi.org/10.1016/j.jbankfin.2015.10.005
https://doi.org/10.2469/faj.v58.n4.2453
https://doi.org/10.3905/jai.2005.523082
https://doi.org/10.2307/1242021
https://doi.org/10.2469/faj.v66.n4.1
https://doi.org/10.1002/fut.3990060311
https://doi.org/10.1002/fut.3990110104
https://doi.org/10.1002/fut.3990140606
https://doi.org/10.1002/fut.3990150107
https://doi.org/10.1002/(SICI)1096-9934(199912)19:8%3C931::AID-FUT5%3E3.0.CO;2-L
https://doi.org/10.1080/14697688.2012.715749
https://doi.org/10.1080/14697688.2013.819987
https://doi.org/10.2307/1243707


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 907 Theoretical Economics Letters 
 

tween Oil Futures and Tanker Freight markets. IAME 2002 Conference, Panama, 
December 2002. 

[71] Alexander, C., Dimitriu, A. and Malik, A. (2005) Indexing and Statistical Arbi-
trage—Tracking Error or Cointegration? Journal of Portfolio Management, 31, 50.  
https://doi.org/10.3905/jpm.2005.470578 

[72] Cheng, X., Yu, P. and Li, W. (2011) Basket Trading under Co-Integration with the 
Logistic Mixture Autoregressive Model. Quantitative Finance, 11, 1407-1419.  
https://doi.org/10.1080/14697688.2010.506445 

[73] Acosta-Gonzalez, E., Armas-Herrera, R. and Fernandez-Rodriguez, F. (2015) On 
the Index Tracking and the Statistical Arbitrage Choosing the Stocks by Means of 
Cointegration: The Role of Stock Picking. Quantitative Finance, 15, 1075-1091.  
https://doi.org/10.1080/14697688.2014.940604 

[74] Fabozzi, F. (2001) The Handbook of Fixed Income Securities. McGraw Hill, New 
York 

[75] Jarrow, R., Li, H. and Ye, X. (2009) Exploring Statistical Arbitrage Opportunities in 
the Term Structure of CDS Spreads. RMI Working Paper No. 11/08.  

[76] Belton, T. and Burghardt, G. (1993) Volatility Arbitrage in the Treasury Bond Basis. 
Journal of Portfolio Management, 19, 69-77.  
https://doi.org/10.3905/jpm.1993.409447 

[77] Amman, M. and Herriger, S. (2002) Relative Implied-Volatility Arbitrage with In-
dex Options. Financial Analysts Journal, 58, 42. 

[78] Ahmad, R. and Willmott, P. (2005) Which Free Lunch Would You Like Today Sir? 
Delta-Hedging, Volatility Arbitrage and Optimal Portfolios. Willmott Magazine, 
2005, 64-79. 

[79] Jena, R. and Tankov, P. (2011) Arbitrage Opportunities in Misspecified Stochastic 
Volatility Models. SIAM Journal of Financial Mathematics, 2, 317-341.  
https://doi.org/10.1137/100786678 

[80] Baik, B., Kang, H. and Kim, Y. (2013) Volatility Arbitrage around Earnings An-
nouncements: Evidence from the Korean Equity Linked Warrants Market. Pacific 
Basin Finance Journal, 23, 109-130. https://doi.org/10.1016/j.pacfin.2013.01.001 

[81] Sinclair, E. (2008) Volatility Trading. John Wiley & Sons, Hoboken, NJ. 

[82] Morgan, J.P. (2006) Variance Swaps. J.P. Morgan Securities Ltd., London. 

[83] Krishnamurthy, A. (2008) Fundamental Value and Limits to Arbitrage. 

[84] Biby, J., Modukuri, S. and Hargrave, B. (2001) Collateralized Borrowing via Dollar 
Rolls. In:, The Handbook of Mortgage-Backed Securities. 

[85] Yu, F. (2005) How Profitable Is Capital Structure Arbitrage? Financial Analysts 
Journal, 62, 47-62. 

[86] Driessen, J. and Van Hemert, O. (2012) Pricing of Commercial Real Estate Securi-
ties during the 2007-2009 Financial Crisis. Journal of Financial Economics, 105, 
37-61. https://doi.org/10.1016/j.jfineco.2012.02.006 

[87] Kapadia, N. and Pu, X. (2012) Limited Arbitrage between Equity and Credit Mar-
kets. Journal of Financial Economics, 105, 542-564.  
https://doi.org/10.1016/j.jfineco.2011.10.014 

[88] Calice, G., Chen, J. and Williams, J. (2013) Are There Benefits to Being Naked? The 
Returns and Diversification Impact of Capital Structure Arbitrage. European Jour-
nal of Finance, 19, 815-840. https://doi.org/10.1080/1351847X.2011.637115 

[89] Schaefer, S. and Strebulaev, I. (2006) Risk in Capital Structure. 

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.3905/jpm.2005.470578
https://doi.org/10.1080/14697688.2010.506445
https://doi.org/10.1080/14697688.2014.940604
https://doi.org/10.3905/jpm.1993.409447
https://doi.org/10.1137/100786678
https://doi.org/10.1016/j.pacfin.2013.01.001
https://doi.org/10.1016/j.jfineco.2012.02.006
https://doi.org/10.1016/j.jfineco.2011.10.014
https://doi.org/10.1080/1351847X.2011.637115


M. Lazzarino et al. 
 

 

DOI: 10.4236/tel.2018.85063 908 Theoretical Economics Letters  
 

[90] Agarwal, V., Fung, W.H., Loon, C.Y. and Naik, L.Y. (2006) Risk and Return in 
Convertible Arbitrage: Evidence from the Convertible Bond Market.  

[91] Yan, H., Yang, S. and Zhao, S. (2016) Research on Convertible Bond Pricing Effi-
ciency Based on Nonparametric Fixed Effect Panel Data Model. China Finance Re-
view International, 6, 32-55. https://doi.org/10.1108/CFRI-04-2015-0030 

[92] Mayordomo, S., Ignacio, J. and Romo, J. (2014) Testing for Statistical Arbitrage in 
Credit Derivatives Markets. Journal of Empirical Finance, 26, 59-75.  
https://doi.org/10.1016/j.jempfin.2014.02.002 

[93] Leccadito, A., Tunaru, R. and Urga, G. (2015) Trading Strategies with Implied For-
ward Credit Default Swap Spreads. Journal of Banking and Finance, 58, 361-375.  
https://doi.org/10.1016/j.jbankfin.2015.04.018 

[94] Avellaneda, M. and Lee, J. H. (2008) Statistical Arbitrage in the U.S. Equities Mar-
ket. 

[95] Hillier, D., Draper, P. and Faff, R. (2006) Do Precious Metals Shine? An Investment 
Perspective. Financial Analysts Journal, 62, 98-106.  
https://doi.org/10.2469/faj.v62.n2.4085 

[96] Duffie, D. and Pan, J. (1997) An Overview of Value at Risk. The Journal of Deriva-
tives, 4, 7-49. https://doi.org/10.3905/jod.1997.407971 

[97] Rockafellar, R. and Uryasev, S. (2000) Optimization of Conditional Value-At-Risk. 
Journal of Risk, 2, 21-42. https://doi.org/10.21314/JOR.2000.038 

[98] Jorion, P. (2007) Value at Risk. McGraw-Hill, New York. 

[99] Wang, C. and Zhao, Z. (2016) Conditional Value-at-Risk: Semiparametric Estima-
tion and Inference. Journal of Econometrics, 195, 86-103.  
https://doi.org/10.1016/j.jeconom.2016.07.002 

[100] Goncu, A. (2015) Statistical Arbitrage in the Black-Scholes Framework. Quantita-
tive Finance, 15, 1489-1499. https://doi.org/10.1080/14697688.2014.961531 

[101] Bertram, W. (2010) Analytical Solutions for Optimal Statistical Arbitrage Trading. 
Physica A: Statistical Mechanics and Its Applications, 389, 2234-2243.  
https://doi.org/10.1016/j.physa.2010.01.045 

[102] Baquero, G. and Verbeek, M. (2008) Style Investing: Evidence from Hedge Fund 
Investors. WIP. 

[103] Indjic, D. and Heen, A. (2003) AIMA Survey of Hedge Fund Classification Practice. 
AIMA Journal. 

[104] AIMA (2012) AIMA’s Roadmap to Hedge Funds.  
 
 

https://doi.org/10.4236/tel.2018.85063
https://doi.org/10.1108/CFRI-04-2015-0030
https://doi.org/10.1016/j.jempfin.2014.02.002
https://doi.org/10.1016/j.jbankfin.2015.04.018
https://doi.org/10.2469/faj.v62.n2.4085
https://doi.org/10.3905/jod.1997.407971
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.1016/j.jeconom.2016.07.002
https://doi.org/10.1080/14697688.2014.961531
https://doi.org/10.1016/j.physa.2010.01.045

	What Is Statistical Arbitrage?
	Abstract
	Keywords
	1. Introduction
	2. Review of Definitions
	2.1. Lexical Definitions of SA
	2.2. Conceptual Definitions of SA
	2.3. Operational Definitions of Arbitrage

	3. Literature Review of Strategies
	3.1. Literature Review
	3.2. Review of Strategies

	4. What Is SA?
	4.1. Strategies Key Features
	4.2. Definition of SA Strategy

	5. Conclusions
	References

