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Abstract 
Due to the unobserved nature of the true return variation process, one of the 
most challenging problems in evaluation of volatility forecasts is to find an 
accurate benchmark proxy for ex-post volatility. This paper uses the Austral-
ian equity market ultra-high-frequency data to construct an unbiased ex-post 
volatility estimator and then use it as a benchmark to evaluate various practic-
al volatility forecasting strategies (GARCH class model based). These fore-
casting strategies allow for the skewed distribution of innovations and use 
various estimation windows in addition to the standard GARCH volatility 
models. In out-of-sample tests, we find that forecasting errors across all model 
specifications are systematically reduced if using the unbiased ex-post volatil-
ity estimator compared with those using the realized volatility based on 
sparsely sampled intra-day data. In particular, we show that the three bench-
mark forecasting models outperform most of the modified strategies with dif-
ferent distribution of returns and estimation windows. Comparing the three 
standard GARCH class models, we find that the asymmetric power ARCH 
(APARCH) model exhibits the best forecasting power in both normal and fi-
nancial turmoil periods, which indicates the ability of APARCH model to 
capture the leptokurtic returns and stylized features of volatility in the Aus-
tralian stock market. 
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1. Introduction 

Volatility forecasting is a critical task in a variety of financial activities for 
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different financial instruments and markets around the world. Important 
financial decisions such as portfolio optimisation, derivative pricing, risk 
management and financial regulation heavily depend on volatility forecasts. In 
derivative pricing, such as in the estimation of the Black-Scholes option pricing 
model, volatility is the only parameter that needs to be forecasted. The 
prediction of volatility is also crucial in development of Value at Risk (VaR) and 
a variety of systemic risk models, as well as in banking and finance regulations. 
For example, according to the Basel Accord II and III, it is compulsory for all 
financial institutions to predict the volatility of their financial assets to 
incorporate the risk exposure of their capital requirements. 

The focus of our study is on the predictive ability of the popular 
AutoRegressive Conditional Heteroscedastic (ARCH) class of models that 
originated from a seminal Nobel Prize-wining article by [1] [2] generalized his 
framework to obtain the GARCH model. ARCH and GARCH models are 
popular and standard volatility forecasting models in econometrics and finance. 
Documented stylized features of variation such as the clustering and long 
memory effect can be captured by GARCH class models, and the model 
parameters are relatively easy to estimate. A comprehensive survey of the 
GARCH family of models can be found in [3]. The current study selects three 
popular GARCH class models from the literature, including the standard 
GARCH, the threshold GARCH (TGARCH) of [4] and [5], and the asymmetric 
power ARCH (APARCH) of [6]. In addition to the three standard models, we 
consider 12 corresponding forecasting strategies associated with them, which 
involves different estimation windows and errors distributions. 

The predictive power of a volatility model is evaluated based on an 
out-of-sample test in which the predicted volatility generated from the model is 
compared with the ex-post volatility measurements. Superior volatility forecasting 
models are supposed to have small forecasting errors, measured as the difference 
between the predicted and actual volatility. However, unlike the return, the 
volatility process cannot be observed. Therefore, in out-of-sample evaluation of 
volatility forecasting models, the crucial task is to find an accurate proxy for the 
underlying unobserved volatility process. In the mid-1990s, a series of empirical 
studies noted that while GARCH-type models are for fitting the time series 
returns, they failed to explain much of the variability in ex-post volatility 
measured by the squared returns in out-of-sample tests. Hence, the practical 
usefulness of GARCH models was challenged. [7] responds to the critique of the 
model and argues that the unsatisfied empirical results are due to the noisy 
volatility proxies used in these studies, that is, squared returns or absolute 
returns. In out-of-sample forecast evaluation, a common approach for 
evaluating the practical performance of any model is to compare the fitted 
predictions derived from the model with the subsequent realizations. However, 
volatility is not directly observed and dealt with as a latent variable in financial 
modelling. Therefore, the squared innovation return is usually employed as a 
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proxy for volatility realization. It is empirically documented that the correlation 
between the predicted and the realized value is weak, with low R2 values.1 
However, this finding is not surprising and is considered evidence of the poor 
predicting ability of a volatility model. Although in statistical terms, the squared 
innovation return is an unbiased estimator of underlying variance, it is not an 
accurate estimator and displays a large degree of observation-by-observation 
variation. In summary, empirical findings of poor forecasting performance are 
due to unsatisfied volatility proxies rather than the predictive power of GARCH 
class models. 

The recent availability of nearly continuous high-frequency transaction data 
provides a chance to explicitly compute the market volatility by using intra-day 
data, referred to as realized volatility in the literature. [7] shows that the basic 
GARCH(1,1) model performs rather well when it is evaluated with a volatility 
measurement constructed using high-frequency data. This stems from the fact 
that high-frequency volatility is a more accurate measure of daily volatility 
compared with those estimated using low-frequency data. Instead of only using 
the opening or closing price of a trading day in squared daily returns, 
high-frequency volatility exploits more information contained in intra-day 
trading data. In the literature, five-minute intra-day data are popularly used to 
construct realised volatility. However, in our study, we show that while 
contamination with microstructure noise can be reduced if realised volatility is 
constructed based on sparsely sampled high-frequency data, it is still a biased 
estimator. 

Because of the crucial role of ex-post volatility measurement in evaluating 
forecasting performance, in addition to using five-minutes tick data we calculate 
the realized variance using ultra-high-frequency data and relying on the Two 
Time Scaled Realized Volatility (TSRV) estimator proposed in the study of [11] 
and [12], which is shown to be an unbiased ex-post variance estimator. Unlike 
an arbitrarily and subjectively selected sample frequency such as five minutes, 
the TSRV employs all available high-frequency intra-day data and therefore 
exploits full information about return variation contained in the 
ultra-high-frequency data. Our results show that forecasting errors relying on 
TSRV and ultra-high-frequency data are significantly lower than those based on 
sparsely sampled intra-day data. 

This paper is an attempt to mimic volatility forecasting strategies using 
GARCH family models in practice, and examine natural questions arising from 
employing such strategies in the stock market in Australia. These questions 
include, Which model provides the smallest error? Should we allow for 
heavy-tailed distributed innovations? What is the best choice for the estimation 
window? Would it be a growing window, a longer rolling window or a shorter 
rolling estimation window? Moreover, the performance of these volatility 
forecasting strategies in periods of financial turmoil such as the Global Financial 

 

 

1The empirical evidence can be found in [8] [9] and [10]. 
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Crisis (GFC) of 2008 are of concern for financial practitioners. The current 
paper responds to these questions by examining the empirical predictive power 
of various strategies in pure out-of-sample tests, relying on a recently developed 
unbiased ex-post volatility proxy and using ultra-high-frequency trading data in 
the Australian equity market. 

Our research is also motivated by the fact that no such study has previously 
been conducted on the Australian stock market. [13] model and evaluate the 
monthly volatility forecasting techniques using Australian low-frequency data. 
They identify several unique features that distinguishing the Australian equity 
stock market from other stock markets. For instance, the top 20 firms listed on 
the Australian Stock Exchange (ASX) own 80% of the total assets in the market, 
whereas in the United States, the top 30 companies on the Dow Jones Industrial 
Average (DJIA) index hold only 65% of the total assets. The Australian market is 
dominated by energy and resources firms ([14]), which are more volatile than 
industrial shares. However, regulatory guidelines developed by the Australian 
Security and Investment Commission (ASIC) require disclosure of more 
financial information for investors to make decisions than is required in some 
other countries. This may reduce the level of information asymmetry and 
expected volatility in the stock market. Overall, Australian institutional features 
and settings are quite unique compared with other markets, therefore, 
examining volatility forecasting issues in Australian provides particular evidence 
in relation to the related literature. 

In our empirical analysis using ultra-high-frequency data from the Australian 
stock market, we evaluate the predictability of three commonly used 
GARCH-type models and four variations of each. The three models are GARCH, 
TGARCH and APARCH2. The benchmark forecasting models are each 
GARCH-type model estimated with a growing estimation window and Gaussian 
innovations, and the variations are the models estimated with rolling forecasting 
windows (one-year and three-years rolling windows) and skewed and 
heavy-tailed innovation distributions (Student-t innovations and skew Student-t 
innovations). We firstly compare the predictive abilities of the variations of each 
separate GARCH model to the benchmark GARCH class model, which is 
estimated with normally distributed innovations in the full sample period from 
January 2005 to December 2013. Then we proceed by directly comparing the 
forecasting accuracy of each benchmark GARCH model to determine which one 
provides the best predictive performance. The forecasting ability comparison is 
based on two commonly used loss functions in the literature: the Mean Square 
Error (MSE) and the Quasi-like Loss function (QL). The Diebold-Mariano test is 
also implemented to examine the statistical significance of the improved forecast 
accuracy. Our results show that for each individual GARCH-type model, the 
benchmark usually is not significantly outperformed by the modifications. The 
exception is that the skew Student t distribution improves the forecast accuracy 

 

 

2The Asymmetric Power ARCH model at least nests seven other GARCH-type models, see [6]. 
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of the standard GARCH model. In the direct comparison of the three benchmark 
GARCH class of models, the APARCH usually gives the best forecasts in the 
out-of sample period from 2005 to 20133. We note that the volatility forecasting 
procedure presented in this study is not limited to GARCH class models. In 
practice, the out-of-sample predictive performance of any volatility model can 
be evaluated based on our procedure. 

The reminder of the paper is organized as follows: Section 2 provides a brief 
discussion of the theory around measuring high-frequency volatility. Section 3 
and Section 4 respectively illustrate forecasting models and detailed procedures 
to compare prediction performance. Section 5 describes the daily data and tick 
data used in this paper. The main empirical results are presented in Section 6 
and conclusions are drawn in Section 7. 

2. Measurement of Ex-Post Daily Volatility 
2.1. Theoretical Set-Up 

Unlike for raw return, the actual daily return volatility process usually cannot be 
directly observed because there is just one daily return per trading day. 
Conventionally, volatility is treated as a latent variable4 in parametric models 
such as GARCH-type and Stochastic volatility (SV) models that are inferred 
from ex-post low-frequency return data. Volatility measurement by these 
models is based on specific distributional assumptions and usually involves 
complex procedures in estimating model parameters. [15] introduced the 
concept of realized volatility for the first time.5 The realized volatility is a 
non-parametric estimator that does not rely on the distribution of parameters. 
In the standard form, realized volatility is the second-order sample moment, that 
is, the sum of squares of the high-frequency returns over a fixed period, say, one 
day.  

2
,

1

n

t t i
i

RV r
=

= ∑  

where ,t ir  is the ith high-frequency return for day t. 
In financial asset pricing models, the asset price is assumed to be driven by a 

continuous time diffusion process,  

( ) ( ) ( ) ( )d d dX t t t t W tµ σ= +  

where ( )X t  is log price, ( )W t  is standard Brownian Motion, and ( )tµ  and 

 

 

3We also examine the performance of our selected volatility forecasting strategies during the finan-
cial turmoil period. The same procedure above is applied to the period of GFC in 2008. We choose 
three months after the date that the Lehman Brothers Holdings filed for Chapter 11 of the United 
States bankruptcy protection code as the test period. We compare the forecast performance of 
GARCH models in the crisis period with three months in early 2008 which has much lower uncon-
ditional daily volatility. We find that during financial turmoil, the degree of forecast losses are sig-
nificantly increased, however, the overall ranking of the forecast does not change. The APARCH 
provides the best forecast across all cases suggesting the importance of the role of negative returns in 
predicting future volatility when the market is down. 
4Latent variables cannot be directly observed and are estimated by using other observed variables 
5In literature, realized volatility and realized variance are often used interchangeably. 
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( )tσ  are drift and diffusion term respectively. In integral format, the process is: 

( ) ( )
0 0

0 d d
t t

s s sX t X s Wµ σ= + +∫ ∫  

The underlying daily variation of return is then measured by the Quadratic 
Variation (QV): 

2
1

d
t

t st
QV sσ

−
= ∫  

where sσ  is the spot volatility process. Since sσ  is latent, GARCH and SV 
models treat tQV  as unobservable, and infer it from past realized values of 
daily return data, that is 1 2, ,t tr r− − � . [16] [17] [18] prove that if the underlying 
asset log price is a semi-martingale, the quadratic variation theory ensures that 

tRV  converges in probability to the Quadratic Variation ( tQV ) of asset return, 
which is the actual underlying volatility we would like to measure in the 
continuous framework:6 

2 2
, 1

1
d

n t
t i st

i
r sσ

−
=

→∑ ∫  

Thus, non-parametric realized volatility provides an efficient measure of daily 
market volatility and allows us to treat realized volatility as an observable 
variable rather than a latent one. 

However, high-frequency raw data are contaminated by microstructure noise 
reflecting market frictions such as bid-ask bounce and price discreteness. 
Mathematically, the observed log price can be decomposed into two parts: 

t t tY X ε= +  

where tX  is the latent price process and tε  denotes microstructure noise and 
which is independent of tX . It then can be shown that 

( ) ( ) ( )2 2
0

2 d
t

t s pRV Y nE s O nε σ= + +∫                   (1) 

where n is the sampling frequency. Note in Equation (1), as sampling frequency 
increases, the integrated variation that measures the actual volatility of the true 
price process will be swamped by the error terms. Hence, it may be unwise to 
sample the data too often when estimating RV. One way to mitigate the 
contamination caused by microstructure noise is sparsely sampling 
high-frequency data, such as sampling every five minutes instead of every 
second. This will reduce the bias term, because ( )sparsen n< . In empirical work, a 
five-minute time interval is widely used as the sampling frequency. However, 
although the effect of the bias term can be mitigated, sparse sampling cannot 
completely remove it. Moreover, too much data are thrown away if 
high-frequency data are sampled every five minutes and this violates the 
statistical principle. In recent years, a few consistent estimators have been 
proposed that are designed to accurately calculate realized volatility by directly 
modelling microstructure noise. Theoretical and simulation studies show that 
they can improve the estimation to a large extent. (see [11] [12] [19] [20]) 

 

 

6To be accurate, the convergence is in probability, that is 2 2
,1 1

plim d
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2.2. An Unbiased Ex-Post Volatility Estimator Using 
Ultra-High-Frequency Data 

As we discussed above, estimating daily volatility ( tRV ) by using all the 
high-frequency observations will lead to a rather unreliable result. Sparsely 
sampling can mitigate the effect of microstructure noise, but at the cost of 
discarding a huge amount of data, which is not advisable. Moreover, sparsely 
sampled estimators are statistically biased. [11] proposes a method of utilizing 
the full data set, which provides a consistent estimator, the TSRV, which is 
estimated based on the assumption that noise is independently and identically 
distributed (i.i.d) and independent of the price process. It involves three steps: 

1) Sub-sampling 
Firstly, partition a full grid of observation { }0 , , nt tΛ = �  into M non-overlap 

sub-grids, ( ) , 1, ,m m MΛ = � , such that n M →∞  as n →∞ . 
2) Averaging 
For each sub-sample, we calculate the ( )m

tRV  and then average these 
estimators. 

( ) ( )

1

1 M
avg m

t t
m

RV RV
M =

= ∑  

3) Bias-Correcting 
Although ( )avg

tRV  remains biased, the bias is now ( )22nE ε , which is 
smaller than the original bias because n  is the average size defined as n M  
which is much smaller than the full size n. 

To remove the bias ( )22nE ε  from ( )avg
tRV , we need to estimate ( )2E ε . 

According to [11], this can be estimated by ( )1
2

all
tRV

n
7. Now the unbiased 

estimator is: 

( ) ( ) ( ) ( ) ( )22tsrv avg avg all
t t t t

nRV RV nE RV RV
n

ε= − = −            (2) 

To the best of our knowledge, TSRV is the first proposed consistent estimator 
of quadratic variation ( tQV ). [21] further proposes a multi-scale RV (MSRV) 
that generalizes TSRV in Equation (2) by averaging more scales instead of just 
two ( ( )avgRV  and ( )allRV ). However, MSRV is difficult to implement in 
practice, and it does not significantly outperform TSRV. [12] examine the TSRV 
after relaxing the assumption of i.i.d microstructure noise. They find that TSRV 
works even in the situation where the noise is serially dependent. 

In implementing the calculation of TSRV, firstly we can partition the full grid 
of data point, { }0 , , nt tΛ = �  into subgrids, ( ) , 1, , ,m m M n MΛ = � � , such 
that: 

( ) ( ) ( )

1
, where , when .

M
m k l

m
k l

=

Λ = Λ Λ Λ = ∅ ≠∩∪  

For example, consider the full grid in tick time is { }0 10, ,t tΛ = � , if we choose 
to sub-sample every three transactions, then the sub-grids are: 

 

 

7 all
tRV  is the realized volatility estimated by using all the data. 
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For each sub-sample, we calculate the RV by summing the squared returns 
and then averaging RV estimators: 

( ) ( )

1

1 M
avg m

t t
m

RV RV
M =

= ∑                      (3) 

( )avg
tRV  is thus the average of the ( )m

tRV  for M sub-samples with average 
size n m M= . The bias for ( )avg

tRV  is now ( )22nE ε  which is smaller than 
the original noise ( )22nE ε . 

The next step is subtracting the noise term from our estimator to render it 
unbiased. The unbiased estimator is thus: 

( ) ( ) ( )22 .tsrv avg
t tRV RV nE ε= −  

To perform the final step, we need to estimate the error term ( )2E ε  which 
is unknown. Zhang et al. (2005) shows that ( )2E ε  can be consistently 
approximated using ( )all

tRV  which is the realized variance among all data sets: 

( )� ( )2 1
2

all
tE RV

n
ε =                         (4) 

Hence the final unbiased estimator is: 

( ) ( ) ( ) .tsrv avg all
t t t

nRV RV RV
n

= −                     (5) 

3. Forecasting Models 

This paper examines the empirical accuracy of various approaches in predicting 
the conditional daily volatility tσ . Let tI  denote the information set at time t. 
Then for h-step-ahead volatility forecasts we have 

[ ] [ ]2
| | |t h t t h t t h t

t h t h t h

Var r I Var a I
a
σ

ε σ
+ + +

+ + +

= =

=
 

where tr  is the log return series, ta  are innovations and tε  follows a 
distribution with zero mean and unit variance. The predicted value of t hσ +  is 
obtained from an alternative GARCH-type model estimated by maximum 
likelihood estimation (MLE) using historical daily return in the sample. 

The natural choice for the benchmark model is GARCH as proposed by [2]. 
The simple GARCH(1,1) has the form: 

2 2 2
0 1 1 1 1, ,t t t t t ta aσ ε σ α α β σ− −= = + +  

where ta  is the innovation at time t, tε  is a sequence of identical 
independently distributed (iid) random variables with zero mean and unit 
variance. If the forecast starting point is h, for one-step-ahead forecast, we have  

( )2 2 2
0 1 11h h haσ α α β σ= + +  

and for L-step-ahead forecast, we have 
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( ) ( ) ( )2 2
0 1 1 1h hL Lσ α α β σ= + + −  

GARCH models largely improve the practical use by adequately describing the 
feature of volatility of asset return while limiting the number of parameters that 
need to be estimated compared with the ARCH model of [1]. It has been 
documented that the simple GARCH(1,1) model can capture most of the 
volatility process of financial asset return. A comprehensive study by [22] also 
show that the most improved versions of GARCH models do not significantly 
outperform GARCH(1,1) in forecasting volatility. 

However, the GARCH model deals with the symmetric price increase and 
drop, and fails to capture asymmetric effects on volatility. Empirical evidence 
has shown that volatility usually responds differently to large positive return 
versus large negative return. To overcome the weakness of the GARCH and the 
asymmetric effect, the TGARCH model was proposed by [4] and [5]. 
TGARCH(1,1) assumes the form 

( )2 2 2
0 1 1 1 1 1 1,t t t tN aσ α α γ β σ− − −= + + +  

where 1tN −  is the indicator for negative return innovation hence: 

1
1

1

1 if 0
0 if 0

t
t

t

a
N

a
−

−
−

<
=  ≥

 

The last model examined in this paper is the APARCH model of [6]. This 
model is commonly used in practice and [23] shows it nests many other GARCH 
models to capture the long memory feature in the volatility process. The 
APARCH has the following form: 

( )1 1 1 1 1 1, ,t t t t t t ta a a
δδ δσ ε σ ω α γ β σ− − −= = + + +  

Here, ε  follows a general distribution with zero mean and unit variance, 
and δ  is a positive real number. 

Table 1 summarises the in-sample performance of the GARCH, TGARCH 
and APARCH models in our sample period spanning 2002-2012. All of the 
estimated parameters of the models are significantly different from zero and 
mostly significant at the 1% level8. These volatility models are estimated using 
conditional maximum likelihood method.9 Moreover, the skewness coefficient of 
our sample log return is −0.582633, which suggests the log return is negatively 
skewed10. Therefore, to deal with the skewness of daily return, the volatility  

 

 

8The adequacy of the fitted models can be checked by the property of standardized residual series 

t t ta a σ=� . The ta�  process should be serially uncorrelated if the volatility model adequately cap-
tures the variations in asset return, our result indicates that after they are scaled by the fitted condi-
tional volatility, the residuals are uncorrelated. 
9The Quasi Maximum Likelihood estimation is also used, and it yields similar results. 
10We performed formal test for the skewness. In the case of the GARCH model, the skew parameter 
is 0.8487 with a standard error of 0.0248. The t ratio is then ( )0.8487 1 0.0248 6.1− = −  with 
p-value < 0.01. Consequently, the null hypothesis of no skew is rejected. The same rejection deci-
sions are for TGARCH and APARCH models. TGARCH has skew parameter 0.8382 with se 0.2475 
and APARCH has skew parameter 0.8357 with se 0.2473. 
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Table 1. Estimated parameters of GARCH, TARCH and APARCH. Table reports 
estimated parameters of GARCH, TARCH and APARCH for sample daily returns from 
2002 to 2012. The maximum of likelihood estimation (MLE) method are used and we 
allow for three types of MLE functions to handle the skewness of innovation returns: 
Gaussian, Student t and skew Student t. The level of statistical significance is denoted by: 
*10%, **5%, ***1%. 

 GARCH     

Parameters constant alpha beta   

Gaussian 7.376E−07** 0.081*** 0.916***   

Student t 3.87E−07* 0.061*** 0.937***   

Skew Student t 4.70E−07** 0.066*** 0.931***   

 TGARCH     

Parameters constant alpha beta gamma  

Gaussian 1.56E−06*** 0.078*** 0.893*** 0.391***  

Student t 6.13E−07** 0.053*** 0.932*** 0.349***  

Skew Student t 7.23E−07*** 0.056*** 0.927*** 0.341***  

 APARCH     

Parameters constant alpha beta gamma delta 

Gaussian 8.35E−04*** 0.093*** 0.908*** 0.701*** 0.724*** 

Student t 3.46E−04*** 0.081*** 0.924*** 0.626*** 0.801*** 

Skew Student t 3.5E−04*** 0.081*** 0.923*** 0.646*** 0.820*** 

 
models are also fitted by maximising the Student-t and skewed Student-t 
likelihood functions. 

4. Comparison Procedure 

For comparing the predictive performance of various volatility forecasting 
models, the benchmark strategy involves a growing estimation window that 
employs all available data on and before each trading day in the forecasting 
sample and then fits the model by maximising the Gaussian likelihood function. 
In addition, instead of using a growing estimation window in the benchmark, 
forecasting strategies with a medium rolling window of three years and a short 
rolling window of one year are tested. Further, to handle the skewness of daily 
return, we also re-estimate and evaluate the models with Student-t and skew 
Student-t innovations. Overall, we compare three GARCH-type models with five 
prediction strategies. 

We adopt the recursive forecasting method to obtain forecasted daily volatility. 
In the implementation, for each trading day t in the out-of-sample forecasting 
period we estimate GARCH class volatility models by using all the available daily 
data before date t. Then, for each GARCH-type model and each forecasting 
strategy, the fitted model is used to generate multiple forecasting horizons: one 
day, one week, two weeks and one month11. In this way, a series of overlapping 

 

 

11Usually, one week has 5 trading days and one month has 22 trading days. 
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forecast paths is generated for each strategy. As the objective of the paper is to 
evaluate the empirical accuracy of each strategy, we compare the predicted daily 
volatility in the forecasting path with the high-frequency volatility, which is 
treated as a proxy for the true underlying return variation process. The 
high-frequency daily volatility is calculated by using both five-minute trading 
data (5-min RV) and the TSRV introduced in Section 2. As 5-min RV is noisy 
and TSRV is a robust and unbiased estimator of high-frequency volatility, our 
results mainly rely on the latter. 

The comparison of empirical forecasting accuracy are based on loss functions, 
which examine the magnitude of the difference between the predicted volatility 
and the realized ex-post volatility proxy. The model with smaller forecasting loss 
is considered superior in predictability. We take the two loss functions suggested 
by [24] and [25]: Mean Squared Error (MSE) and Quasi-Like loss function (QL) 
which are defined as: 

( ) ( )
( )

22 2
| |

2
| 2 2

| |

MSE ,

QL , log 1

t h t h t t h t h t

t h t h
t h t h t

t h t t h t

RV RV

RV RV
RV

θ θ

θ
θ θ

+ + + +

+ +
+ +

+ +

= −

= − −
               (6) 

where t hRV +  is the ex-post realized volatility at time t h+  and 2
|t h tθ +  is the 

predicted corresponding value. Empirical studies of [22] [24] and [26] suggest 
that QL is a more robust function to compare forecasting loss, specifically for 
accuracy of comparisons across periods with different volatility levels. This is 
because the loss function of QL only depends on the scaled residual whereas 
MSE is determined by the additive errors. As a robustness test, we apply the 
Diebold-Mariano test12 to statistically examine the performance of the loss 
functions (MSE and QL) for each forecasting strategy. The null hypothesis is the 
case that the two forecasts have the same accuracy and the alternative hypothesis 
is that one forecast has a higher level of accuracy. 

5. Data Description 
Daily Data and Tick Data 

The total sample period is June 2002 - September 2013, and the out-of-sample 
period covers 2005-2013. The GARCH-type volatility models are estimated 
using the index daily data, and as a proxy for the true high-frequency daily 
volatility of ASX200 index, we use tick data for an exchange-traded index 
tracking fund (YSTW.AX) to calculate the 5-min RV and TSRV. Both the daily 
data and tick data are constructed from a database maintained by the Securities 
Industry Research Centre of Asia-Pacific, which has access to Thomson Reuters 
Tick History (TRTH). TRTH preserves Australian equities tick history from 
1995. 

The ASX uses a call auction procedure at opening and closing of each trading 
day. Therefore, to avoid abnormal trading patterns around the start and the end 

 

 

12For details see [27]. 
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of the trading day, trading data for the opening and closing call auctions are 
discarded. Only trading data collected during normal trading hours (10 am to 4 
pm) are considered. We also exclude the overnight return. Due to the recording 
errors in tick data, the intra-day data for some trading dates are missing. We 
reconcile the tick data and daily data to match the volatility for each date. In the 
final form, our sample has 2791 trading days with 1,211,122 trading records. 

6. Empirical Results 

In this section, forecasting results for each separate GARCH-type model with 
modified strategies are reported. We also directly compare and test the 
forecasting accuracy of all three GARCH-type models. We examine whether the 
ranking of forecasting models changes during the GFC in 2008, and the results 
are shown in the Appendix.  

Comparing Forecasting Accuracy for Various Volatility 
Forecasting Strategies 

We begin comparing the out-of-sample prediction performance of various 
strategies with respect to the benchmark for the full period from 2005 to 2013. 
The benchmark is the GARCH-type model with the Gaussian innovation 
distribution estimated using all available data from 2002, and competing 
strategies are the modifications of the benchmark with a different forecasting 
window and innovations distributions. Both the 5-min RV and the more robust 
TSRV are calculated using intra-day trading data according to the model 
specifications in Section 2. They are treated as proxies for the underlying 
volatility process and used to yield prediction losses through comparison with 
the predicted value from each volatility forecasting model specification. 

The forecasting performance of GARCH, TGARCH and APARCH volatility 
models, which are recursively estimated, are reported in Table 2 to Table 4 
respectively. The prediction losses in the tables are based on two loss functions 
(QL and MSE) and two realized volatility measures (5-min RV and TSRV). The 
First column of each table under “forecasting strategies” shows the out-of-sample 
average losses of the benchmark forecasting strategy at multiple horizons (1, 5, 
10 and 22 trading days). The second column through to the last column report 
relative forecasting performance, which are the average percentage gains or 
losses achieved by the modified prediction strategies with 1) Student t 
innovations, 2) skew Student-t innovations, 3) one-year rolling estimation 
windows and 4) three-year rolling estimation windows. For each positive 
percentage gain, we apply the Diebold-Mariano test to investigate whether the 
modification can significantly improve the forecasting accuracy with respect to 
the benchmark. As TSRV is less noisy than the 5-min RV and QL is a more 
robust loss function, our analyses are mainly concentrated on the results based 
on TSRV and QL. However, we report all of the results, allowing to examine how 
the conclusions are affected by using traditional MSE and 5-min RV. 
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Table 2. The Out-of-sample test for GARCH models. Table shows the evaluation of 
GARCH volatility forecast strategies for the period 2005-2013 . The 1st column under the 
“forecasting strategies” reports the out-of-sample losses (QL and MSE) of the benchmark 
forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days) . From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the 
percentage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility  
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.815 −0.498 0.833** −23.197 −23.001 

  1 week 0.828 −0.262 1.27*** −21.286 −20.538 

  2 weeks 0.844 0.030 1.631*** −19.272 −17.842 

  1 month 0.862 0.134 2.144*** −17.292 −15.359 

 MSE 1 day 1.005 −0.252 0.433 −9.550 −9.566 

  1 week 1.010 −0.236 0.749 −9.751 −9.835 

  2 weeks 1.017 −0.262 1.062 −10.107 −10.281 

  1 month 1.031 −0.544 1.709 −10.776 −11.116 

5 min-RV QL 1 day 1.486 0.044 −0.379 −21.602 −24.467 

  1 week 1.482 −0.105 −0.231 −23.443 −24.939 

  2 weeks 1.494 0.229 −0.045 −24.009 −24.178 

  1 month 1.511 0.985** 0.156 −25.729 −24.082 

 MSE 1 day 9.851 0.002 −0.037 −0.302 −0.371 

  1 week 9.851 0.002 −0.014 −0.530 −0.567 

  2 weeks 9.854 0.006 0.011 −0.774 −0.781 

  1 month 9.938 −0.022 0.053 −0.582 −0.534 

 
It is apparent from Tables 2-4 that 5-min RV yields systematically higher 

losses than those of TSRV, as expected. This suggests that TSRV is a more 
precise proxy for the ex-post volatility than the sparsely sampled 5-min RV. This 
is because using sparsely sampled five-minute data discards too many 
high-frequency observations, along with the information they contain. Thus, we 
interpret the results relying on the out-of-sample forecasting losses yield from 
the TSRV. We note further from Tables 2-4 that except the standard GARCH 
model under skew Student t distribution, there are few systematic improvements 
in forecasting accuracy when the benchmark strategy is modified. In other words, 
the daily volatility forecasts obtained from the GARCH-type models estimated  
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Table 3. The out-of-sample test for TGARCH models. Table shows the evaluation of 
TGARCH volatility forecast strategies for the period 2005-2013. The 1st column under 
the “forecasting strategies” reports the out-of-sample losses (QL and MSE) of the 
benchmark forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From 
the 2nd through the last column report the percentage gains or losses achieved by 
modifying the estimation strategy with 1) Student t innovations, 2) skew student t 
innovation, 3) 1 year rolling estimation window, 4) 3 year rolling estimation window. 
Asterisks after the percentage gains represent the significance of the Diebold-Mariano test 
for whether the modification can improve the forecasting accuracy. The level of statistical 
significance is denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.798 −0.858 0.013 −28.956 −19.365 

  1 week 0.804 −0.744 −0.629 −25.492 −17.804 

  2 weeks 0.798 −0.844 −1.688 −22.805 −18.231 

  1 month 0.799 −0.396 −3.177 −20.229 −18.446 

 MSE 1 day 1.037 1.848 2.193 −13.219 −13.349 

  1 week 1.010 0.028 −0.3 −10.786 −10.882 

  2 weeks 0.983 −1.494 −2.601 −8.197 −8.207 

  1 month 0.933 −4.302 −6.844 2.767 −2.711 

5 min-RV QL 1 day 1.577 2.874 2.751** −83.341 −60.638 

  1 week 1.563 1.755 2.424 −78.156 −59.202 

  2 weeks 1.573 1.046 2.098 −66.311 −54.694 

  1 month 1.599 1.333 3.091 −54.484 −45.779 

 MSE 1 day 9.921 0.506 0.48 −0.237 −0.124 

  1 week 9.895 0.277 0.235 −0.659 −0.558 

  2 weeks 9.875 0.104 0.057 −1.046 −0.983 

  1 month 9.899 −0.177 −0.223 −1.342 −1.282 

 
via Gaussian maximum likelihood using all available data set are not outperformed 
by the models which have modified innovation distributions and estimation 
windows. Particularly, when the models are estimated using Student-t likelihood, 
we do not observe significant improvements in forecasting performance. This 
may suggest that in the sample period, the distribution of the return does not 
dramatically violate the assumptions in the models. Although the results are not 
statistically significant, Student-t distribution seems to positively improve the 
forecasting accuracy for longer horizons. For GARCH with Student-t innovation 
in Table 2, shorter forecasting horizons (1 day and 1 week) have higher 
prediction losses than the benchmark, while the losses for longer horizons are  
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Table 4. The out-of-sample test for APARCH models. Table shows the evaluation of 
APARCH volatility forecast strategies for the period 2005-2013. The 1st column under 
the “forecasting strategies” reports the out-of-sample losses (QL and MSE) of the 
benchmark forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From 
the 2nd through the last column report the percentage gains or losses achieved by 
modifying the estimation strategy with 1) Student t innovations, 2) skew student t 
innovation, 3) 1 year rolling estimation window, 4) 3 year rolling estimation window. 
Asterisks after the percentage gains represent the significance of the Diebold-Mariano test 
for whether the modification can improve the forecasting accuracy. The level of statistical 
significance is denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.7845 −0.479 0.07 −31.762 −24.622 

  1 week 0.7934 0.065 0.296 −27.737 −20.698 

  2 weeks 0.7919 1.076 0.949 −24.481 −19.202 

  1 month 0.8134 3.159 2.861 −18.84 −14.713 

 MSE 1 day 1.0104 −1.551 −0.644 −10.879 −11.09 

  1 week 0.9711 −2.262 −1.353 −7.15 −7.377 

  2 weeks 0.9404 −2.196 −1.378 −3.978 −4.177 

  1 month 0.9117 −1.091 −0.599 0.422 0.606 

5 min-RV QL 1 day 1.5773 2.874** 2.751** −83.341 −60.638 

  1 week 1.5629 1.755 2.424 −78.156 −59.202 

  2 weeks 1.5731 1.046 2.098 −66.311 −54.694 

  1 month 1.5985 1.333 3.091 −54.484 −45.779 

 MSE 1 day 9.9207 0.506 0.48 −0.237 −0.124 

  1 week 9.8953 0.277 0.235 −0.659 −0.558 

  2 weeks 9.8754 0.104 0.057 −1.046 −0.983 

  1 month 9.8993 −0.177 −0.223 −1.342 −1.282 

 
reduced. The applications of TGARCH and APARCH provide similar outcomes. 
The MSE loss provides mixed results, but they are not significant. Recall that 
MSE is rather noisy when the out-of-sample forecasting period is long and 
covers different volatility regimes. Overall, although Student-t distribution of 
innovations does not significantly improve the forecasting power of the three 
GARCH-type models, the prediction losses are alleviated when the forecasting 
horizon is longer. This is because the heavy tailed property is not generally 
disturbed by short run distribution of stock returns in the Australian equity 
market. 

Our next step is to move to the models with skewed distribution of 
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innovations. Table 2 shows that the GARCH model with skew Student-t 
likelihood significantly decreases QL losses when TSRV is used. The improvement 
is about 1% for the one day forecast horizon and 2% for one month ahead. This 
is consistent with the findings in Section 3 that shows the sample skewness is 
significantly negative. The skew distribution of innovations successfully captures 
this property and hence provides improved forecasts. We also note that the 
improvements are larger for longer forecasting horizons because of the increase 
in the skewness of returns over a longer period. Similar to the case of Student-t 
distribution, 5-min RV provides insignificant mixed results but they do not 
contradict the results of TSRV. The APARCH model provides similar but not 
statistically significant outcomes according to the Diebold-Mariano test (see 
Table 4). In Table 3, the TGARCH with skew innovation distribution appears to 
reduce forecasting accuracy for QL loss with TSRV proxy, compared with the 
benchmark. The possible reason is that the effect of negative skewness is 
incorporated in the standard TGARCH, because the TGARCH is designed to 
capture the heavier influence of past negative returns. 

Using rolling estimation windows dramatically decreases forecasting 
performance. In the case of QL loss with TSRV proxy, the accuracy decreased by 
more than 20% and for other cases the maximum reduction is as much as 80%. 
The one-year rolling estimation window has the largest forecasting losses, but 
the medium three-year rolling window is better, however, it is still much worse 
than the full sample growing estimation window. This may suggest that the 
information contained in the short estimation period is not sufficient to capture 
the dynamic of the volatility process. 

Finally we move to the direct comparison of the three benchmark GARCH 
models. Table 5 displays the forecast performance of each GARCH-type model 
in the sample period 2005-2013. As discussed earlier, the benchmark strategy for 
each model works well so only the loss functions for the benchmark and for each 
forecast horizon are shown in Table 5. The best performance which has the 
smallest prediction loss is highlighted. We also use the Diebold-Mariano test to 
evaluate the significance of the improved forecast accuracy. From the results, we 
see that both the TGARCH and APARCH have significantly better prediction 
performance than GARCH. Further, it is usually observed that APARCH gives 
the best forecast. In other words the asymmetric specification captures the 
asymmetry in return volatility in the Australian equity market. The MSE results 
favor the GARCH for one-day ahead forecast, but this should not be considered 
a discrepancy because the result is not significant and the losses are very similar. 

We also examine the performance of our selected volatility forecasting 
strategies during the recent financial turmoil period. The same procedure above 
is applied to the period of the GFC in 2008. We find that during financial 
turmoil, the forecast loss of each model is significantly increased, however, the 
overall ranking of the models does not change. The details and results are 
provided in Appendix. 
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Table 5. Comparison of three standard GARCH class models. Table shows the direct 
comparison of GARCH models in predicting ASX200 daily volatility for the period 
2005-2013. The numbers in the table are the forecasting losses for each loss function 
Asterisks represent the significance of the Diebold-Mariano test. The level of statistical 
significance is denoted by: *10%, **5%, ***1%. 

Loss function Forecast horizons Volatility model 

  GARCH TGARCH APARCH 

QL 1 day 0.8148 0.7979* 0.7845 

 1 week 0.8279 0.8036** 0.7934* 

 2 weeks 0.8436 0.7982*** 0.7919** 

 1 month 0.8616 0.7982*** 0.8134 

MSE 1 day 1.0053 1.0374 1.0104 

 1 week 1.0097 1.0104 0.9711* 

 2 weeks 1.0166 0.9833* 0.9404** 

 1 month 1.0313 0.9333* 0.9117* 

7. Conclusion 

Volatility models are constructed to predict volatility, which is an essential input 
in financial asset pricing models and risk management practice. In this paper, we 
empirically investigate the predictive ability of various volatility forecasting 
strategies employing GARCH class models in the Australian equity market that 
has several distinguishing features. We specifically examine which specific 
features of GARCH models provide the best forecast; whether we should allow 
for heavy-tailed and skew distribution of innovations in our estimation; and 
whether we should use growing estimation or rolling estimation windows. 
Because of the crucial role of ex-post volatility estimators in out-of-sample tests 
for predictive ability of volatility models—along with the realized volatility 
constructed using five-minute intra-day data that are arbitrary, subjective and 
biased, our analyses rely more on an unbiased volatility estimator—the TSRV, 
which utilizes ultra-high-frequency intra-day data. 

In the pure out-of-sample test, we evaluate the predictive abilities of volatility 
forecasting strategies involving three popularly used GARCH-type models and 
their modifications. Each strategy is compared with the corresponding 
benchmark standard GARCH class model. The forecasting accuracy is based on 
two commonly used loss functions: the Mean Square Error (MSE) and the 
Quasi-like Loss function (QL). For robustness test purposes, we use 
Diebold-Mariano statistic to examine the significance of forecasting accuracy. 
Our results suggest that, in the Australian stock market, modifications to the 
GARCH class models usually do not significantly outperform the associated 
standard model with normally distributed innovations and a growing estimation 
window. However, Student-t and skew Student-t distribution seems to alleviate 
the forecasting losses for all three GARCH-type models when forecasting 
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horizon is increasing. With regard to the estimation window, the results show 
that growing estimation windows significantly outperform rolling estimation 
windows, which suggests that the information incorporated in a relative short 
estimation window is not sufficient to capture the time-varying volatility 
process. 

Further, in the direct comparisons to the benchmark models, the APARCH 
model typically provides the best forecast in the out-of sample period of 
2005-2013. By applying the same evaluation procedure to a period of financial 
turmoil, the 2008 GFC, we find that while the predictive abilities of volatility 
models are reduced, their ranking remains the same. Overall, the APARCH 
model provides the best forecast across all cases, which demonstrates the ability 
of the APARCH model in capturing the leptokurtic returns and other stylized 
facts of volatility in the Australian stock market. 
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Appendix 

We examine the forecast ability of GARCH models during the recent GFC with a 
high volatility level. Figure A1 plots the time series of the daily return, as ex-
pected, the variation in asset return is dramatically high during the period of 
high turmoil around autumn of 2008. We choose the test period of three months 
beginning 15 September, 2008 when Lehman Brothers Holdings filed for bank-
ruptcy protection. We selected the three-months period from April to July 2008 
as a control period. A similar procedure to the full sample period is also applied 
to these periods. The annualized unconditional daily variance for the GFC pe-
riod is 0.224, which is four times as large as the variance in the control period 
with daily volatility of 0.055. 

Tables A1-A3 report the forecast losses for the control period April- July 
2008. We repeat the procedure for the turmoil period September - December 
2008, and the results are presented in Tables A4-A6. From the “benchmark” 
column in each table, we can see that the forecast losses are dramatically in-
creased during the GFC. For instance, the TGARCH benchmark strategy has QL 
losses of 0.4 for the second quarter of 2008, which rises to 0.6 in the autumn. 
However, the results show a similar tendency as in the full sample period 
(2005-2013). While the benchmark strategies across all three GARCH models 
are seldom beaten by their corresponding variation, skewed Student-t likelihood 
can significantly improve the forecast accuracy of each GARCH model. We also 
observe that during the GFC, the 1-year rolling estimation window improves the 
forecast for longer horizons. This is because historical data from earlier periods 
have less prediction power during financial turmoil. However, when the higher 
effect of negative returns is considered in the TGARCH and APARCH models, 
improved performances disappear. 

Table A7 provides the result of the direct comparison of GARCH class mod-
els during the normal and turmoil periods. Similar to the full sample period, the 
TGARCH and APARCH models perform better than the GARCH model. The 
APARCH model usually provides the best forecast accuracy, particularly for the 
longer forecast horizons during the normal period in 2008. However, the model 
wins across all cases for the GFC period. This reflects the important role of 
higher negative returns in predicting future volatility during times of financial 
turmoil. Overall, although the forecast accuracies are reduced during the GFC, 
the ranking of the forecasting models is unchanged. 

 

 
Figure A1. Plot of daily log return od ASX200. 
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Table A1. GARCH for April-July, 2008. Table shows the evaluation of GARCH volatility 
forecast strategies for the period April-July 2008. The 1st column under the “forecasting 
strategies” reports the out-of-sample losses (QL and MSE) of the benchmark forecasting 
strategy at multi-step ahead (1, 5, 10 and 22 trading days) . From the 2nd through the last 
column report the percentage gains or losses achieved by modifying the estimation strat-
egy with 1) Student t innovations, 2) skew student t innovation 3) 1 year rolling estima-
tion window, 4) 3 year rolling estimation window. Asterisks after the percentage gains 
represent the significance of the Diebold-Mariano test for whether the modification can 
improve the forecasting accuracy. The level of statistical significance is denoted by: *10%, 
**5%, ***1%. 

Volatility  
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.5068 −5.323 0.451** −30.251 −21.495 

  1 week 0.5870 −5.618 1.218* −24.998 −18.034 

  2 weeks 0.5712 −6.213 1.933** −24.533 −20.055 

  1 month 0.6293 −8.754 3.35* −17.483 −18.717 

 MSE 1 day 1.5643 −9.459 1.235 −0.483 10.92 

  1 week 1.6720 −9.95 3.204 2.23 11.267 

  2 weeks 1.6895 −11.138 4.95 4.052 9.82 

  1 month 1.6975 −15.955 8.134 11.706* −4.969 

5 min-RV QL 1 day 0.9963 1.049 0.732** −16.728 −19.726 

  1 week 0.9315 0.478 0.665* −39.133 −42.923 

  2 weeks 0.8144 −0.481 0.334 −90.508 −93.362 

  1 month 0.6215 −2.186 −0.606 −6.255 −5.975 

 MSE 1 day 1.5030 −0.427 0.2 −26.786 −26.065 

  1 week 1.5514 −0.359 0.291 −27.867 −27.176 

  2 weeks 1.6057 −0.225 0.239 −29.666 −29.857 

  1 month 1.7982 0.205 −0.341 −33.833 −33.809 
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Table A2. TGARCH for April-July, 2008. Table shows the evaluation of TGARCH vola-
tility forecast strategies for the period April-July 2008. The 1st column under the “fore-
casting strategies” reports the out-of-sample losses (QL and MSE) of the benchmark fo-
recasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the per-
centage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.4421 −15.667 −12.719 −65.756 −81.032 

  1 week 0.4717 −19.015 −18.624 −66.674 −80.018 

  2 weeks 0.4840 −24.036 −27.477 −65.626 −76.272 

  1 month 0.4917 −48.699 −66.562 −44.2 −56.165 

 MSE 1 day 1.8865 2.492 5.357 96.78 −97.908 

  1 week 1.8353 −3.228 −4.973 −96.338 −97.496 

  2 weeks 1.7685 −10.768 −19.692 −95.575 −96.68 

  1 month 1.5344 −50.798 −89.796 −87.009 −89.398 

5 min-RV QL 1 day 1.4674 20.057 20.292 −13.929 −12.667 

  1 week 1.5337 24.06 * 24.85 * −9.451 −15.967 

  2 weeks 1.6574 20.839 21.197 −35.704 −5.862 

  1 month 1.8378 19.671 18.629 −120.186 −87.524 

 MSE 1 day 1.6055 2.111 2.376 10.813 11.67 

  1 week 1.6543 2.027 1.921 8.585 9.486 

  2 weeks 1.7113 1.991 1.502 4.921 5.833 

  1 month 1.9250 3.15 2.921 −3.534 −2.857 

 
  

https://doi.org/10.4236/tel.2018.81001


K. Zhang et al. 
 

 

DOI: 10.4236/tel.2018.81001 23 Theoretical Economics Letters 
 

Table A3. APARCH for April-July, 2008. Table shows the evaluation of APARCH vola-
tility forecast strategies for the period April-July 2008. The 1st column under the “fore-
casting strategies” reports the out-of-sample losses (QL and MSE) of the benchmark fo-
recasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the per-
centage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.4432 −8.571 −6.876 −65.999 −81.579 

  1 week 0.4457 −10.853 −9.564 −64.731 −79.167 

  2 weeks 0.4622 −13.432 −12.965 −60.703 −72.99 

  1 month 0.4833 −18.974 −22.061 −25.437 −41.58 

 MSE 1 day 1.6543 −2.295 −0.194 −96.629 −97.851 

  1 week 1.7242 −10.322 −8.475 −95.281 −96.808 

  2 weeks 1.5608 −18.783 −17.57 −92.897 −94.67 

  1 month 1.4191 −39.502 −44.297 −62.861 −69.566 

5 min-RV QL 1 day 1.5197 11.494 11.018 −10.007 −19.045 

  1 week 1.5282 9.83 9.551 −9.844 −20.109 

  2 weeks 1.3615 10.428 10.384 −25.327 8.744 

  1 month 9.9484 13.84 12.694 −85.425 −46.436 

 MSE 1 day 15.8919 0.205 0.388 9.895 10.91 

  1 week 16.1981 −0.021 0.076 6.641 7.776 

  2 weeks 16.7667 0.067 0.105 2.958 4.183 

  1 month 19.3395 1.149 1.04 −3.054 −2.033 
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Table A4. GARCH for Sep-Dec, 2008. Table shows the evaluation of GARCH volatility 
forecast strategies for the period September-December 2008. The 1st column under the 
“forecasting strategies” reports the out-of-sample losses (QL and MSE) of the benchmark 
forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the per-
centage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.6493 −0.623 1.325*** −2.841 −9.433 

  1 week 0.6663 −0.631 1.851* −1.889 −1.887 

  2 weeks 0.6955 −0.764 1.537 12.977** −3.717 

  1 month 0.6840 −1.598 2.848 9.392* 4.228 

 MSE 1 day 2.9401 −1.867 1.957 *** 2.62 1.637 

  1 week 3.1413 −1.983 3.457 * 2.695 1.847 

  2 weeks 3.4482 −2.174 4.871 * 2.739 2.041 

  1 month 3.5297 −3.586 9.396 5.238 −4.887 

5 min-RV QL 1 day 0.6850 −0.547 1.251*** 7.774 −2.067 

  1 week 0.7117 −0.603 1.651** 6.831** 0.412 

  2 weeks 0.7367 −0.764 1.464** 4.909* 1.715 

  1 month 0.7123 −1.633 2.856* 3.399 2.011 

 MSE 1 day 3.0498 −1.827 1.92** 2.725 1.774 

  1 week 3.2620 −1.971 3.36*** 2.972 2.199 

  2 weeks 3.6500 −2.196 4.739* 3.439 2.819 

  1 month 3.5922 −3.606 9.288* 6.131** 5.817* 
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Table A5. TGARCH for Sep-Dec, 2008. Table shows the evaluation of TGARCH volatili-
ty forecast strategies for the period September-December 2008. The 1st column under the 
“forecasting strategies” reports the out-of-sample losses (QL and MSE) of the benchmark 
forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation, 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the per-
centage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.6189 −5.39 −4.476 −28.355 −14.436 

  1 week 0.6291 −7.044 −7.98 −29.191 −15.4 

  2 weeks 0.6163 −8.719 −11.793 −28.563 −11.206 

  1 month 0.6579 −18.668 −27.933 −23.379 −15.526 

 MSE 1 day 3.2443 9.824* 1.564 −9.618 9.517 

  1 week 3.3296 0.017 −2.526 −8.274 9.236 

  2 weeks 2.9432 −11.195 −20.364 2.376 8.404 

  1 month 3.4377 −4.989 −84.539 5.731 6.871 

5 min-RV QL 1 day 0.6543 −5.176 −4.358 −28.812 −15.194 

  1 week 0.6733 −6.6 −7.489 −25.792 −13.192 

  2 weeks 0.6572 −8.208 −11.165 −23.668 −13.286 

  1 month 0.7182 −18.297 −27.722 −14.162 −14.506 

 MSE 1 day 3.0599 9.526 11.244*** 9.816 9.675 

  1 week 3.4573 0.116 −2.374 9.83 9.722 

  2 weeks 3.8544 −10.773 −19.762 8.645 8.577 

  1 month 3.7833 −48.859 −83.002 8.129 9.15 
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Table A6. APGARCH for Sep-Dec, 2008. Table shows the evaluation of APARCH vola-
tility forecast strategies for the period September-December 2008. The 1st column under 
the “forecasting strategies” reports the out-of-sample losses (QL and MSE) of the bench-
mark forecasting strategy at multi-step ahead (1, 5, 10 and 22 trading days). From the 2nd 
through the last column report the percentage gains or losses achieved by modifying the 
estimation strategy with 1) Student t innovations, 2) skew student t innovation, 3) 1 year 
rolling estimation window, 4) 3 year rolling estimation window. Asterisks after the per-
centage gains represent the significance of the Diebold-Mariano test for whether the 
modification can improve the forecasting accuracy. The level of statistical significance is 
denoted by: *10%, **5%, ***1%. 

Volatility 
proxy 

Loss 
function 

Forecasting 
horizons 

Forecasting strategies 

Benchmark Student t Skew student 1-year 3-year 

 innovation t innovation 
rolling 

window 
rolling 

window 

TSRV QL 1 day 0.528 −11.349 −8.842 −3.229 −16.295 

  1 week 0.5373 −15.271 −12.04 −37.634 −202.4 

  2 weeks 0.5759 −20.065 −15.754 −44.734 −39.273 

  1 month 0.5894 −40.855 −30.557 −46.463 −31.089 

 MSE 1 day 2.1989 −14.535 −7.448 9.018 90.127 

  1 week 2.2755 −30.592 −20.008 4.304 85.811 

  2 weeks 2.5016 −51.161 −35.457 5.254 77.474 

  1 month 2.8451 −21.477 −83.595 4.29 49.634 

5 min-RV QL 1 day 0.5134 −10.94 −8.592 −25.511 −15.824 

  1 week 0.5815 −14.272 −11.271 −15.608 −16.175 

  2 weeks 0.6121 −19.205 −15.066 −33.142 −11.552 

  1 month 0.3018 −40.637 −30.276 −37.827 −24.413 

 MSE 1 day 3.3016 −14.434 −7.444 9.263 9.324 

  1 week 3.3737 −29.977 −19.611 5.186 6.58 

  2 weeks 3.5766 −49.899 −34.552 7.999 7.986 

  1 month 3.6146 −19.794 −82.378 4.126 5.856 
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Table A7. Comparing forecast ability of GARCH models before and during the 2008 fi-
nancial crisis. Table shows the direct comparison of GARCH models in predicting 
ASX200 daily volatility before and during the 2008 financial crisis. The numbers in the 
table are the forecasting losses for each loss function Asterisks represent the significance 
of the Diebold-Mariano test. The level of statistical significance is denoted by: *10%, 
**5%, ***1%. 

April-July, 2008 

Proxy Loss function 
Forecast  
horizons 

Volatility model 

   GARCH TGARCH APARCH 

TSRV QL 1 day 0.5068 0.4421** 0.4432** 

  1 week 0.5870 0.4717 0.4457 

  2 weeks 0.5712 0.4840 0.4622 

  1 month 0.6293 0.4917 0.4833 * 

 MSE 1 day 1.5643 1.8865 1.6543 

  1 week 1.6720 1.8353 1.7242 

  2 weeks 1.6895 1.7685 1.5608 

  1 month 1.6975 1.5344 1.4191 * 

September-December, 2008 

   GARCH TGARCH APARCH 

TSRV QL 1 day 0.6493 0.6189* 0.528*** 

  1 week 0.6663 0.6291 0.5373** 

  2 weeks 0.6955 0.6163 0.5759** 

  1 month 0.6840 0.6579 ** 0.5894** 

 MSE 1 day 2.9401 3.2443 2.1989 

  1 week 3.1413 3.3296 2.2755** 

  2 weeks 3.4482 2.9432 2.5016*** 

  1 month 3.5297 3.1377 ** 2.8451** 
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