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Abstract 
This paper explores the aggregate gains from trade with a focus on the role of 
non-convexity. After reviewing the example presented by Ricardo, we develop 
a general equilibrium model of trade under non-convex technologies and he-
terogeneous firms. The model is used to evaluate aggregate efficiency, with a 
focus on the case where trade restrictions are the only source of inefficiency. 
The analysis allows for non-linear pricing which becomes an integral part of 
efficiency under non-convex technologies. We establish bounds on the gains 
from trade. We show that the gains from trade are non-negative and that they 
tend to be small under convexity but can become large under non-convexity. 
This indicates that the search for larger gains from trade needs to be asso-
ciated with non-convex technologies. Implications of our analysis for the ben-
efits of globalization are discussed. 
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1. Introduction 

Economic analysis has identified that trade opportunities generate efficiency 
gains. The argument was first presented by Adam Smith [1] and then refined by 
Ricardo [2] who demonstrated how countries can benefit from trade. The asso-
ciated aggregate welfare gains have been used to support trade liberalization 
policies. Yet, while economists agree that there are efficiency gains from trade 
(e.g., Samuelson [3]), a question remains: How large are these gains? The empir-
ical measurements of aggregate gains from trade have typically been relatively 
small. For example, Arkolakis et al. ([4], p. 95) estimated that the welfare gains 
from trade for the US have ranged from 0.7% to 1.4% of income. And Ossa [5] 
evaluated the aggregate welfare effects from trade liberalization to range from 
0.5% and 2.4%. These small percentages are somewhat problematic for econo-
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mists who argue in support of trade liberalization policies. This has stimulated 
the search for new trade models that could generate larger gains from trade. In 
particular, the roles of economies of scale, product differentiation, imperfect 
competition and firm heterogeneity have been examined (e.g., Krugman [6]; 
Melitz [7]; Bernard et al. [8]; Balistreri et al. [9]; Melitz and Trefler [10]; Calien-
do and Rossi-Hansberg [11]; Melitz and Redding [12]; Edmond et al. [13]). Yet, 
Arkolakis et al. [4] argue that these new inquiries have not had much of an im-
pact on the aggregate welfare gains from trade.1 This raises the questions: Are 
there conditions under which the aggregate gains from globalization would be 
large? What are these conditions? The objective of this paper is to explore these 
issues in the context of a Ricardian model and to provide answers to these ques-
tions.  

Ricardo [2] was the first to formalize the economic arguments in favor of free 
trade. Following Eaton and Kortum ([14] [15]), we motivate our analysis using 
Ricardo’s example. We first examine the case of two countries and two goods 
and present empirical results from Ricardo’s example. The empirical exercise re-
lies on a flexible representation of technology using a constant elasticity of 
transformation (CET) specification. It allows for an evaluation of the separate 
effects of returns to scale and convexity on the gains from trade. The empirical 
results highlight three points: 1) in the two-country two-goods case, economies 
of scale have no effect on the gains from trade; 2) the benefits from trade tend to 
be small under convex technologies; and 3) non-convex technologies can gener-
ate large aggregate gains from trade. This last point suggests a need for a refined 
analysis of the economics of trade under non-convexity.  

Introducing non-convexity in the welfare evaluation of trade is challenging as 
standard welfare theorems establishing linkages between competitive market 
equilibrium and Pareto efficiency apply only under convexity (e.g., Debreu [16]; 
Brown [17]). We address this challenge in the context of a general equilibrium 
model of an economy, allowing for non-convex technologies and heterogeneous 
firms. The model provides a basis to evaluate aggregate efficiency, with a focus 
on the case where trade restrictions are the only source of inefficiency.2 The 
analysis of non-convex technologies builds on Chavas and Briec [18]. By allow-
ing for firm entry and exit and heterogeneous technologies across firms, our 
general equilibrium model captures the effects of such factors on aggregate 
productivity (as argued by Melitz [7], Bernard et al. [8], Melitz and Trefler [10] 
and Melitz and Redding [12]). We develop a dual characterization of aggregate 
efficiency under non-convexity and trade restrictions. The analysis allows for 
non-linear pricing which becomes an integral part of efficiency under non-convex 

 

 

1Notable exceptions include Melitz and Redding [12] and Edmond et al. [13]. Melitz and Redding 
[12] argue that, in the presence of firm heterogeneity, endogenous firm selection can contribute to 
increasing the aggregate welfare gain from trade. And Edmond et al. [13] identify scenarios where 
the aggregate gains from trade can be large when there are important initial inefficiencies due to im-
perfect competition. 
2As such, this paper does not examine the role of oligopolistic competition and its effects on the 
gains from trade. Yet, we will examine the role of non-convexity and discuss its implications for 
pricing in Section 4.  
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technologies. This dual characterization is used to evaluate aggregate gains from 
trade. In this context, we establish bounds on the gains from trade. We show 
that the gains from trade are non-negative and that they tend to increase with 
any relaxation in trade restrictions. While these are well-known results under 
convexity, our analysis shows that they remain valid under non-convexity. We 
also show how the gains from trade are closely linked with the properties of 
price-dependent demand functions for imports. This extends the analysis pre-
sented by Arkolakis et al. [4] to situations of non-convexity. Most importantly, 
our analysis shows that the aggregate gains from trade tend to be small under 
convexity, but that they can become large under non-convexity. This indicates 
that the search for larger gains from globalization needs to be associated with 
non-convex technologies.  

The paper is organized as follows. Section 2 motivates the analysis, relying on 
the example discussed by Ricardo [2]. Section 3 presents a general equilibrium 
model of trade. Section 4 discusses the effects of trade restrictions and their im-
pacts on pricing under non-convexity. Section 5 investigates the implications for 
the aggregate benefit from trade. Finally, Section 6 concludes. 

2. Motivations 

Adam Smith [1] identified the role of division of labor and examined its effects 
on productivity. He illustrated his arguments using the making of pins as an 
example. First, he considered the case of a “workman not educated in this busi-
ness” (Smith, [1], p. 4). He estimated that, when working alone, this workman 
could make up to 20 pins a day. Smith also considered a team of ten workers 
making pins, each one specializing in distinct successive tasks involved in the 
process of making pins (e.g., drawing the wire, straightening it, cutting it, etc.). 
Smith ([1], p. 4) claimed to have “seen a small factory of this kind.” He assessed 
that these ten men could make up to 48,000 pins a day, or 4800 pins per person 
per day (Smith, 1776, p. 4). Compared to the first scenario (20 pins per day), this 
amounts to labor productivity being multiplied by a factor of 240, or a 23900 
percent increase! Using this example, Smith argued that the division of labor can 
contribute to large increases in the productive power of labor.  

Where do these productivity gains come from? Smith ([1], pp. 6-8) argues 
that there are three contributing factors: 1) “improved dexterity” associated with 
learning; 2) saving in time lost switching from one task to the next; and 3) the 
use of machines that can make human labor more productive. Note that the 
second factor amounts to introducing fixed costs in the analysis (since the time 
lost switching between tasks does not contribute to any output). To the extent 
that fixed costs imply non-convexity technologies, this is relevant in our analysis 
of the role of non-convexity. Finally, by emphasizing the importance of organi-
zation and learning, Smith ([1], p. 12) argued that productive differences among 
individuals are not so much the cause but the effect of the division of labor.  

Smith ([1], p. 13-17) also argued that the division of labor is “limited by the 
extent of the market.” He stressed by the benefits of specialization can be ob-
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tained only in the presence of exchange. This indicates that gains from trade and 
the benefits of specialization are closely linked (Stigler [19]). As noted by Ca-
liendo and Rossi-Hansberg [11] and Becker and Murphy [20], the degree of spe-
cialization depends on the cost of coordination among workers/firms.  

While Adam Smith suggested that specialization along with trade can improve 
economic efficiency, his arguments were not made analytically. Ricardo [2] pro-
vided the analytical arguments. His illustrative example was to consider the case 
of two countries: England (E) and Portugal (P); and two goods: cloth and wine. 
He assumed that the technology differs across countries, and that labor is the 
only input and is not traded. In this context, he investigated the gains from trade 
in outputs (cloth and wine) between England ( )E  and Portugal ( )P . Below, 
after reproducing Ricardo’s example, we examine the factors affecting the gains 
from trade.  

Assume that the production technology for cloth ( )C  and wine ( )W  in the 
i -th country is a Constant Elasticity of Transformation (CET) technology repre- 
sented by (Powell and Gruen [21]) 

( ) ( )11 11
s

i i i i i iL k C W
ρρ ρα α

−− − ≥ + −                   (1) 

where iL  is the amount of labor available in country i , ik  is a productivity 
parameter, iα  is a parameter between 0 and 1, 1 ρ  is the Allen elasticity of 
transformation between cloth ( )iC  and wine ( )iW , and 1 s  is the scale elas-
ticity, { },i E P∈ . The specification (1) is flexible in the sense that it allows for 
an arbitrary Allen Elasticity of transformation 1 ρ , and an arbitrary scale elas-
ticity 1 s . Note that a convex technology would restrict the elasticity of trans-
formation to be non-positive (with 1 0ρ ≤ ) and returns to scale to be non-in- 
creasing (with a scale elasticity satisfying 0 1 1s< ≤ ).  

Let consumer preferences in the i -th country be represented by the utility 
function ( ),i i iu c w , where ic  is the consumption of cloth and iw  is the con-
sumption of wine in country i , { },i E P∈ . Assuming that ( ),i i iu c w  is in-
creasing and quasi-concave in ( ),i ic w , { },i E P∈ , consider the following allo-
cation under free trade  

( )

( ) ( ) { }}
, , ,

11 1

Max , : , ; 0, 0, , ,

                    1 , , ,

c w C W i i i i i i i i i i i
i i i i i

s

i i i i i

u c w c C w W c w C W

L k C W i E P
ρρ ρ

ε ε

α α
−− −


≤ ≤ ≥ ≥ ≥ ≥



 = + − ∈ 

∑ ∑ ∑ ∑ ∑
 (2a) 

where 0ε >  is an arbitrarily small number.3 The solution to (2a) gives a Pareto 
efficient allocation. And consider the corresponding allocation under autarky  

( )

( ) ( ) { }}
, , ,

11 1

Max , : , ; 0, 0, , ,

                    1 , , .

c w C W i i i i i i i i i i i
i

s

i i i i i

u c w c C w W c w C W

L k C W i E P
ρρ ρ

ε ε

α α
−− −


≤ ≤ ≥ ≥ ≥ ≥



 = + − ∈ 

∑
   (2b) 

 

 

3We introduce 0ε >  in (2a) to guarantee the existence of a solution to (2a). This is particularly re-
levant under non-convexity where 0ε >  guarantees the compactness of the feasible set in (2a) 
when 0ρ > . 
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For illustration purpose, we assume that  
( ) ( ) ( ) ( ), ln 1 lni i i i i i iu c w c wβ β= + − , where ( )0,1iβ ∈ . Throughout the analy-

sis, we hold consumer preferences constant. We simulated allocations obtained 
under free trade and autarky by solving Equations (2a) and (2b) under alterna-
tive scenarios. Our first scenario is the one considered by Ricardo ([2], p. 135). 
Ricardo implicitly assumed a linear technology under constant returns to scale. 
This corresponds to 0ρ =  and 1s =  in (1). Ricardo ([2], p. 135) considered 
each country facing different technologies and different factor endowments. He 
assumed that England has 220 workers, Portugal has 170 workers, and that it 
takes 100 workers (90 workers) to produce 1 unit of cloth in England (in Portug-
al) and 120 workers (80 workers) to produce one unit of wine in England (in 
Portugal). In the context of Equation (1), this corresponds to choosing  

220, 170, 5 11E P Ek k α= = = , and 9 17Pα = . Finally, to replicate Ricardo’s anal-
ysis, we assume that consumer preferences satisfy 5 11Eβ =  and 9 17Pβ = . 
Throughout our analysis, we hold the parameters ( ), ,k α β  constant. However, 
we explore the implications of changing the parameters ( ), sρ . 

We start with the Ricardo scenario, where 0ρ =  and 1s = . Corresponding 
allocations are presented in the first row of Table 1 and in Figure 1. This repli-
cates Ricardo’s analysis: under autarky, England and Portugal each produces 1 
unit of wine and 1 unit of cloth; and under free trade, England specializes in the 
production of cloth (2.2 units, represented by point B in Figure 1) while Portug-
al specializes in the production of wine (2.125 units, represented by point D in 
Figure 1). At the aggregate, switching from autarky to free trade, total produc-
tion increases from 2 to 2.2 units of cloth (+10 percent), and from 2 to 2.125 
units of wine (+6.25 percent). It is represented by a move from point A to point 
T in Figure 1. This increased production is matched by an equivalent increase in 
aggregate consumption.4 Ricardo’s example illustrates that free trade does gen-
erate positive gains from specialization.  
 

 
Figure 1. Gains from trade in the Ricardo’s example (ρ = 0). 

 

 

4Note that our simulation results are exact replications of Ricardo’s analysis under autarky; and they 
are exact replications of production and aggregate consumption under free trade. However, note that 
the distribution of consumption under free trade depends on consumer preferences. Since Ricardo 
did not identify the nature of consumer preferences, our simulated distribution of consumption un-
der free trade is not directly comparable to Ricardo’s analysis. 
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Table 1. Evaluating the gains from trade: The case of Wine (W) and Cloth (C) Traded between England (E) and Portugal (P).a 

Trade policy 
Technology 

Autarky Free Trade Gains  
from  
Trade  

= VT/VA Prod Cons Wine Priceb Total valuec  
(VA) 

Prod Cons Wine Priceb Total valuec 
(VT) 

C
on

ve
x 

te
ch

no
lo

gy
 

ρ = 0 
s = 1  

(Ricardo’s  
example) 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 2.2 

WP: 2.125 
CP: 0 

wE: 1.141 
cE: 1.016 
wP: 0.984 
cP: 1.184 

E: 1.069 
 

P: 1.069 
4.472 1.093 

ρ = −0.1 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0.384 
CE: 1.690 
WP: 1.666 
CP: 0.365 

wE: 1.101 
cE: 0.949 
wP: 0.950 
cP: 1.106 

E: 1.034 
 

P: 1.034 
4.177 1.021 

ρ = −0.3 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0.766 
CE: 1.261 
WP: 1.252 
CP: 0.758 

wE: 1.083 
cE: 0.933 
wP: 0.935 
cP: 1.086 

E: 1.033 
 

P: 1.033 
4.104 1.003 

ρ = −0.5 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0.857 
CE: 1.158 
WP: 1.153 
CP: 0.853 

wE: 1.080 
cE: 0.929 
wP: 0.931 
cP: 1.082 

E: 1.033 
 

P: 1.033 
4.089 1.0001 

N
on

-c
on

ve
x 

te
ch

no
lo

gy
 

ρ = 0.1 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 2.401 
WP: 2.310 

CP: 0 

wE: 1.240 
cE: 1.109 
wP: 1.070 
cP: 1.292 

E: 1.073 
 

P: 1.073 
4.881 1.193 

ρ = 0.3 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 3.081 
WP: 2.932 

CP: 0 

wE: 1.574 
cE: 1.423 
wP: 1.358 
cP: 1.658 

E: 1.085 
 

P: 1.085 
6.262 1.531 

ρ = 0.5 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 4.787 
WP: 4.468 

CP: 0 

wE: 2.399 
cE: 2.211 
wP: 2.069 
cP: 2.576 

E: 1.106 
 

P: 1.107 
9.731 2.380 

ρ = 0.7 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 12.32 
WP: 11.02 

CP: 0 

wE: 5.914 
cE: 5.693 
wP: 5102 
cP: 6.630 

E: 1.155 
 

P: 1.155 
25.05 6.125 

ρ = 0.9 
s = 1 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 229.6 
WP: 176.1 

CP: 0 

wE: 94.52 
cE: 106.1 
wP: 81.54 
cP: 123.5 

E: 1.347 
 

P: 1.347 
466.7 114.1 

Scale effects: 
ρ = 0, 

any s > 0 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.20 
 

P: 0.889 
4.089 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.069 
 

P: 1.069 
4.472 1.093 

aThe results are obtained as solutions of the optimization problems (2a) and (2b) under alternative scenarios. The analysis was done with 0.0001ε = . bThe 
price of wine is measured as the consumer’s marginal rate of substitution between wine and cloth, after normalizing the price of cloth to 1. cNote our total 
values differ from the results reported in Ricardo’s analysis. The reason is that Ricardo (1717, p. 135) assumed that the prices of wine and cloth are both 
equal to 1 under free trade, while our simulated price of wine differs from 1. This affects consumption under free trade as well as the total value of goods. 
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The above discussion indicates that the gains from trade are somewhere be-
tween 6.25 and 10 percent. A more precise measure can be obtained by evaluat-
ing the total value of all goods (either produced or consumed). Treating cloth as 
the numeraire good (with a unit price), define the price of wine to be the con-
sumer marginal rate of substitution between wine and cloth. This provides a ba-
sis to evaluate the total value of goods (cloth and wine) across scenarios. In the 
context of the Ricardo scenario, we find that the total value of goods under au-
tarky is VA = 4.089 and the total value of goods under free trade is VT = 4.472. 
As reported in Table 1, VT/VA = 1.093. It means that, under the Ricardo scena-
rio, the gains from trade and specialization correspond to a 9.3 percent increase 
in the total value of goods.  

Comparing Smith’s analysis with Ricardo’s analysis creates a significant puz-
zle: the gains from trade in Ricardo’s scenario (+9.3 percent) are much smaller 
than the numbers presented by Smith (who reported a 23,900 percent increase in 
productivity). Although these two numbers are not exactly comparable, the 
magnitude of the difference is huge. Why? Is the Ricardo’s scenario generating 
benefits from trade that are “too small”? Or are the productivity gains from spe-
cialization reported by Smith “unrealistically high”? And is there a way to recon-
cile this large difference?  

To help answer these questions, we proceed examining how the gains from 
trade can change under alternative scenarios. As noted above, the Ricardo sce-
nario assumed 0ρ =  and 1s = , which is at the boundary of the region where 
the technology is convex (corresponding to 0ρ ≤  and 0 1 1s< ≤ ). Below, we 
depart from the Ricardo scenario in three different ways: 1) when the technology 
becomes strictly convex in outputs (with 0ρ < ); 2) when the technology be-
comes non-convex in outputs (with 0ρ > ); and 3) when we allow returns to 
scale to vary (with 1s ≠ ).  

First, Table 1 reports a set of scenarios where the possibilities of substitution 
between wine and cloth decline as ρ  decreases from 0. Holding 1s = , this 
corresponds to technologies that are convex, but becoming “more convex” in the 
output space. Less substitution between wine and cloth implies a lower incentive 
for producers to specialize. While the autarky scenario remains unchanged, the 
free trade scenario exhibits less specialization and lower benefit from trade. This 
is illustrated in Figure 2 where, under free trade, England produces at point B’, 
Portugal produces at point D’, and aggregate production increases from A to T’. 
The gains from trade remain positive. But with less specialization, they decline 
compared to the Ricardo scenario (as point T’ is lower and to the left of point T 
in Figure 2). The effects of reduced substitution possibilities between wine and 
cloth are shown in Table 1, where the ratio VT/VA declines from 1.093 under 
the Ricardo scenario ( )0ρ =  to 1.021 when 0.1ρ = − , and to 1.003 when 

0.3ρ = − . It means that a small change in ρ  from 0 to −0.1 implies a rapid de-
cline in the gains from trade from +9.3 percent (under the Ricardo scenario) to 
+2.1 percent. And a further change in ρ  to −0.3 would imply a decline in the 
gains from trade to just +0.3 percent. In other words, introducing strict convexity 
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Figure 2. Gains from trade under a convex technology. 

 
in outputs tends to generate small benefits from trade (as the incentive to spe-
cialize falls sharply). As strict convexity reflects diminishing marginal productiv-
ity, this means that models that mix trade liberalization with diminishing mar-
ginal productivity are unlikely to find large gains from trade. This is a sobering 
result in two ways. First, it suggests a fundamental inconsistency between two 
views commonly held by economists: 1) that diminishing marginal productivity 
is a basic characteristic of technology and resource scarcity; and 2) that the bene-
fits from trade liberalization can be large. We reflect on these important issues 
below. Second, if diminishing marginal productivity implies small gains from 
trade, then we are no closer to offering an explanation for the large difference 
between Smith’s and Ricardo’s analyses(as noted above).  

Second, Table 1 also reports a set of scenarios where the technology becomes 
non-convex in outputs as ρ  increases from 0 (again holding 1s = ). Here the 
non-convexity in outputs implies a stronger incentive for producers to specialize. 
While again the autarky scenario remains unchanged, the free trade scenario ex-
hibits large benefit from specialization and trade. This is illustrated in Figure 3 
where, under free trade, England produces at point B”, Portugal produces at 
point D”, and aggregate production increases from A to T”. Now, the gains from 
trade can become very large. This is shown in Figure 3 where T” is higher and to 
the right of point T (corresponding to the Ricardo scenario). These effects are 
documented in Table 1, where the ratio VT/VA increases from 1.093 under the 
Ricardo scenario ( )0ρ =  to 1.193 when 0.1ρ = , to 1.531 when 0.5ρ =  and 
to 114.1 when 0.9ρ = . It shows that a small change in ρ  from 0 to 0.1 im-
plies a significant rise in the gains from trade from +9.3 percent (under the Ri-
cardo scenario) to +19.3 percent. And this rise can be very rapid: it reaches 
+11,310 percent when 0.9ρ = . In other words, introducing non-convexity in 
outputs can generate very large increases in the benefits from trade and speciali-
zation. This is a key insight for our analysis: introducing a non-convex technol-
ogy in Ricardo’s analysis can generate gains from trade that are broadly consis- 
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Figure 3. Gains from trade under a non-convex technology. 

 
tent with Smith’s analysis (reporting very large productivity gains from speciali-
zation). In other words, allowing for non-convex technology can help reconcile 
Smith’s and Ricardo’s analyses. But as discussed next, it is a particular type of 
non-convexity that is needed.  

Third, we explore the implications of scale economies. The last row in Table 1 
reports the effects of changing the scale elasticity 𝑠𝑠 on the gains from trade (this 
time holding 0ρ = ). This covers the case where the technology exhibits de-
creasing returns to scale (when 0 1 1s< < ) as well as increasing returns to scale 
(when 1 1s > ). Table 1 reports that, for a given ρ , changing s has no effect on 
the gains from trade: VT/VA is the same for any 0s > . This result has an intui-
tive explanation. Applied at the country level, Ricardo’s analysis (as well as our 
model in (2a)-(2b)) assumes that labor is fixed and non-traded. This effectively 
fixes the scale of operation in each country. It prevents us from observing any 
effect of scale on the incentives to specialize and thus on the benefits from trade. 
This result holds whether the technology exhibits decreasing returns to scale 
( )0 1 1s< <  or increasing returns to scale ( )1s > . In this latter case, note that 
the technology would be non-convex. 

This generates two key insights. First, in general, assuming increasing returns 
is not sufficient to generate large gains from trade. Second, non-convexity can 
contribute to large gains from trade only to the extent that it applies to the pro-
duction of traded goods.  

While Table 1 compares free trade with autarky, it is also of interest to eva-
luate the effects of partial trade restrictions. Using the Ricardo example, we eva-
luate the effects of Portugal implementing a unilateral import ban. This is done 
by solving the optimization problem in (2a) subject to the additional restriction 
that imports into Portugal are non-positive. The simulated results are reported 
in Table 2. Table 2 shows the effects of an import ban imposed by Portugal 
compared to free trade. A comparison with Table 1 shows that, as expected, the  
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Table 2. Evaluating the effects of trade restrictions: The Case of Wine (W) and Cloth (C) Traded between England (E) and Por-
tugal (P). 

Trade policy 
Technology 

Restricted Trade 
(Import ban imposed by Portugal) 

Free Trade Benefit  
from  
Trade  

= VT/VR Prod Cons Wine Priceb Total value 
(VR) 

Prod Cons 
Wine  
Priceb 

Total value 
(VT) 

C
on

ve
x 

te
ch

no
lo

gy
 

ρ = 0 
s = 1 (Ricardo’s 

example) 

WE: 0.934 
CE: 1.080 
WP: 1.077 
CP: 0.931 

wE: 1.080 
cE: 1.080 
wP: 0.931 
cP: 0.931 

E: 1.20 
 

P: 0.889 
4.089 

WE: 0 
CE: 2.2 

WP: 2.125 
CP: 0 

wE: 1.141 
cE: 1.016 
wP: 0.984 
cP: 1.184 

E: 1.069 
 

P: 1.069 
4.472 1.093 

ρ = −0.1 
s = 1 

WE: 0.945 
CE: 1.066 
WP: 1.065 
CP: 0.942 

wE: 1.079 
cE: 1.066 
wP: 0.931 
cP: 0.942 

E: 1.186 
 

P: 0.90 
4.086 

WE: 0.384 
CE: 1.690 
WP: 1.666 
CP: 0.365 

wE: 1.101 
cE: 0.949 
wP: 0.950 
cP: 1.106 

E: 1.034 
 

P: 1.034 
4.177 1.022 

ρ = −0.3 
s = 1 

WE: 0.959 
CE: 1.049 
WP: 1.049 
CP: 0.956 

wE: 1.078 
cE: 1.049 
wP: 0.930 
cP: 0.956 

E: 1.168 
 

P: 0.914 
4.083 

WE: 0.766 
CE: 1.261 
WP: 1.252 
CP: 0.758 

wE: 1.083 
cE: 0.933 
wP: 0.935 
cP: 1.086 

E: 1.033 
 

P: 1.033 
4.104 1.005 

ρ = −0.5 
s = 1 

WE: 0.967 
CE: 1.039 
WP: 1.039 
CP: 0.965 

wE: 1.077 
cE: 1.039 
wP: 0.929 
cP: 0.965 

E: 1.158 
 

P: 0.923 
4.082 

WE: 0.857 
CE: 1.158 
WP: 1.153 
CP: 0.853 

wE: 1.080 
cE: 0.929 
wP: 0.931 
cP: 1.082 

E: 1.033 
 

P: 1.033 
4.089 1.002 

N
on

-c
on

ve
x 

te
ch

no
lo

gy
 

ρ = 0.1 
s = 1 

WE: 0.917 
CE: 1.10 

WP: 1.096 
CP: 0.916 

wE: 1.081 
cE: 1.10 

wP: 0.932 
cP: 0.916 

E: 1.222 
 

P: 0.873 
4.093 

WE: 0 
CE: 2.401 
WP: 2.310 

CP: 0 

wE: 1.240 
cE: 1.109 
wP: 1.070 
cP: 1.292 

E: 1.073 
 

P: 1.073 
4.881 1.192 

ρ = 0.3 
s = 1 

WE: 0.833 
CE: 1.212 
WP: 1.185 
CP: 0.844 

wE: 1.083 
cE: 1.212 
wP: 0.934 
cP: 0.844 

E: 1.343 
 

P: 0.803 
4.126 

WE: 0 
CE: 3.081 
WP: 2.932 

CP: 0 

wE: 1.574 
cE: 1.423 
wP: 1.358 
cP: 1.658 

E: 1.085 
 

P: 1.085 
6.262 1.518 

ρ = 0.5 
s = 1 

WE: 0 
CE: 4.787 
WP: 1.952 
CP: 0.418 

wE: 1.048 
cE: 4.787 
wP: 0.904 
cP: 0.418 

E: 5.481 
 

P: 0.411 
6.009 

WE: 0 
CE: 4.787 
WP: 4.468 

CP: 0 

wE: 2.399 
cE: 2.211 
wP: 2.069 
cP: 2.576 

E: 1.106 
 

P: 1.107 
9.731 1.619 

ρ = 0.7 
s = 1 

WE: 0 
CE: 12.32 
WP: 3.048 
CP: 0.234 

wE: 1.636 
cE: 12.32 
wP: 1.412 
cP: 0.234 

E: 9.036 
 

P: 0.148 
13.01 

WE: 0 
CE: 12.32 
WP: 11.02 

CP: 0 

wE: 5.914 
cE: 5.693 
wP: 5102 
cP: 6.630 

E: 1.155 
 

P: 1.155 
25.05 1.926 

ρ = 0.9 
s = 1 

WE: 0 
CE: 229.6 
WP: 28.32 
CP: 0.013 

wE: 15.20 
cE: 229.6 
wP: 13.12 
cP: 0.013 

E: 18.13 
 

P: 0.001 
229.6 

WE: 0 
CE: 229.6 
WP: 176.1 

CP: 0 

wE: 94.52 
cE: 106.1 
wP: 81.54 
cP: 123.5 

E: 1.347 
 

P: 1.347 
466.7 2.032 

Scale effects: 
ρ = 0, 

any s > 0 

WE: 0.934 
CE: 1.080 
WP: 1.077 
CP: 0.931 

wE: 1.080 
cE: 1.080 
wP: 0.931 
cP: 0.931 

E: 1.20 
 

P: 0.889 
4.089 

WE: 1 
CE: 1 
WP: 1 
CP: 1 

wE: 1 
cE: 1 
wP: 1 
cP: 1 

E: 1.069 
 

P: 1.069 
4.472 1.093 

aThe results are obtained as solutions of the optimization problems (2a) and (2b) under alternative scenarios. bThe price of wine is measured as the consum-
er’s marginal rate of substitution between wine and cloth, after normalizing the price of cloth to 1. 
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effects of partial trade restrictions are less severe (since Portugal can still export 
to England) than complete autarky. But the same qualitative results apply. Again, 
we can measure the benefits from trade by the ratio VT/VR, where VT is the to-
tal value of goods under free trade and VR is the total value of goods under trade 
restriction. Table 2 shows that the benefits of trade are small under a convex 
technology: they never exceed 9.3 percent as VT/VR ≤ 1.093 when 0ρ ≤ . But 
the benefits from trade become much larger under non-convex technologies: 
VT/VR varies between 1.192 (+19.2 percent) to 2.032 (+103.2 percent) as ρ  
increases from 0.1 to 0.9. Again, this associates large benefits from trade with 
non-convex technologies.  

The Ricardo example shows that non-convexity in wine and cloth production 
could give large benefits from trade when wine and cloth are traded. This sug-
gests the need to consider the case of multiple traded goods (e.g., more than the 
two traded goods considered in Ricardo’s example). But doing so introduces 
significant challenges to the analysis of trade benefits. Indeed, we know that in-
troducing non-convexity in the analysis can invalidate the standard welfare 
theorems stating that competitive markets and marginal cost pricing can support 
a Pareto efficient allocation (e.g., Brown [17]). This raises the question: How to 
analyze the gains from trade under non-convexity in the context of a general 
equilibrium model involving many goods? This is the topic of the next sections.  

3. A General Equilibrium Model  

This section develops a general equilibrium model of a Ricardian economy. The 
model provides a basis to evaluate aggregate efficiency, with a focus on the case 
where trade restrictions are the only source of inefficiency. Thus, our analysis 
does not examine the role of oligopolistic competition and its effects on the 
gains from trade (as noted in footnote 2). Yet, we will examine the role of non- 
convexity and discuss its implications for pricing in section 4. And its implica-
tions for the benefits from trade are presented in Section 5.  

Consider an economy involving a set { }1, , K=K 
 of goods produced by a 

set { }1, , M=M 
 of firms. Using the netput notation, the j -th firm produces 

( )1 , , K
j j Kj jy y Y= ∈ ⊂y   , where kjy  is the k -th output ( k -th input if neg-

ative) of the j -th firm, and jY  is the feasible set representing the technology 
available to the j -th firm, j∈M . Considering the case of K  goods allows 
for product differentiation.  

We want to cover a broad range of technological possibilities. As such, we 
do not impose strong restrictions on each set jY . First, we allow each firm to 
face a different technology, with each jY  possibly varying across firms, j∈M . 
Second, we allow each firm to be either active ( )0j ≠y  or inactive ( )0j =y . 
Thus, our analysis can capture the role of firm’s entry/exit decisions (depending 
on economic conditions). Third, following the discussion presented in section 2, 
we do not assume that each set jY  is convex, i.e., we allow for non-convex 
technologies. This includes non-convexity among outputs as well as the presence 
of increasing returns in the input-output space. Fourth, our analysis can address 
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issues related to the organization of each firm. Indeed, each feasible set jY  can 
capture the role of intra-firm organization and its effect on firm productivity 
(e.g., the specialization of tasks within the firm as well as the need for coordina-
tion across tasks; see Caliendo and Rossi-Hansberg [11] and Becker and Murphy 
[20]).  

The K  goods are consumed by a set { }1, , N=N 

 of households. The i
-th household has initial endowment ( )1 , ,i i Kiw w=w 

, consumes  
( )1 , , K

i i Kix x += ∈x    and has preferences represented by the utility function 
( ) ,i iu i∈x N . Let ( )1, , Nx x≡x 

, ( )1, , My y≡y 

, and 1 MY Y Y≡ × × . An 
allocation ( ),x y  is feasible if it satisfies ,NK Y+∈ ∈x y

, and  

.i i ji N i N j M∈ ∈ ∈
≤ +∑ ∑ ∑x w y                 (3) 

Equation (3) is the commodity balance equation, stating that aggregate con-
sumption cannot exceed aggregate supply. Throughout the paper, we assume  

that the set Y  is closed and bounded, and that the set { } K
j ij M i N +∈ ∈
+∑ ∑ ∩Y w    

has a non-empty interior. Also, following Luenberger [22], we assume that the 
utility function ( )i iu x  is continuous, strongly monotonic and quasi-concave 
on ,K i+ ∈ N

.  
We want to analyze the economic and welfare implications of trade. Allowing 

for non-convexity in Y, this section extends the analysis presented by Chavas 
and Briec [18], with a focus on the effects of trade restrictions. We consider that 
the economy includes two regions, A and B, where region A has a protectionist 
trade policy that restricts import from region B. Note that this covers the scena-
rio of trade restrictions evaluated in Table 2 (with Portugal as region A and 
England as region B). Import restrictions into region A are represented by im-
port quotas ( )1, , K

Kq q += ∈q   , where kq  the import quota imposed by re-
gion A on the k -th product. Let ( ),A B=N N N  and ( ),A B=M M M  where 

rN  is the set of households in region r , and rM  is the set of firms in region 
, ,r r A B= . The net imports into region A are:  

A A AA i i ji N i N j M∈ ∈ ∈
≡ − −∑∑ ∑m x w y  

Quota restrictions imposed on imports to region A amounts to 

A A Ai i ji N i N j M∈ ∈ ∈
− − ≤∑ ∑∑x w y q .               (4) 

Below, we focus our attention on two scenarios in (4): = ∞q  corresponding 
to free trade; and 0=q  corresponding to non-positive imports into region A.5 
In particular, we want to investigate the welfare difference between these two 
scenarios.6 

Our analysis of welfare relies on the benefit function. Letting K
+∈g 

 with 

 

 

5In the Ricardo example, 0=q  corresponds to the import quota ban imposed by Portugal (ana-
lyzed in Table 2). The case of autarky (analyzed in Table 1) would be obtained by adding an addi-
tional constraint restricting imports to be non-positive in region B. 
6While Equation (4) focuses on trade quotas, our analysis could also be presented in terms of trade 
tariffs with their negative effects on trade. Our dual approach presented in section 4 will provide this 
alternative characterization, with tariffs being equivalent to the quota rents ( )Q ⋅ . 
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0≠g , and following Luenberger ([22], [23]), define the benefit function as  

( ) ( ) ( ){ }, Max : ,

if    , ,   otherwise.

K
i i i i i i i

i

b U u Uβ β β β += − ≥ − ∈

∆ ≠ ∅ = −∞

x x g x g 

      (5) 

where ( ) ( ){ }: , , .K
i i i i iu U iβ β β +∆ = − ≥ − ∈ ∈x g x g N  The benefit function 

( ),i i ib Ux  is a welfare measure giving the number of units of the reference bun-
dle g  the i -th consumer is willing to give up starting from utility iU  to 
reach point ix . A convenient choice is to select the reference bundle g  such 
that 1 unit of g  is worth $1, making the benefit function ( ),i i ib Ux  in (5) a 
monetary measure of willingness to pay.7 Under the quasi-concavity of ( )i iu x  
on K

+ , Luenberger ([22] and [23]) showed that ( ),i i ib Ux  is upper semi- 
continuous in ( ),i iUx , concave in ix , non-increasing in iU , and it satisfies 
the translation property ( ) ( ), ,i i i i i ib U b Uα α+ = +x g x  for any finite α ∈ . 
Finally, we say that the reference bundle g  is good for the i -th consumer if, 
for any K

i +∈x  , we have ( ) ( )i i i iu uα+ >x g x  for all 0α > .  

Let  

( ) ( ){ }1, , : , : , ;K
N i i i i i j ii N i N j MU U u U i N y Y+∈ ∈ ∈

= = ≤ + ∈ ∈ ∈∑ ∑ ∑x x w y x   

be the set of attainable utilities. For a given ( )1, , NU U≡ ∈U   , consider the 
maximization problem  

( ) ( )

}
,, Max , : 0 ,

0, , .
A A A

x y i i i i j i
i N i N j M i N

NK
i j ii N j M i N

V b U

Y

∈ ∈ ∈ ∈

+∈ ∈ ∈

= + − ≥


+ + − ≥ ∈ ∈

∑ ∑ ∑ ∑

∑ ∑ ∑

U q x w y x

w q y x x y

       (6) 

For a given ( ),U q , ( ),V U q  in (6) is the largest feasible aggregate benefit 
that can be obtained subject to the feasibility constraint (3) and the import quota 
restriction (4).8 

First, consider the free trade scenario, where = ∞q . Then, the quota restric-
tion (4) is not binding in (6). Following Luenberger [22], when = ∞q , define 
an allocation satisfying (6) as a maximal allocation. Then, ( ),V ∞U  in (6) is Al-
lais’ distributable surplus (Allais [24]). ( ),V ∞U  being non-increasing in U  
reflects that reaching higher utilities is possible only with a redistribution of the 
aggregate surplus V , i.e. a reduction in V . In addition, define a zero-maximal 
allocation as a maximal allocation where ( ){ }: , 0V′ ′∈ ∞ =U U U . These are al-
locations that maximize aggregate benefit, where the resulting surplus is entirely 
redistributed.  

As showed by Luenberger ([22], [25]), under free trade (where = ∞q ), there 
are close linkages between zero-maximality and Pareto efficiency.9 

 

 

7In this context, the price normalization rule used in Table 1 and Table 2 (setting the price of cloth 
to 1) is equivalent to choosing the bundle g  to be 1 unit of cloth. 
8Note that we cannot rule out the possibility of multiple solutions to (6). Note that, if such situations 
were to arise, the aggregate benefit ( ),V U q  in (6) would still be unique even in the presence of 
multiple equilibrium. 
9A feasible allocation is Pareto efficient if no individual can be made better off without making any-
one else worse off. 
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Lemma 1: (Luenberger, [22], p. 191) 
Suppose that the reference bundle g  is good for at least one consumer. Let 
= ∞q . If a feasible allocation ( ),∗ ∗x y  is zero-maximal, then it is Pareto effi-

cient.  
Lemma 2: (Luenberger, [25])10 
Let = ∞q . If an allocation ( ),∗ ∗x y  is zero-maximal, then it is Pareto effi-

cient compared to all feasible allocations where ix  is in the interior of K
+  for 

each i N∈ .  
Lemma 1 and 2 establish the close relationship existing between zero-max- 

imality and Pareto efficiency under free trade. They associate Pareto efficiency 
with two intuitive properties: first, the maximization of aggregate benefit; and 
second, the complete redistribution of surplus. Finally, the set ( ){ }: , 0W ∞ =U U  
defines the Pareto utility frontier, i.e. the set of consumer utilities that can be 
reached under efficient allocations. Importantly, these results apply without as-
suming that the production set Y  is convex.  

While Lemma 1 and 2 apply under free trade (when = ∞q ), the above dis-
cussion suggests that (6) will be useful as well when 0=q (the no-import scena-
rio), or more generally when < ∞q . In this context, when 0 ≤ < ∞q  and con-
ditional on q , define the allocations given in (6) as trade-restricted maximal al-
locations. Then, ( ),V U q  in (6) would be the distributable surplus under im-
port quotas q . In addition, conditional on q , define a trade-restricted zero- 
maximal allocation as a trade-restricted maximal allocation where  

( ){ }: , 0V′ ′∈ =U U U q . These are allocations that maximize aggregate benefit 
subject to the import quota restrictions (4), where the resulting surplus is entire-
ly redistributed. And ( ){ }: , 0V′ ′∈ =U U U q  can be interpreted as the trade- 
restricted utility frontier under the quota restrictions in (4).  

The above general equilibrium model provides a basis for evaluating the wel-
fare effects of trade. First, the trade-distorted maximal allocation given in Equa-
tion (6) gives ( ),V U q  as a measure of aggregate benefit obtained under quotas 
q . And ( ),V U q  is an aggregate willingness-to-pay measure when the refer-
ence bundle g  is chosen such that 1 unit of g  is worth $1. Second, condi-
tional on q , choosing U  to satisfy ( ), 0V =U q , Equation (6) characterizes a  
trade-distorted zero-maximal allocation. As discussed above, ( ){ }: , 0V ∞ =U U  

defines the Pareto utility frontier under free trade. Alternatively, ( ){ }: , 0 0V =U U   

defines the utility frontier under no-import for region A. And more generally, 
( ){ }: , 0V =U U q  defines the utility frontier under import quotas q : it is the 

set of consumer utilities that can be reached under the trade-restrictions (4). Fi-
nally, for a given U , the welfare effects of a change from q  to ′q  can be 
measured by the change in aggregate benefit: ( ) ( ), ,V V V′∆ ≡ −U q U q , with 

0V∆ >  identifying a potential Pareto improving move. We will make extensive 
use of this welfare measure in our analysis of the gains from trade in Section 5.  

 

 

10Luenberger ([25], p. 231) presents a proof without production. As noted in Luenberger ([25], p. 
245), extending the proof with production is straightforward. 
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4. The Effects of Trade Restrictions: A Dual  
Approach under Non-Convexity 

We now examine a dual general equilibrium model of trade and use it to ex-
amine the effects of trade quotas q  on welfare. The dual approach is well known 
under convexity (see Dixit and Norman [26]; Luenberger [27]; Chau and Fare 
[28]). In this section, we extend the dual approach presented by Chavas and 
Briec [18] under non-convexity of Y , with a focus on the effects of trade re-
strictions. The economic implications are examined in section 5 below. 

Define F  as the set of continuous and non-decreasing functions f from K
  

to   that satisfy the translation property: ( ) ( )f fα α+ = +z g z  for any 
Kz∈  and any finite α ∈ . Imposing the translation property will allow us 

to interpret functions in F  as measuring values that are congruent to aggre-
gate benefit (see below). For a given ∈U   and quotas q , consider the gene-
ralized Lagrangian functional L :  

( ) ( )

( ) ( )

, , , , , ,

                                  ,
A A A

i i i j i i
i N j M i N i N

j i ij M i N i N

L f Q b U f f

Q Q

∈ ∈ ∈ ∈

∈ ∈ ∈

   
= + − −   

  

+ − − −

∑ ∑ ∑ ∑

∑ ∑ ∑

U x y q x y x w

y x w q
    (7) 

where , ,NK Y f F+∈ ∈ ∈x y
 and Q F∈ , and where  

( ) ( )j i ij M i N i Nf f
∈ ∈ ∈

 − − ∑ ∑ ∑y x w   

and  

( ) ( )A A Aj i ij M i N i NQ Q
∈ ∈ ∈

 − − −
 ∑ ∑ ∑y x w q  

are “penalty functions” associated with constraints (3) and (4), respectively. 
Consider 

( ) ( ){ }, ,, In Sup , , , , , : , , , ,NK
f Q x yL f L f Q Y f F Q F∗

+= ∈ ∈ ∈ ∈U q U x y q x y  (8) 

and 

( ) ( ){ }#
, ,, Sup In , , , , , : , , , .NK

x y f QL f L f Q Y f F Q F+= ∈ ∈ ∈ ∈U q U x y q x y  (9) 

A first step in our analysis is presented next (All proofs are in the Appendix).  
Lemma 3: (Weak Duality). For ∈U  , 

( ) ( ) ( )#, , ,L L V∗ ≥ ≥U q U q U q                (10) 

The inequalities in (10) show that ( ),L∗ U q  is an upper-bound of both 
( )# ,L U q  and ( ),V U q . Situations where this upper-bound is reached are of 

significant interest (e.g., Bertsekas [29]; Rubinov et al. [30]; Nedic and Ozdaglar 
[31]). Some key results are presented next. 

Proposition 1: Assume that a trade-restricted maximal allocation exists for 
∈U  , and that ( ) ( )#, ,L L∗ =U q U q . Then, there is a saddle-point  

( ), , ,f Q∗ ∗ ∗ ∗x y  of the Lagrangian (7) where , ,NK Y f F∗ ∗ ∗
+∈ ∈ ∈x y

 and 
Q F∗ ∈  satisfy 
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a) 
( ) ( ) ( ), , , , , , , , , , , , , , , ,

for all   , , , ,NK

L f Q L f Q L f Q

Y f F Q F

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+

≤ ≤

∈ ∈ ∈ ∈

U x y q U x y q U x y q

x y

   (11) 

b) ,i j ii N j M i N
∗ ∗

∈ ∈ ∈
≤ +∑ ∑ ∑x y w                                  (12a) 

,
A A Ai i ji N i N j M

∗ ∗
∈ ∈ ∈

− − ≤∑ ∑ ∑x w y q                             (12b) 

c) ( ) ( ) ,j i ij M i N i Nf f∗ ∗ ∗ ∗
∈ ∈ ∈

= −∑ ∑ ∑y x w                          (13a) 

( ) ( ) ,A A Aj i ij M i N i NQ Q∗ ∗ ∗ ∗
∈ ∈ ∈

= − −∑ ∑ ∑y x w q                     (13b) 

d) 
( ) ( ){

}
,, arg max , : 0 ,

0, , ,
A A A

x y i i i i j ii N i N j M i N

NK
i j ii N j M i N

b U

Y

∗ ∗
∈ ∈ ∈ ∈

+∈ ∈ ∈

∈ + − ≥

+ + − ≥ ∈ ∈

∑ ∑

∑ ∑

∑

∑

∑x y x w y x

w q y x x y

(14) 

e) ( ) ( ), , .L V∗ =U q U q                                           (15) 

Proposition 1 establishes that, if the condition ( ) ( )#, ,L L∗ =U q U q  holds, then 
there exists a saddle-point of the generalized Lagrangian, as given in (11). Equa-
tions (12a)-(12b) state that ( ),∗ ∗x y  in the saddle-point problem (11) is always 
a feasible solution that satisfies the constraints (3) and (4). At that point, Equa-
tions (13a)-(13b) show that the penalty functions are always zero:  

( ) ( ) 0j i ij M i N i Nf f∗ ∗ ∗ ∗
∈ ∈ ∈

− − =∑ ∑ ∑y x w   

and  

( ) ( ) 0
A A Aj i ij M i N i NQ Q∗ ∗ ∗ ∗

∈ ∈ ∈
− − − =∑ ∑ ∑y x w q  

Comparing it with (6), (14) implies that ( ),∗ ∗x y  is a trade-restricted maximal 
allocation. Finally, (15) states that ( ) ( ), , .L V∗ =U q U q  

Note that, ( )f ⋅  being non-decreasing, Equation (13a) implies that ( )f c∗  
does not depend on c in the range ,i i ji N i N j M

∗ ∗
∈ ∈ ∈

 − ∑ ∑ ∑x w y . It implies the 
“complementary slackness” condition: the penalty functions ( )f c∗  becomes 
“flat” in ic  when the i -th constraint in (3) is non-binding. Similarly, ( )Q ⋅  
being non-decreasing, Equation (13b) states that ( )Q c∗  does not depend on 
c  in the range ,

A A Ai i ji N i N j M
∗ ∗

∈ ∈ ∈
 − − ∑∑ ∑x w q y . Again, the “complemen-

tary slackness” condition: the penalty function ( )Q c∗  become “flat” in ci when 
the i -th constraint in (4) is non-binding.  

While ( ) ( ), ,L V∗ ≥U q U q  in general from (10), Equation (15) implies that 
( ) ( ), ,L V∗ =U q U q  when a saddle-point exists. The condition ( ) ( ), ,L V∗ =U q U q  

has been called a condition of “zero duality gap” (Bertsekas [29]; Rubinov et al. 
[30] Nedic and Ozdaglar [31]). The linkages between ( ) ( )#, ,L L∗ =U q U q  and 

( ) ( ), ,L V∗ =U q U q  are presented next. 
Lemma 4: For ∈U  , we have ( ) ( )#, ,L L∗ =U q U q  if and only if 
( ) ( ), ,L V∗ =U q U q .  
Combining Proposition1 with Lemma 4, it follows that a zero duality gap, 
( ) ( ), ,L V∗ =U q U q , is equivalent to the existence of a saddle-pointin (11). But 

when does a zero duality gap exist? To answer this question, define 
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( ) ( )

}
,, , Sup , : 0 ,

                                   0, , ,
A A A

x y i i i i j i
i N i N j M i N

NK
i j ii N j M i N

W b U

Y

∈ ∈ ∈ ∈

+∈ ∈ ∈

= + + − ≥


+ + − ≥ ∈ ∈

∑ ∑ ∑ ∑

∑ ∑ ∑

U q x w y x

w q y x x y

γ γ
 

       (16) 

where K∈γ . Comparing (6) and (16), it is clear that ( ) ( ), , 0 ,W V=U q U q . 
As showed by Rubinov et al. [30] and Nedic and Ozdaglar [31], a zero-duality 
gap (with ( ) ( ), ,L V∗ =U q U q ) exists if and only if ( ), ,W γ′U q  is upper semi-
continuous in ( ),γ′q  at ( ), 0q . This is the “smoothness condition” required to 
support a dual representation of economic efficiency under non-convexity. Through 
the rest of the paper, we assume that this condition is satisfied and that a ze-
ro-duality gap holds.11 

Proposition 2: A trade-restricted maximal allocation satisfies  

( )

( ) }

, , , Inf

                                     : , ; .

A A

x i i i i
i N i N i N i N

NK
i i i

E f Q f Q

u U i N

∈ ∈ ∈ ∈

+

   = − +         

≥ ∈ ∈

− −∑ ∑ ∑ ∑U q x w x w q

x x 

    (17) 

( ) ( ) ( ){ }π , Sup : ,
Ay j jj M j Mf G f Q Y

∈ ∈
= + ∈∑ ∑y y y       (18) 

( ) ( ) ( ){ },, Inf π , , , : , .f QV f G E f Q f F Q F= − ∈ ∈U q U,q      (19) 

We can interpret ( )f ⋅  and ( )Q ⋅  as measuring aggregate values. In Equa-

tion (17), it follows that ( )i ii N i Nf
∈ ∈

−∑ ∑x w  measures aggregate consumer 

expenditures net of initial endowments. And ( )– –
A Ai ii N i NQ

∈ ∈∑ ∑x w q  in  

(17) measures the aggregate “consumer quota rent”, i.e. the aggregate cost to 
consumers of the trade quotas q . In this context, ( ), , ,E f Q U q  in (17) is an 
aggregate expenditure function measuring the smallest possible aggregate ex-
penditure that can generate utilities U , conditional on ( ), ,f Q q .  

Similarly, in Equation (18), ( )jj Mf
∈∑ y  measures the aggregate revenue 

received by firms, while ( )A jj MQ
∈∑ y  is the aggregate “producer quota rent”,  

i.e. the aggregate firm revenue associated with the trade quotas q . In this con-
text, ( )π ,f G  in (18) is an aggregate profit function measuring the largest possi-
ble aggregate income (including producer quota rents) made by firms.  

Thus, from Proposition 2, trade-restricted maximal allocations are consistent 
with aggregate profit maximization (as given in (18)) and aggregate expenditure 
minimization (as given in (17)).  

Finally, Equation (19) states that the maximized aggregate benefit ( ),V U q  
in (6) is also the aggregate profit ( )π ,f G  net of aggregate expenditure 
( ), , ,E f Q U q , provided that ( ),f Q  solve the minimization problem in (19). 

 

 

11Note that there may be multiple solutions for ( )f ∗ ⋅  and ( )Q∗ ⋅  in the saddle-point of the La-
grangian (7). Note that under a zero duality gap, if such situations were to arise, the aggregate benefit 
𝑉𝑉(𝑼𝑼,𝒒𝒒) would still be unique. Exploring the issue of non-uniqueness for ( )f ∗ ⋅  and ( )Q∗ ⋅  ap-
pears to be a good topic for further research. 
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This minimization problem identifies the optimal pricing scheme f ∗  and qu-
ota rent Q∗  supporting a trade-restricted maximal allocation. In this context, a 
trade-restricted zero-maximal allocation (where U  satisfies ( ), 0V q =U ) is a 
trade-restricted maximal allocation where all profits are redistributed to con-
sumers.  

Note that Proposition 2 extends the dual approach to trade analysis to situa-
tions of non-convexity. Indeed, under convexity, the dual approach to trade is 
well developed in the literature (Anderson et al. [32]; Neary [33]; Feenstra [34]; 
Anderson and Neary [35] and [36]; Chau et al. [37]). What is new here is that 
our approach applies under non-convexity. As shown in (17), (18) and (19), ex-
penditure minimization and profit maximization still apply at the aggregate un-
der non-convexity. What is different is the nature of pricing: the aggregate val-
ues ( )f ⋅  and ( )Q ⋅  are now functions.  

Under convexity, these functions can always be taken to be linear. Indeed, ap-
plying the separating hyperplane theorem under convexity, the functions ( )f ⋅  
and ( )Q ⋅  define separating hyperplanes whose slopesare Lagrange multipliers 
measuring(shadow) prices. Then, expenditure minimization and profit maximi-
zation would take the classical form found under competitive markets. When 
= ∞q , this is the context where the standard welfare theorems apply, establish-

ing close relationships between profit maximization, competition and Pareto ef-
ficiency (e.g., Debreu [16]). Yet, non-convexity can destroy the validity of such 
linkages. A simple example is the case of a technology exhibiting increasing re-
turns to scale (e.g., in the presence of fixed cost) where, under uniform pricing, 
profit-maximizing competitive firms cannot make a positive profit and therefore 
would fail to produce efficiently (e.g., Brown, 1991). In this case, a possible solu-
tion is to implement a two-part tariff involving a flat fee (used to cover fixed cost) 
in addition to a unit price set equal to marginal cost. More generally, the func-
tions ( )f ⋅  and ( )Q ⋅  in the generalized Lagrangian (7) are non-linear and de-
fine separating hypersurfaces whose slopes still provide measurements of (sha-
dow) prices. Indeed, when = ∞q , the gradients of ( )f ∗ ⋅  are non-linear prices 
supporting an efficient allocation under non-convexity (Chavas and Briec [18]). 
Equation (18) shows that the problem arising under non-convexity does not 
come from profit maximization; rather it comes from uniform pricing. Indeed, 
(17), (18) and (19) allow for non-linear pricing which becomes an integral part 
of efficiency under a non-convex technology. This argument applies to both the 
revenue function ( )f ⋅  and the quota rent function ( )Q ⋅ . To see that it ap-
plies to the quota rent function ( )Q ⋅  consider the case where 0=q . Then, in 
the case where region A does not export, Equation (4) reduces to market equili-
brium condition in region A, implying that the quota rent becomes the revenue 
function in region A and that a non-linear function ( )Q ⋅  becomes equivalent 
to non-linear pricing in region A.  

The expenditure function ( ), , ,E f Q U q  in (17) and the profit function 
( )π ,f G  in (18) apply at the aggregate level. When evaluated at f ∗  and Q∗ , 

these functions can be written as  
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( )
{ }

{ }( ) ( ) }
, , , Inf

– – ; ,

for  ,

i

A A

x i i i
i N i i N

K
i i i i i i i ii N i i N

E f Q f

Q u U

i N

δ

∗ ∗ ∗ ∗
′ ′

′ ′∈ − ∈

∗ ∗
′ ′ +′ ′∈ − ∈

  = + −     

+ + ≥ ∈

∈

∑ ∑

∑ ∑

U q x x w

x x w q x x       (17’) 

where 
1
0iδ
 

=  
 

 when Ai N
∈ 
 ∉ 

, and 

( )
{ } { }

π , Sup :

for    ,

j
A

y j j j j j j j
j M j j M j

f G f Q Y

j M

δ∗ ∗ ∗ ∗ ∗
′ ′

′ ′∈ − ∈ −

     = + + + ∈            
∈

∑ ∑y y y y y
 (18’) 

where 
1
0jδ
 

=  
 

 when Aj M
∈ 
 ∉ 

. Equations (17’) and (18’) are a decentralized  

version of a trade-restricted maximal allocation under non-linear prices. When 
( )f ∗ ⋅  and ( )Q∗ ⋅  are linear (e.g., under convexity), (17’) reduces to expendi-

ture minimization for the i -th consumer and represents consumer rationality; 
and (18’) reduces to decentralized profit maximization for the j  -th firm. Al-
ternatively, when ( )f ∗ ⋅  and ( )Q∗ ⋅  are non-linear, the gradients of ( )f ∗ ⋅  
and ( )Q∗ ⋅  take the form of non-linear (shadow) prices supporting a trade-re- 
stricted maximal allocation. And when = ∞q , (17’) and (18’) define a decentra-
lized non-linear price equilibrium supporting an efficient allocation under 
non-convexity (Chavas and Briec [18]; Mordukhovich [38]).  

As noted above, non-linear prices may be needed to support a decentralized 
market allocation (e.g., in the presence of fixed cost). In this case, non-linear 
prices play two roles: 1) they must clear the market; and 2) they must provide 
the proper incentives for firms to produce under non-convex technologies. The 
first role (market clearing) has been associated with a Walrasian auctioneer. It is 
the only role present in competitive markets under convexity and uniform pric-
ing. The second role arises under non-convexity: it involves non-linear pricing 
and a price discrimination scheme that can support a decentralized allocation.12 
It means the presence of a discriminating Walrasian auctioneer assigning dif-
ferent prices to different bundles.13 

The quota rent function ( )Q ⋅  plays an important role in the economics of 
trade. We show next how the properties of the function ( )Q ⋅  provide useful 
information on the gains from trade.  

 

 

12Non-linear pricing and price discrimination are rather common and can take many forms (Wilson 
[39]). They can go from a two-part tariff (including a flat fee used to cover fixed cost) to perfect price 
discrimination extracting all the consumer benefit. As discussed in Sections 3 and 4, under zero 
maximal allocations where ( ){ }: , 0V′ ′∈ =U U U q , any rent extracted from price discrimination is 

entirely redistributed to consumers. The way these rents are redistributed affects the distribution of 
welfare among households. 
13An example is given by Aliprantis et al. [40] who considers the case of a discriminating auctioneer 
in the context of an exchange economy. Note that the analysis presented by Aliprantis et al. [40] is 
developed under convexity, indicating that price discrimination schemes can be implemented with 
or without non-convexity. 
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5. The Benefit from Trade 

This section analyzes the general welfare effects of a change in trade policy from 
q to q’. Let ( ), , ,o o o of Qx y  be a saddle-point of ( )L ⋅  in (11) under quotas 
q , and let ( ), , , ,, , ,f Qx y  be a saddle-point of ( )L ⋅  in (11) under quotas ′q . 
It follows from Proposition 1 that ( ),o ox y  is a trade-restricted maximal allo-
cation under q , and that ( ),′ ′x y  is a trade-restricted maximal allocation un-
der ′q . Our analysis will rely on the following result.  

Proposition 3: Then, for any 0≥q  and 0′ ≥q ,  

( ) ( )

( ) ( )

– – – – –

, ,

– – – – –

A A A A

A A A A

o o
i i i i

i N i N i N i N

o o
i i i ii N i N i N i N

Q Q

V V

Q Q

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

   
′ ′ ′      
   

′≤ −

′ ′ ′≤

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

x w q x w q

U q U q

x w q x w q

   (20a) 

where 

( ) ( )– – – – – 0

when      .
A A A A

o o
i i i ii N i N i N i NQ Q

∈ ∈ ∈ ∈
′ ′ ′ ≥

′ ≥

∑ ∑ ∑ ∑x w q x w q

q q
  (20b) 

Proposition 3 provides a general characterization of the aggregate effects of 
trade policy. It applies for any 0q ≥  and ’ 0q ≥ . When ’q q≥  (correspond-
ing to a relaxation of import quotas from q  to ’q ), Equation (20a) and (20b) 
imply that ( ) ( ), , 0V U V U′ − ≥  q q . Here, ( ) ( ), ,V U q V U q′ −    measures 
the aggregate gains from a change in trade quotas. This gives our first key result: 
any relaxation in import quotas tends to increase the gains from trade. While 
this result is well known under convexity (e.g., Samuelson [3]), our analysis shows 
that it applies as well under non-convexity. Importantly, this result holds under 
general conditions: it allows for heterogeneous technologies across firms, firm 
entry and exit, and any change in trade quotas.  

The role of non-convexity and its effects on gains from trade can be investi-
gated using Equations (20a) or (20b). As evaluated in Table 2, consider a trade 
liberalization move from 0=q  to ′ = ∞q . Then, equations (20a)-(20b) imply 
that  

( )

( ) ( )

( ) ( )

0

, , 0

– –

A A

A A

o
i i

i N i N

o o
i ii N i N

Q Q

V V

Q Q

∈ ∈

∈ ∈

 
′ ′≤ − −∞  
 

≤ ∞ −

′≤ −∞

−∑ ∑

∑ ∑

x w

U U

x w

            (21) 

Equation (21) establishes bounds on the gains from trade given by  

( ) ( ), , 0V V∞ −  U U . The lower bound is  

( ) ( )’ – – ’ 0
A A

o
i ii N i NQ Q

∈ ∈
 −∞ ≥
 ∑ ∑x w ; and the upper bound is  

( ) ( )– – 0
A A

o o
i ii N i NQ Q

∈ ∈
 ′ −∞ ≥
 ∑ ∑x w . The lower bound being non-negative 

implies that the aggregate gains from trade are necessarily non-negative. Again, 
our contribution is to show that this result, which is well known under convexity, 
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also holds under non-convexity.  
Equation (21) also provides another important result: it establishes an upper 

bound on the gains from trade. Evaluating this upper bound can help evaluate 
how large the gains from trade can be. Equation (21) implies that the gains from  

trade can be large only if ( ) ( )– –
A A

o o
i ii N i NQ Q

∈ ∈
 ′ −∞ ∑ ∑x w  is large. This 

requires the quota rent function ( )oQ ⋅  to have steep slopes.  

Additional insights can be obtained in situations where the function ( )Q c∗  
is taken to be differentiable. In this context, let ( )DQ c∗  denote the ( )1 K×  
vector of derivatives of ( )Q c∗  with respect to c . Then, Proposition 3implies 
the following result.  

Corollary 1: Assume that ( )Q c∗  is continuously differentiable in c  and 
that ( )ix∗ q  is continuous in , Ai N∈q . Then, for any 0≥q ,  

( ) ( )d , d
A Ai ii N i NV DQ∗ ∗

∈ ∈
 = − − ∑ ∑U q x q w q q,         (22) 

and 

( )d d 0
A Ai ii N i NDQ∗ ∗

∈ ∈
 − − ≤ ∑ ∑x q w q q .           (23) 

where ( ) 0DQ c∗ ≥  for all c , and dq  is a ( )1K ×  vector representing a small 
change in q .  

Under some regularity conditions, Equation (22) provides a measure of the 
aggregate welfare effect of a small change in trade in region A. It states that the 
welfare gain due to a small change in q  is given by the marginal quota rent 

( ) – –i ii NA i NADQ∗ ∗
∈ ∈

  ∑ ∑x q w q . This marginal quota rent can be interpreted 
as a price-dependent demand for import in region A. This indicates that this 
demand for import provides all the information necessary to evaluate the gains 
from trade. This the argument presented by Arkolakis et al. [4] in their analysis 
of gains from trade under convexity. Thus, Equation (22) generalizes this result 
under non-convexity.  

Equation (23) states that the marginal quota rent ( )DQ∗ ⋅  tends to be de-
creasing in q . This gives the intuitive result that the price-dependent demands 
for import are in general downward sloping. This is a well-known result under 
convexity (e.g., Neary [33]; Feenstra [34], Falvey [41]; Anderson and Neary [42]).14 
Equation (23) extends this result under non-convexity. Thus, our analysis shows 
that many of the qualitative results obtained under convexity continue to hold 
under non-convexity.  

Equations (22) and (23) are local results (in the sense that they apply for a 
small change in q ). Yet, they can provide useful information in the context of 
global changes. To see that, consider a change between two extreme cases: from 

 

 

14Indeed, under convexity, a separating hyperplane exists in (14) and the standard Lagrangian ap-
proach applies: the penalty function ( )Q c  in (7) can be taken to be linear, and ( ) ( ) 0DQ λ∗ = ≥c q  
become the Lagrange multipliers measuring the slopes of the separating hyperplane associated with 
the trade constraints (4). Then, (20a) reduces to: ( )[ ] ( ) ( ) ( )[ ]– , ,V Vλ λ′ ′ ′ ′≤ − ≤ −q q q U q U q q q q . 

This implies that ( ) ( ) [ ]– – 0λ ′ ′ ≤  q q q q . This is the standard result obtained under convexity: in-

creasing trade quotas q  tends to reduce the unit quota rents ( )λ q  (e.g., Neary [33]; Feenstra 
[34], Falvey [41]; Anderson and Neary [42]). 
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0=q  where imports to region A are restricted to be zero; to = ∞q  corres-
ponding to free trade. Then, using the fundamental theorem of calculus, Equa-
tion (22) implies that the gains from trade can be written as  

( ) ( ) ( )
0

d, ,0 .
A Ai ii N i NV V DQ∗ ∗

∈

∞

∈


− ∞ − = −∑ ∑∫U U x q w q q      (24) 

Interpreting ( )DQ∗ ⋅  as price-dependent import demand functions, it fol-
lows from (24) that the gains from trade are entirely determined by the proper-
ties of the price-dependent import demand functions. As noted above, this is 
consistent with the arguments presented by Arkolakis et al. [4]. This result ap-
plies with or without convexity.  

A key issue is: how can non-convexity affect the magnitude of gains from 
trade? From the simulation analysis reported in Table 2, we know that non- 
convexity can generate large gains from trade. Comparing the results from Table 
2 with Equation (24),15 we obtain a key insight: non-convexity must have poten-
tially large effects on the marginal quota rents ( )DQ∗ ⋅ . This is illustrated in 
Figure 4 under three scenarios: 1) the case of linear technology (Ricardo’s ex-
ample given in Figure 1); 2) the case of a convex technology (corresponding to 
Figure 2); and 3) the case of non-convex technology (corresponding to Figure 
3). In all cases, the function ( )DQ q∗  is non-negative and non-increasing in q.  
 

 
Figure 4. Gains from trade under alternative technologies. 

But switching from a linear technology to a (strictly) convex technology means 
that ( )DQ q∗  shifts down. Alternatively, introducing non-convexity means that 

 

 

15Note that both Equation (24) and Table 2 evaluate the welfare effects of import quotas. But they do 
it in a slightly different way. Indeed, Equation (24) compares the maximized aggregate benefit with 
and without import quotas, holding utilities U constant. As such, Equation (24) provides a Hicksian 
aggregate willingness-to-pay measure of the effects of trade restrictions. In contrast, VR and VT in 
Table 2 compare the aggregate value of all consumer goods with and without import quotas, allow-
ing utilities U  to adjust. As such they are Marshallian measures of the effects of trade restrictions. 
From duality, we know that Hicksian and Marshallian measures are closely related; but that they are 
not equivalent in the presence of income effects. Since our analysis allows for income effects, our 
comparison of Equation (24) with VR and VT in Table 2 is limited to providing a broad characteri-
zation of the welfare effects of trade restrictions. 



J.-P. Chavas, T. Hall 
 

285 

the price-dependent demand function ( )DQ q∗  shifts up. From Equation (24), 
the gains from trade are given by the area OAB under linear technology, by the 
area OA’B’ under convex technology, and by the area OA”B” under a non-con- 
vex technology. This illustrates that the gains from trade decrease with convexity 
and increase under non-convexity. As indicated in Table 2, these quantitative 
effects can be very large. These large effects are associated with steep slopes of 
the quota rent function ( )Q∗ ⋅ . This occurs under non-convex technologies where 
stronger incentives to specialize lead to large marginal values ( )DQ∗ ⋅  and large 
gains from trade. This supports our argument: the key to obtain large gains from 
trade is the presence of technologies that are non-convex with respect to traded 
goods.  

While the simulation results presented in Table 1 and Table 2 were motivated 
in the context of Ricardo’s example (focusing on trade involving two countries 
and two outputs), they hold under general conditions. First, our general equili-
brium model covers trade in outputs as well as inputs involving heterogeneous 
firms. This can capture trade benefits when the non-convexity comes from in-
creasing returns to scale. (Recall that Ricardo’s example could not capture such 
scale effects because it treats labor as a non-traded good). When increasing re-
turns to scale come from fixed costs, this is consistent with the argument that 
fixed costs contribute to increasing the gains from trade (e.g., Krugman [6]; Me-
litz [10]).  

Second, fixed cost can affect the productivity benefits of specialization in ways 
that are unrelated to returns to scale. For example, specialization can reduce the 
fixed resources used in the process of switching between one production activity 
and another (e.g., by saving in time lost switching from one task to another, as in 
Adam Smith’s pin factory). Also, as discussed by Caliendo and Rossi-Hansberg 
[11], there are scenarios where more specialized organizations can reduce the 
cost of acquiring and processing information. Such productivity effects can be 
present within a firm. This stresses the need to examine the role of managerial 
abilities and coordination taking place within each firm (Caliendo and Rossi- 
Hansberg [11]; Becker and Murphy [20]). In this case, productivity and efficien-
cy gains from specialization come from improved management and could exist 
irrespective of scale effects or market size.  

More generally, non-convexity can contribute to productivity gains from spe-
cialization across firms (Baumol et al. [43]; Chavas and Kim [44]). This can ap-
ply to horizontal specialization of firms across products or locations as well as 
vertical specialization of firms within a marketing channel (e.g., the case of firms 
specializing in specific tasks associated with successive stages of a production 
process). Then, changes in firm specialization would imply changes in the hori-
zontal, spatial and/or vertical organization of industries. Efficiency gains could 
be attained from greater firm specialization under non-convexity. Again, the 
non-convexity can come from fixed costs, with specialization gains obtained 
from saving fixed resources used in the production process (Baumol et al. [43], p. 
75; Chavas and Kim [44]). This is consistent with Adam Smith’s example, where 
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specialization reduces the fixed amount of work time spent switching between 
production activities. This is also consistent with situations where specialization 
contributes to reducing the fixed costs of obtaining and processing information 
(as discussed in Caliendo and Rossi-Hansberg [11]). In these examples, the wel-
fare gains from trade liberalization can be potentially large. 

Finally, our analysis allows for heterogeneous technologies across firms, and 
firm entry and exit. As argued by Melitz [7], Bernard et al. [8], Melitz and Tref-
ler [10] and Melitz and Redding [12], in the presence of firm heterogeneity, firm 
entry/exit can affect the types of firm that remain active, thus altering the struc-
ture of industries and their productivity. Our general equilibrium model does 
capture such effects. Yet, as noted by Arkolakis et al. [4], those effects may not 
be sufficient to yield large aggregate gains from trade. Our analysis identifies the 
presence of non-convex technologies with respect to traded goods as the crucial 
factor that can generate large gains from trade.  

6. Concluding Remarks 

This paper has investigated the gains from trade, with a focus on the role of 
non-convexity. Introducing non-convexity in the welfare evaluation of trade is 
challenging as it invalidates standard welfare theorems establishing linkages be-
tween market equilibrium and Pareto efficiency. To address this challenge, we 
developed a general equilibrium model that allows for non-convex technologies. 
The analysis allows for non-linear pricing which becomes an integral part of ef-
ficiency under non-convex technologies. The model is used to evaluate the ag-
gregate welfare effects of globalization. We show that some standard results from 
trade theory remain valid under non-convexity. This includes the result that 
any relaxation in trade restrictions tends to generate aggregate efficiency gains. 
We also show how gains from trade are closely linked with the properties of 
price-dependent demand functions for exports. This extends the analysis pre-
sented by Arkolakis et al. [4] to situations of non-convexity. Most importantly, 
we show that the gains from trade tend to be small under convexity, but that 
they can become very large under non-convexity. This indicates that the search 
for larger gains from globalization needs to be associated with non-convex tech-
nologies. 

Our analysis stresses the role of non-convex technologies and their effects on 
the magnitude of gains from trade. To the extent that the presence and nature of 
non-convexity can vary across firms and industries, the benefits from trade can 
also vary across industries. There is a need to evaluate how the nature of non- 
convexity in production matches trade liberalization policies, with implications 
for how the magnitude of gains from trade varies across industries and trade 
policies. Finally, we have noted that non-convex technologies often require the 
implementation of non-linear pricing. While the modeling of price discrimina-
tion schemes is well known in the analysis of trade policy, it is often presented in 
the context of inefficient allocations associated with rent-seeking behavior. Our 
analysis shows that price discrimination schemes can support an efficient alloca-



J.-P. Chavas, T. Hall 
 

287 

tion under non-convexity. There is a need to explore further how price discrim-
ination schemes get implemented in the economic evaluation of trade policy. 
These appear to be good topics for future research.  
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Appendix 

Proof of Lemma 3: Note that  
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x y f QL f Q Y f L f Q f F Q F+∈ ∈ ≥ ∈ ∈U x y q x y U x y q  

for all , , ,NK Y f F Q F+∈ ∈ ∈ ∈x y . Using (8) and (9), this proves the first in-
equality in (10).  
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which proves the second inequality in (10).                         Q.E.D. 
Proof of Proposition 1: Equation (11) follows from (8) and (9) when  
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Assuming that a maximal allocation exists, using (12), (13a) and (13b), the 

first inequality in (11) implies (14). Finally, using (6), (8) and (11), equations 
(13a), (13b) and (14) imply (15).                                 Q.E.D. 
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Proof of Lemma 4: The statement that ( ) ( )#, ,L L∗ =U q U q  implies  
( ) ( ), ,L V∗ =U q U q  was shown in Proposition 1. The converse follows from 

(10).                                                        Q.E.D. 
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We now show that the reverse inequality also holds:  
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( )

, , ,

In : , ; .
A A

NK
x i i i i i i i

i N i N i N i N

E f Q

f f Q u U i N +
∈ ∈ ∈ ∈

    ≥ − + − − ≥ ∈ ∈         
∑ ∑ ∑ ∑

U q

x w x w q x x 

 (A4) 

From (A2), this inequality clearly holds if ( ),i i ii N b U
∈

= −∞∑ x . Next, con-
sider the case where ( ),i i ii N b U

∈
> −∞∑ x . Letting ( ),i i i i ib′ = −x x x U g , we  

have ( ) ( )1 ,  , , NK
K i i iu U+′ ′ ′ ′= ∈ ≥x x x x   and ( ), 0i i ib U′ =x  for all i N∈ . 

Using the translation property of b , f  and Q , we obtain 

( ) ( )

( )

,

, , , In , :             

In

  , : , ,

A A

A A

NK
x i i i i i i i

i N i N i N i N i N

i i i i
i N i N i N i N

NK NK
i i i i i i

i N

E f Q f f Q b U

f f Q

b U b

+
∈ ∈ ∈ ∈ ∈

′
∈ ∈ ∈ ∈

+ +
∈

    = − + − − − ∈         
    ′ ′= − + − −        

′ ′ ′− ∈ = −

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑

x x

U q x w x w q x x

x w x w q

x x x x x



  ( )

( ) ( ) }

( )

,

, ,

In : , ,

               , , ,

In : ,

A A

A A

i i

NK NK
i i i i

i N i N i N i N

i i i i i i i i

i i i i i i i
i N i N i N i N

U i N

f f Q

b U u U i N

f f Q u U i

′ + +
∈ ∈ ∈ ∈
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∈ ∈ ∈ ∈


∈ 


    ′ ′ ′= − + − − ∈        

′ ′= − ≥ ∈

  ′ ′ ′≥ − + − − ≥ ∈       

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

x x

x
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x w x w q x x
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 

, NKN +

  
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which proves (A4). Combining (A3) and (A4), (A2) yields (17).  
The optimization with respect to y  in (8) implies (18). Finally, using (17) 

and (18), the optimization with respect to f  and Q  in (8) implies (19).  
                                                            Q.E.D. 

Proof of Proposition 3: From Proposition 1, the first inequality in (11) im-
plies 

( ) ( ), , , , , ,o oL f Q V≤U x y q U q  for all ,NK Y+∈ ∈x y
. 

Evaluated at ( ),′ ′x y , this gives 

( ) ( ), , , , , ,o oL f Q V′ ′ ≤U x y q U q .             (A5) 

And the second inequality in (11) implies 

( ) ( ), , , , , ,V L f Q′ ′ ′ ′≤U q U x y q  for all ,f F Q F∈ ∈ . 

Evaluated at ( ),o of Q , this gives 

( ) ( ), , , , , ,o oV L f Q′ ′ ′ ′≤U q U x y q             (A6) 

Adding (A5) and (A6), we obtain  

( ) ( ) ( ) ( )
( ) ( )

, , , , , , , , , , , , ,

– – – – –
A A A A

o o o o

o o
i i i ii N i N i N i N

V V L f Q L f Q

Q Q
∈ ∈ ∈ ∈

′ ′ ′ ′ ′ ′− ≤ −

′ ′ ′= ∑ ∑ ∑ ∑

U q U q U x y q U x y q

x w q x w q
 (A7) 

This gives the second inequality in (20a). To obtain the first inequality in 
(20a), switch q  and ′q  in (A7) and multiply by (−1). Finally, (20b) follows 
from Q’(c) being non-decreasing.                                Q.E.D. 

Proof of Corollary 1: Assume that ( )Q c∗  is differentiable. Then, applying 
the mean value theorem to Proposition 3, it follows that for any 0≥q  and 

0′ ≥q , there exist scalars [ ]1 0,1k ∈  and [ ]2 0,1k ∈  such that  

( )( ) [ ]

( ) ( )
( )( )( )[ ]

1 1

2 2

– – 1

, ,

– – 1 ,

A A

A A

o
i i

i N i N

o
i ii N i N

DQ k k

V V

DQ k k

∈ ∈

∈ ∈

 
′ ′ ′+ − −  
 

′≤ −

′ ′ ′≤ + − −

∑ ∑

∑ ∑

x w q q q q

U q U q

x w q q q q

     (A8) 

where ( ) 0DQ∗ ≥c  for all c . Let –d ′=q q q  and ′ →q q . Assume that  
( )DQ∗ c  is continuous in c  and ( )i

∗x q  is continuous in , Ai N∈q . Then, 
(A8) implies Equations (22) and (23).                             Q.E.D. 
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