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Abstract 
In this paper we propose a “behavioral equilibrium” definition for a class of dynamic 
games of perfect information. We document various experimental studies of the 
Centipede Game in the literature that demonstrate that players rarely follow the 
subgame perfect equilibrium strategies. Although some theoretical modifications 
have been proposed to explain the outcomes of the experiments, we offer another: 
players can choose whether or not to believe that their opponents use subgame per-
fect equilibrium strategies. We define a “behavioral equilibrium” for this game; using 
this equilibrium concept, we can reproduce the outcomes of those experiments.  
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1. Introduction 

In dynamic games of perfect information, the concept of subgame perfect equilibrium 
is most commonly used in the prediction of players’ behavior. Consider a generic game 
of finitely many moves, the subgame perfect equilibrium always uniquely exists. While 
the equilibrium concept is easily understood and the equilibrium characterization is 
usually straightforward, challenges to its ability to predict players’ behavior grow in the 
literature, both on theoretical front and experimental front. 

Rosenthal [1] constructed a game (later dubbed the “Centipede Game”) that consisted 
of a sequence of one hundred moves. In this game, each player moves in every alternative 
period, either to pass (to the next period) or to end the game right away. Passing the game 
to the next period yields a larger total pile of money, but it strictly reduces the payoff a 
player receives if the opponent ends the game in her subsequent turn. The unique sub-

 

 

*Corresponding author. 

How to cite this paper: Dunbar, G., Wang, 
R.Q. and Wang, X.T. (2016) Rationalizing 
Irrational Beliefs. Theoretical Economics 
Letters, 6, 1219-1229. 
http://dx.doi.org/10.4236/tel.2016.66115 
 
Received: October 10, 2016 
Accepted: November 18, 2016 
Published: November 21, 2016 
 
Copyright © 2016 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/tel
http://dx.doi.org/10.4236/tel.2016.66115
http://www.scirp.org
http://dx.doi.org/10.4236/tel.2016.66115
http://creativecommons.org/licenses/by/4.0/


G. Dunbar et al. 
 

1220 

game perfect equilibrium (SPE) is that the first player ends the game at the first node and 
each player gets a small sum. Rosenthal argued that it is highly unlikely that, in practice, 
players will actually choose the SPE strategies when they play that game. 

Various centipede game experiments have been conducted to test the predictive 
power of the concept of SPE. McKelvey and Palfrey [2] reported that only 15% of the 
players end the game at the first node (the outcome predicted by SPE) in a high-payoff 
version, and that number reduces to as little as 0.7% in other versions of the centipede 
game. In a much simplified two-move extensive form game, Goeree and Holt [3] do-
cumented that players usually did not trust their opponents to be rational. In contrast, 
Palacios-Huerta and Volij [4] conduct experiments involving expert chess players, who 
are known for their high degree of rationality and ability to find optimal strategies us-
ing backward induction reasoning. The outcome of their experiments is very close to 
the SPE prediction. Overall these experimental studies suggest that common knowledge 
of rationality of all players is the key requirement of SPE and so it is not surprising that 
players do not follow SPE strategies if they do not believe their opponents are rational. 

In an attempt to reconcile the differences between the theory and the experimental 
outcomes, various modifications to the assumptions of the games used in the experi-
ments have been proposed. McKelvey and Palfrey [2], for example, propose that a 
player believes that the opponent is an altruist with some positive probability. They find 
that even a very small such probability can induce players to adopt mixed strategies in 
the early rounds of the game, mimicking the observed behaviors in their experiment1. A 
few years later, McKelvey and Palfrey [6] use a quantal choice model to re-examine the 
same experimental results. They show that if one assumes that the probability of im-
plementing a particular strategy is increasing in the equilibrium payoff of the strategy, 
then the observed behavior more or less coincides with the predictive behavior. Zauner 
[7] proposes an alternative explanation of McKelvey and Palfrey’s experimental results 
by assuming a random perturbation of each player’s payoffs. He considers different 
types of perturbations and two best-fit models are selected. 

In the theoretical literature, game theorists have proposed alternatives to some key 
assumptions that lead to SPE, including the common knowledge of rationality and 
backward induction. Aumann [8] formalizes the idea of higher order mutual know-
ledge2. Caplan [10] treats irrationality as a standard good, and players need to pay to get 
closer to some (irrational) “bliss belief.” Basu [11] argues that each history of moves 
reveals certain characteristics of players to one another, and therefore the outcomes of a 
game depend on these revealed characteristics (instead of depending on rationality 
alone). Halpern and Pass [12] propose the “iterated regret minimization” as a solution 
concept for strategic games. They apply it to the centipede games and find that, with li-
near payoffs, players will cooperate for a number of rounds. With exponential payoffs, 
they will cooperate all the way up to the end of the game. Meanwhile, Rand and Nowak 

 

 

1In an indirect evolutionary model in which a centipede game is played in each stage, Gamba [5] shows that 
altruism can evolve even if preferences are unobservable. 
2Samet [9] labels the material rationality in a centipede game as common belief instead of common know-
ledge. 
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[13] model the stochastic evolution of strategies in the centipede game and find that the 
players’ cooperative behavior may in fact be the favored outcome of natural selection. 

Advances in psychology also help explain why players in experiments may behave 
differently than SPE predicts. Epstein et al. [14] conduct studies that test the cogni-
tive-experiential self-theory. They confirm that two conceptual systems, an experiential 
system and a rational system, operate by their own rules of inference inside the same 
individual. To some extent, an individual may switch from one system to another. Ti-
role [15] builds on similar psychological findings and proposes a model of rational irra-
tionality that can explain why people rehearse good news and selectively forget bad 
news—a universal behavior. 

In this paper, we argue along the lines of the above psychological findings and pro-
pose another theoretical explanation of the failure of the SPE as a predictor of behavior. 
We emphasize on the observation that even if all players understand fully the concept 
of subgame perfect equilibrium and even if no players believe that other players are al-
truists, they still do not follow the SPE strategies when playing the centipede game. We 
assume that a player can choose to play SPE, i.e. be “rational”, or else may choose to be 
“behavioral”. If being “behavioral” yields a better expected outcome than being “ration-
al”, then a player would choose to be “behavioral” (or, in terms of standard game 
theory terminology, “irrational”). Our intuition is as follows. SPE strategies are optimal 
for a player only when other players follow them. If players do not believe that other 
players will follow SPE strategies, then their own SPE strategies are not, in general, op-
timal. In the model, we specify an alternative belief for each player regarding the beha-
vior of other players. Each player then has a choice of selecting his belief (between the 
SPE strategy and the alternative one) at the beginning of the game and then optimizing 
given the selected belief. A “behavioral equilibrium” is formed if each player is better 
off in the actual outcomes by selecting the alternative belief. These outcomes of the 
game are determined by the strategies the players actually used in the game. 

The basic idea behind the “behavioral equilibrium” concept is that players can 
choose to believe that their counterparts can be either fully rational (such that SPE 
strategies are the best response) or somewhat irrational (so that SPE strategies are not 
best response any more). Given any belief, the players still optimize by choosing the 
best strategy. This is the same as in a subgame perfect equilibrium. However, the dif-
ference between a behavioral equilibrium and a subgame perfect equilibrium is that 
those alternative beliefs in a behavioral equilibrium do not usually coincide with those 
players’ actual strategies. If the two are the same, a subgame perfect equilibrium is 
formed. Therefore, these alternative beliefs are somewhat irrational. Still, these irra-
tional beliefs generate better payoffs than those SPE beliefs. Thus, players will choose 
these irrational beliefs rationally. 

The origin of irrational beliefs is an interesting and open question. Epstein et al. [14] 
find that there are an experiential and a rational system in each individual and that an 
individual can switch from one system to another. We conjecture that irrational beliefs 
may come from the experiential system, while rational beliefs may come from the ra-
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tional system. As we observed in the above-mentioned experiments, players are better 
off using the irrational beliefs than the rational beliefs. These irrational beliefs may not 
translate into the players’ “maximum” payoffs. But the payoffs are usually very good, 
and are much better than the payoffs implied by SPE strategies. Therefore, players may 
reinforce these irrational beliefs and move away from their rational beliefs. In some 
sense, these irrational beliefs are the “rules of thumb” for the players. 

One real life example related to the centipede games that we examine in this paper is 
the rotating-savings and credit associations (Roscas), commonly found in many devel-
oping countries. (See Besley et al. [16] and Anderson and Baland [17], for example.) In 
these associations, a predetermined group of individuals get together and contribute a 
predetermined amount into a “pool” which is then given to one member (winner). 
These gatherings repeat themselves, with previous winners excluded from receiving the 
“pool” while still being obliged to contribute. The gathering may stop after each mem-
ber has received the “pool” but often the same group continues the Rosca with a new 
“pool”. These Roscas run the risk of earlier winners defaulting on later contributions, a 
strategy resembling “stopping early” in the centipede game. Still, defaults are very in-
frequent. Our model of “irrational beliefs” or “rules of thumbs” may shed some light on 
these phenomena. 

The rest of this paper is organized as follows. In Section 2, we analyze a few centipede 
games using the concept of “behavioral equilibria”. In Section 3, we analyze some of the 
experiments in centipede games in the literature. In Section 4, we conclude. 

2. Centipede Games and Behavioral Equilibria 

We begin with a general description of the centipede games. 
There are two players, 1 and 2, playing the centipede game of n moves in Figure 1. 

To simplify notation, we assume that n is even. 
In this game, 1 2a a> , 3 4a a> , � , 2 1 2i ia a− > , � , 1n na a− > , and 2 3b b> , 

4 5b b> , � , 2 2 2 1j jb b− −> , � , 1n nb b +> . It is straight-forward to check that the 
unique subgame perfect equilibrium strategy for each player is to play T whenever it is 
his turn to move. Given this strategy, the equilibrium outcome of the game is that play-
er 1 plays T at the very beginning and ends the game with payoffs ( )1 1,a b . 

Now suppose that before the start of the game, the two players choose a belief secret-
ly and simultaneously. Player 1 chooses a belief from { }1 1,SPE B ; at the same time,  

 

 
Figure 1. A general n-move centipede game. 
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player 2 chooses a belief from { }2 2,SPE B . Here, iSPE  represents player i’s subgame 
perfect equilibrium belief on his opponent j’s behavior; i.e., player j will play T whenev-
er it is his move. On the other hand, iB  denotes player i’s alternative belief. Let 

( )1 2 4, , , nB p p p= �  be player 1’s belief, where kp2  is the probability that player 2 
will play T at node 2k conditional on node 2k being reached. For SPE belief, 

( )1 1,1, ,1SPE = � . Similarly, we define ( )2 1 3 1, , , nB p p p −= � , and ( )2 1,1, ,1SPE = � . 
The subgame perfect equilibrium belief iSPE  is the only belief that satisfies the 

properties of common knowledge of rationality and backward induction in the centi-
pede game. Therefore, any other belief iB  would violate at least one of these proper-
ties. This alternative belief may be derived from a player’s past game-play experience 
against other players and/or some “rules of thumb” guesses may have been formed. 
Since players in general do not always behave rationally, these “rules of thumb” guesses 
do not always coincide with the other players’ SPE strategies. 

In summary, the game we are examining is as follows. Both players simultaneously 
select their beliefs before the start of the game. Once the belief is selected, it remains the 
same throughout the game. Given these beliefs regarding an opponent’s behavior, play-
ers play the above centipede game. Each player’s goal is to maximize his expected 
payoff given his chosen belief. 

To simplify our analysis, we assume that the beliefs are not updated during the game. 
(Even if we allow for belief updating, we will not get back the SPE beliefs as long as the 
initial belief is somewhat incorrect.) 

To analyze the modified centipede game, first note the following. If 1B  is such that 
playing T at node 1 is the optimal action for player 1, then the game is over at node 1 
no matter what belief player 1 has selected. The more interesting case is when playing T 
at node 1 is not the optimal action. 

If player 1 chooses belief 1SPE  and thus plays T at the first node, the game ends at 
the first node, with payoffs ( )1 1,a b . If player 1 chooses belief 1B , player 1 maximizes 
his expected payoff by choosing the node he plans to play T:  

{ }
( ) ( )( ) ( )

( )( ) ( )( )
2 2 2 4 5 2 4 3 1 11,3, , 1

2 4 3 1

max 1 1 1 1

1 1 1 1

i i ii n

i i i

p a p p a p p p p a

p p p p a

− − −∈ −

− −

+ − + + − − −

+ − − − −

�
� �

�
     (1) 

Let *
1i n=  denote an i that maximizes the above. (Note that there could be many 

such i’s that maximize the above.) Consider player 2 at node 2. The optimal action with 
the belief of 2SPE  is to end the game right away. In this case, the payoffs are ( )2 2,a b . 
If belief 2B  is chosen, player 2 maximizes his expected payoff by choosing the node he 
plans to play T:  

{ }
( ) ( )( ) ( )

( )( ) ( )( )
1 1 1 3 3 1 3 3 1 12,4, ,

1 3 3 1

max 1 1 1 1

1 1 1 1

j j jj n

j j j

p b p p b p p p p b

p p p p b

− − −∈

− −

+ − + + − − −

+ − − − −

�
� �

�
      (2) 

Let *
2j n=  denote a j that maximizes the above. (Again, there could be many such 

j’s that maximize the above.) 
The proposed pure strategy for player 1 is to select 1B  and plan to play T at node 
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*
1n . The proposed pure strategy for player 2 is to select 2B  and play P at node 2 (if 

player 1 played P at node 1), and plan to play T at node *
2n . The game ends at node 

{ }* * *
1 2min ,n n n≡ . 

Definition 1 { }1 1,B n∗  and { }2 2,B n∗  form a pure strategy “behavioral equilibrium” 
if player 1’s payoff is higher by selecting { }1 1,B n∗  than selecting { }1,1SPE  given 
player 2’s strategy of playing T at node 2n∗ , and player 2’s payoff is higher by selecting 

{ }2 2,B n∗  than selecting { }2 ,1SPE  given player 1’s strategy of playing T at node 1n∗ . 
That is,  

1 2, and ,
n n

a a b b∗ ∗≥ ≥
 

where { }1 2min ,n n n∗ ∗ ∗= . 
In this behavioral equilibrium, players are better off selecting these non-SPE beliefs 

than selecting the SPE beliefs. These beliefs are reinforced if the players play these 
games again later. 

Now consider mixed strategy “behavioral equilibria”. Suppose that there are more 
than one j’s that maximize (2), or there are more than one i’s that maximize (1), mixed 
strategies could be used by the players. Let ( )

1 2
1 , , , , , ,

ki i i
s q q q∗ ∗ ∗= � � � �  denote any of 

player 1’s optimal mixed strategies, where 1 2, , , ki i i∗ ∗ ∗�  are all of the numbers that 
maximizes (1). Similarly, let ( )

1 2
2 , , , , , ,

kj j j
s q q q∗ ∗ ∗= � � � �  denote any of player 2’s 

optimal mixed strategies, where 1 2, , , kj j j∗ ∗ ∗�  are all of the numbers that maximizes 
(2). Then the outcomes of the game are determined by 1s  and 2s . 

Definition 2 { }1 1,B s∗  and { }2 2,B s∗  form a mixed-strategy “behavioral equili-
brium” if player 1’s payoff is higher by selecting { }1 1,B s∗  (comparing to { }1,1SPE ) 
given player 2’s strategy 2s∗ , and player 2’s payoff is higher by selecting { }2 2,B s∗  
(comparing to { }2 , 2SPE ) given player 1’s strategy 1s

∗ . 
Again, in this behavioral equilibrium, players are better off selecting these non-SPE 

beliefs than selecting those SPE beliefs. We can generalize the concept of behavioral 
equilibria to any general game G with n players and normal-form payoff  

( )1 2, , ,i
ns s sΠ � , 1,2, , .i n= �  

Definition 3 Suppose that ( )1 2, , , nσ σ σ σ= �  is a subgame perfect equilibrium 
strategy profile in G. Let ( )1 1 1, , , , ,i i i i nSPE σ σ σ σ σ− − += = � �  be player i’s subgame 
perfect equilibrium belief about other players’ strategies. Suppose that  

( )1 1 1, , , , ,i i i i
i i i nB s s s s− += � �  be player i’s another belief about other players’ strategies 

and is∗  is player i’s best response to iB . Then { }
1, ,

,i i i n
B s∗

= �
 form a “behavioral equi-

librium” if ( ) ( )1 2 1 2, , , , , ,i i
n ns s s σ σ σ∗ ∗ ∗Π ≥ Π� � , 1,2, , .i n= �  

Note that in the above definition, a player’s belief may not be correct; that is, iB  is 
not necessarily the same as ( )1 1 1, , , , ,i i i ns s s s s∗ ∗ ∗ ∗ ∗

− − += � � . However, the optimal res-
ponses to these “incorrect” beliefs generate higher payoffs to each player than the sub-
game perfect equilibrium payoffs. Therefore, these “incorrect” beliefs are reinforced. 

Note also that the subgame perfect equilibrium strategy profile σ  together with the 
corresponding correct belief i iB SPE=  always form a behavioral equilibrium. In fact, 
according to the definition, there could be many behavioral equilibria in a game. How-
ever, in games with dominant strategies, such as the Prisoner’s Dilemma games, players 
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using the dominant strategies are the unique behavioral equilibrium, since they are op-
timal independent of players’ beliefs. 

Below, we focus on centipede games to illustrate our equilibrium concept. 
Example 1 Consider the eight-move centipede game in Figure 2. 
Suppose that ( )1 0,0,0,1B =  and ( )2 0,0,0,1B = . Then it is straight-forward to ob-

tain 1 7n∗ = , and 2 6n∗ = . That is, player 1 playing T at node 7 is optimal given 1B , 
while player 2 playing T at node 6 is optimal given 2B . The minimum of 1n∗  and 2n∗ , 
n∗ , is 6; that is, the game ends at node 6, with payoffs (2,5). 

It is easy to see that { }*
1 1,B n  and { }*

2 2,B n  form a behavioral equilibrium because 

* 1n
a a> , and * 2n

b b> . 
Example 2 Consider the six-move centipede game in Figure 3. 
In this game, we can construct pure-strategy behavioral equilibria similarly to the last 

example. Let ( )1 0,1,0B = , and ( )2 0,0,1B = . Then we have 1 3n∗ = , and 2 4n∗ = . 
Therefore, { }1 2min , 3n n n∗ ∗ ∗= = ; that is, the game ends at node 3. This constitutes a 
behavioral equilibrium as the final outcome is (3,0), which is weakly better for both 
players than the SPE outcome of (1,0). 

Now consider a mixed-strategy behavioral equilibrium. Suppose that ( )1 40, ,1B p=  
and ( )2 30, ,1B p= , with ( )4 0,1p ∈  and ( )3 0,1p ∈ . Given these beliefs, denote play-
er 1’s expected payoff of planning to play T at node i by ( )1E iΠ . We have 

( )1 1 1EΠ = , ( )1 3 3EΠ = , and ( ) ( )1 4 45 0 1 5E p pΠ = + − . For player 1 to randomize 
between playing T at node 3 and playing T at node 5, we should set ( ) ( )1 13 5E EΠ = Π ;  

that is, 4
2
5

p = . 

Similarly, for player 2, ( )2 2 2EΠ = , ( ) ( )2 3 34 0 1 4E p pΠ = + − , and ( )2 6 0EΠ = .  
 

 
Figure 2. An eight-move centipede game. 

 

 
Figure 3. A six-move centipede game. 
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Suppose that 3
1
2

p < . Then *
2 4n = . 

To construct a behavioral equilibrium, player 1’s mixed strategy ( )30, ,1q  must sa-
tisfy the following two conditions regarding each player’s actual payoffs. First, for play-
er 1, ( )3 33 1 0q q+ −  is at least 1, which is player 1’s payoff by following SPE strategy 

and playing T at node 1. This gives us 3
1
3

q ≥ . Second, for player 2, ( )3 30 1 4q q+ −  

must be at least 2, which is player 2’s payoff by following SPE strategy and playing T at 

node 2. This gives us 3
1
2

q ≤ . Therefore, any 3
1 1,
3 2

q  ∈   
 would satisfy these two 

conditions. 

To summarize, 1
20, ,1
5

B  =  
 

, ( )1 30, ,1s q= , ( )2 30, ,1B p= , ( )2 0,1,1s = , where 

3
1 1,
3 2

q  ∈   
, and 3

10,
2

p  ∈   
 form a mixed-strategy behavioral equilibrium. 

3. Analyzing Previous Centipede Game Experiments 

McKelvey and Palfrey [2] report the results of seven different centipede game experi-
ments. Sessions 1 to 3 are four-move centipede games with the following payoffs: 
( ) ( )1 1, 0.4,0.1a b = , ( ) ( )2 2, 0.2,0.8a b = , ( ) ( )3 3, 1.6,0.4a b = , ( ) ( )4 4, 0.8,3.2a b = , and 
( ) ( )5 5, 6.4,1.6a b = .3 Session 4 is a high-payoff four-move centipede game where the 
payoffs are quadrupled. Sessions 5 to 7 are six-move centipede games with the follow-
ing payoffs: ( ) ( )1 1, 0.4,0.1a b = , ( ) ( )2 2, 0.2,0.8a b = , ( ) ( )3 3, 1.6,0.4a b = ,  
( ) ( )4 4, 0.8,3.2a b = , ( ) ( )5 5, 6.4,1.6a b = , ( ) ( )6 6, 3.2,12.8a b = , and  
( ) ( )7 7, 25.6,6.4a b = . 

Table IIA in McKelvey and Palfrey [2] reports the proportion of observations at each 
terminal node. In that table, if  is used to denote the proportion of games that ends at 
node i. From these if ’s, we can calculate a player’s strategy as follows. For the 
four-move game, let 1q  and 3q  be the proportion of player 1 who plans to choose 
TAKE at node 1 and at node 3 respectively. (Therefore, the proportion of player 1 
choosing Pass at node 3 is equal to 1 31 q q− − .) Similarly, let 2q  and 4q  be the pro-
portion of player 2 who plan to choose TAKE at node 2 and at node 4 respectively, and 
thus the proportion of player 2 choosing Pass at node 4 is equal to 2 41 q q− − . Then 

1 1q f= , ( )1 2 21 q q f− = , ( )2 3 31 q q f− = , and ( )1 3 4 41 q q q f− − = . We define iq  si-
milarly in the six-move game. Then we have 1 1q f= , ( )1 2 21 q q f− = , ( )2 3 31 q q f− = , 
( )1 3 4 41 q q q f− − = , ( )2 4 5 51 q q q f− − = , and ( )1 3 5 6 61 q q q q f− − − = . The results are 
reported in the following table. 

We cannot infer a player’s belief in playing these games from the data since many 
different beliefs could lead to the same observed strategy. Therefore, in each session, we 
assume that a player’s belief corresponds exactly to his rival’s revealed strategy and cal-
culate the player’s optimal action according to that belief. In the calculations, we assign 
the players a utility function with a constant degree of absolute risk aversion of 0.5 so  

 

 

3Payoffs ( ) ( )5 5, 6.4,1.6a b =  are obtained if player 2 chooses to pass at move 4. 
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Table 1. Players’ strategies and optimal actions. 

Session  1q  2q  3q  4q  5q  6q  Optimal Action 

1 player 1 0.06  0.61    Take at Node 3 (61%) 

 player 2  0.28  0.61   Take at Node 4 (61%) 

2 player 1 0.10  0.69    Take at Node 3 (69%) 

 player 2  0.42  0.52   Take at Node 4 (52%) 

3 player 1 0.06  0.42    Pass at Node 3 (42%) 

 player 2  0.46  0.33   Take at Node 4 (33%) 

4 player 1 0.15  0.57    Take at Node 3 (57%) 

 player 2  0.44  0.39   Take at Node 2 (44%) 

5 player 1 0.02  0.43  0.50  Take at Node 5 (50%) 

 player 2  0.09  0.51  0.20 Take at Node 4 (51%) 

6 player 1 0.00  0.04  0.70  Take at Node 5 (70%) 

 player 2  0.02  0.48  0.42 Take at Node 4 (48%) 

7 player 1 0.00  0.15  0.55  Take at Node 5 (55%) 

 player 2  0.07  0.51  0.40 Take at Node 4 (51%) 

 
that the players are modestly risk averse. That is, ( ) 0.5e x

iU x −= −  for player i, where 
x is the amount of money earned in one game. The results are reported in Table 1 as 
well. The percentage number after each optimal action is the percentage of players 
actually choosing the implied optimal action in that session. As we can see from the 
table, the majority of the players chose the implied optimal action in all but session 3. 
We interpret these findings cautiously as our assumption that a player’s belief cor-
responds exactly to his rival’s revealed strategy is only one possible specification of 
beliefs consistent with the behavioral equilibrium. Nevertheless, and in contrast with 
the predictions of SPE, the behavior of the majority of the players can be explained by 
our theory. 

4. Conclusion 

In this paper, we propose a concept of behavioral equilibrium to explain the observed 
behavior of players in centipede games. Experimental evidence suggests that players’ 
behavior is inconsistent with game theoretic predictions. We allow players to abandon 
the “logic” of subgame perfect equilibrium and to choose an alternate belief of oppo-
nents’ expected behavior formed from previous experience in similar situations. We 
show that, under certain conditions, players are better off abandoning the “logic” of 
subgame perfect equilibrium and choosing the alternative belief instead. We argue this 
reinforces the players’ subjective belief that subgame perfect equilibrium may not work 
well in these games and, by extension, that the alternative belief becomes the belief of 
choice. We support our theory by re-examining the results of centipede game experi-
ments conducted by other researchers. 
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