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Abstract 
This paper investigates inference methods to introduce prior information in econometric modelling 
through stochastic restrictions. The goal is to show that stochastic restrictions method estimator can 
be asymptotically more efficient than the estimator ignoring prior information and can achieve effi-
ciency if prior information grows faster than the sample information in the asymptotics. The set up 
includes the nonlinear least squares and indirect inference estimators. The paper proposes a new 
indirect inference estimator that incorporates stochastic equality constraints on the parameters of 
interest. Finally, the proposed approach is applied to a macroeconomics model where high efficiency 
gains are shown. 
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1. Introduction 
One of the ways in which prior information can be modeled is by the use of the stochastic restrictions approach. 
The rationale is based on the fact that it brings efficiency gains in the estimators, naturally, subject to the quality 
of the information available. In some cases, prior information is derived from economic theory, and imposes re-
strictions among parameters that should hold in exact terms. This prior information could be included in the 
model as a deterministic restriction, and the restricted estimator has smaller variance than the non-restricted es-
timator. In other cases, prior information derives from previous estimations of similar models or samples. This 
information could be considered an approximation of the unknown parameter, or a range of values that should 
contain the parameter with some probability. In this case, deterministic restrictions should not be included in the 
estimation procedure since the restricted estimator will be biased. If this information is not taken into account 
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despite being valuable, the chance of improving the efficiency of the estimator is wasted. An intermediate solution 
is to include it with uncertainty. This is the idea behind the stochastic restrictions approach and it is shown to bring 
efficiency gains (as shown in [1] and [2]) for a linear model under normality of the errors. Nevertheless, stochastic 
restrictions seem not to have much impact in classic econometrics literature, possibly because of their irrelevance 
on asymptotic grounds. On the other hand, the Bayesian approach, based on the use of prior information, is in-
creasing its applicability and diffusion in the profession. For instance, related to the mixed logit model (see [3]), the 
Bayesian approach brings better results in general than the simulated maximum likelihood estimation, mainly due 
to the prior information that is not considered in the SML method and possibly due to the high variance of the SML 
estimator resulting from the high number of simulations needed to implement this method ([4] and [5]). 

Despite the finite sample efficiency gains of the Theil-Goldberger approach, this result cannot be extended to 
the asymptotic distributions of the constrained estimator, since the efficiency gain vanishes as sample size in-
creases. This result is proved although not useful for empirical research (see [6]). The reason is that attending at 
its purposes, asymptotic theory is a tool which provides approximated finite sample distributions of the estima-
tors. If these estimators are constrained and restrictions are correct, then asymptotic theory does not allow the 
efficient use of all the available information about parameters. Therefore, it would be interesting to extend the 
finite sample properties of the estimator under stochastic restrictions to the asymptotic context and then to its 
approximated distribution. In this paper I show that stochastic restrictions could bring asymptotic efficiency 
gains under some specific assumptions about the asymptotics of prior information. 

The main contribution of this paper is the description of a simulation-based estimator in which prior informa-
tion is taken into account through the stochastic restrictions approach, also, under the same type of assumptions 
already introduced in the first objective. Simulation-based methods, as the method of simulated moments [7] [8], 
and the I.I. method of [9] (see also [10] [11], for similar approaches), provide powerful techniques to deal with 
nonlinear models when traditional methods fail. Nevertheless, there is not a clear way by which prior informa-
tion can be taken into account in simulation-based estimation methods. In this paper I achieve this goal through 
the extension of the I.I. method by introducing stochastic restrictions in the initial I.I. criterion, defining the In-
direct Inference under Stochastic Restrictions (IIR) estimator and showing efficiency gains when compared to 
the I.I. estimator. 

The structure of the paper is the following: Section 2 provides the motivation for the assumption that supports 
the main results of this paper, also, I discuss the derived efficiency gains for a traditional estimator in finite 
sample and asymptotic terms. Section 3 describes the method to combine prior information into the indirect in-
ference criteria through the stochastic restriction approach. Also, asymptotic properties are provided. Section 4 
focuses on a macroeconometrics example and numerical evaluation of the efficiency gains of the suggested me-
thod, and Section 5 concludes. 

2. Stochastic Restrictions 
The first result to be shown in this paper is that stochastic restrictions yield asymptotic efficiency gains under 
specific assumptions. Previously, In this section, I provide the definition of stochastic restriction and describe 
how it behave in asymptotic terms in a standard framework. I show that in order to obtain efficiency gains de-
rived from the introduction of stochastic restrictions it is needed to assume a particular behavior of the prior in-
formation in the asymptotic setup. This particular assumption is also motivated in this section. 

Consider a general linear model, ,y xθ ε= +  where the parameters of interest is ,θ  a 1p×  vector. If prior 
information is available about ,θ  I could model it as follows: 

r G vθ= +                                     (1) 

which is called a stochastic restriction. In the above equation r is a 1q×  vector ( q p< ) containing the values 
that prior information allocates to a linear combination between parameters, G is the q p×  matrix of the para- 
meters coefficients, and v is a stochastic term that captures the uncertainty about the prior information, for which 
a distribution is to be assumed. 

Let us show how a stochastic restriction could be defined from prior information in a very simple model 
formed by a Cobb-Douglas production function Y AK Lα β=  using standard macroeconomics notation. Let us 
assume that available prior information is that “Returns to scale are probably constant”. This means that we 
expect α β+  to be close to one. In this case, the stochastic restriction is the equation ( )1 ,vα β= + +  and v is 
a random term whose variance should capture the uncertainty given to the beliefs about the constancy of the 
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return to scale. In this example 1,r =  1,q =  and [ ]1,1G′ = . In general, this restriction need not to be linear, 
and can be denoted as ( )G θ . 

One of the key element of this paper lies on the particular assumption I make about the asymptotics of 2
vσ . In 

short, I consider an asymptotically decreasing variance of the stochastic restrictions, or, in terms of [12], a para- 
meter sequence. As a result, the relative weights of prior and sample information are preserved in asymptotic terms, 
which explain efficiency gains as opposed to the standard approach. 

This kind of assumption might be considered too strong and, as mentioned in [13], difficult to justify. How-
ever, in the context of IV estimation with weak instruments, in [12] and [14] I use a similar assumption, simply 
justified by the goal of finding better approximations to the finite sample distribution of the estimator of interest. 
The approximation is derived mainly from standard asymptotic theory, but also, taking into account the extra 
assumption of a parameter sequence, designed to improve the properties of the considered estimator. Despite of 
the objection of [13], [12] claims, “… since the finite sample distribution does not depend on the behavior of 
observations in the case of further sampling, there is no reason why an approximation should1. Consequently, 
there is no need to make such “realistic” assumption … the quality of the approximation is the only criterion for 
justifiability”. The parameter sequence I choose, as mentioned, is specified on the variance of the stochastic re-
striction, and using [12] argument, it can also be argued that the rationale lies in the fact that when considered, it 
makes the asymptotic distribution fit the finite sample distribution better. Yet, in addition, there is a realistic mo-
tivation for it: since priors are considered to be obtained from a sample whose size also increases asymptotically, 
then, it is extended to dynamic terms (defining the asymptotics in terms of both sample sizes) the fact that priors 
are informative. In other words, our key assumption means that experience matters, which could be considered a 
natural fact. If priors are informative in static terms, then its quality might increases in the case of additional 
sampling. Then priors continue to be informative as the size of the sample which generates those increases. 

Finally, it is presented an additional argument to motivate the main assumption considered. In a more specific 
context, the key assumption allows to blend prior and sample information when estimators based on simulation 
must be used. This is the case of models that generate high nonlinearities in the traditional criterion, making 
standard methods useless. Generally, the estimators obtained by simulations, despite the fact that are the only solu-
tion to estimate some families of models, show high variance, and hence, efficiency gains would be welcomed. 
The key assumption allows the I.I. procedure becoming a more efficient procedure if stochastic restrictions are 
correct. 

Efficiency Gains 
In this section, I discuss the relevance of taking into account prior information in the estimation of a general 
nonlinear model. First I remind the properties of the nonlinear least squares estimator ( ˆ

NLSθ ) and of the estimator 
that takes into account prior information modelled in the form of stochastic restrictions, called the Nonlinear Least 
Squares under Stochastic Restriction estimator ( ŜRθ ). Both estimators are compared in terms of their asymptotic 
variance covariance matrixes ( )ˆAV θ . Second, I show the irrelevance of the prior information when the standard 
asymptotic analysis is conducted. Nevertheless, I find the opposite result when a more general analysis is carried 
out, based on assumptions about the asymptotic behavior of 2 ,vσ  as mentioned in Section 2. 

The purpose of this discussion is to establish formally the setting in which the stochastic restrictions are 
relevant to explain efficiency gains in the context of a traditional method. This formalization is intended to 
enhance the understanding of the technical role played by the assumption into ( )ˆAV θ , that is, the need for a 
specific T T ∗  convergence. This allows us in the next section to focus the analysis straight on the construction 
of the restricted indirect inference estimator once it is known the formal role of the assumption. 

We start our discussion by considering a general nonlinear model given by the following equation 

( ),t t ty f x θ ε= +                                   (2) 

where ty  is a scalar observable random variable, θ  is a p-vector of unknown parameters, and { }tε  are i.i.d. 
unobservable random variables such that ( ) 0tE ε =  and ( ) 2

tV εε σ=  for all t. We assume that tx  is a vector of  

exogenous variables. If ( ),tf x θ
θ

∂
∂

 exist and is continuous, the NLS estimator of θ  is defined as the value ˆ
NLSθ  

 

 

1It is important to note that in Section 3, under standard assumptions, the finite sample efficiency gains due to stochastic restrictions vanishes 
as the sample size increases. Also in our case the approximated distribution depends on further sampling. 
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that minimizes the criterion function ( ) ( ) 2

1
;

T

T t t
t

y f xθ θ
=

 Ψ = − ∑  with respect to θ . Additional assumptions are  

to be considered—see, for instance, [15]—to prove the consistency and asymptotic normality of the NLS esti-  

mator. This assumptions are, in vague terms, the existence and continuity of ( ).f
θ

∂
∂

 and the existence of the limit,  

as T goes to infinity, of the second order derivative of ( ).f  w.r.t. θ . For the sample size T calling  

( )
1

,f x
F

θ
θ

∂
′=

∂
 – p T×  matrix –, the asymptotic distribution of the ˆ

NLSθ  estimator is, 

( ) ( )( )12
0 1 1

ˆ 0, limd
NLST N p F F Tεθ θ σ −′− → .                          (3) 

Now I consider a set of q stochastic restrictions on θ , ,q p<  modelled through the equation ( ) ,r G vθ= +  
where r is a 1q×  vector and ( )2~ 0, ,v qv N Iσ  v independent of θ  and ε 2. Following the Theil-Goldberger 
approach, the resulting model in which Equation (2) and stochastic restrictions are considered, can be expressed as: 

( )
( )
,f xy

Gr v
θ ε
θ

    
= +    

    
.                                  (4) 

Since, in general, 2 2
v εσ σ≠ , the model shows heteroscedasticity of known structure. Then, the model can be 

transformed following the Generalized Least Squares (GLS) by premultiplying the system in (4) by matrix P, 
the square root of ( ), .V e v ′  The resulting model, using a compact notation, becomes: 

( ),y f x θ ε= +                                      (5) 

where y  is the transformed ( T q+ ) dimension vector [ ],P y r ′ , ( ),f x θ  is the transformed matrix  

( ) ( ). .P f G ′    of (4) and ε  is the ( )T q+ —vector of homoscedastic disturbances, since ( ) .T qV Iε +=   

Some additional notation should be introduced. Let fF
θ
∂

=
∂

 and ( )G
D

θ
θ

∂
=

∂
 a q p×  matrix. The Nonlinear  

Least Squares under Stochastic Restriction (SR) estimator of ,θ  ˆ ,SRθ  is the NLS estimator of the model (5). 
In order to simplify the presentation I will omit details of the proofs of the consistency and asymptotic normality 
of the SR estimator, since these are the same needed for NLS estimator, although in this case, defined on the 
relevant variables of the transformed model (5) ( see [15]), for instance. We assume that such required assumptions 
hold in our model, and hence, asymptotic normality and consistency are obtained. We will call this, Standard 
Asymptotic Assumptions (SAA), explicitly omitted. After some computation, assuming SAA on model (5), it can 
be easily proved that the asymptotic distribution of the SR estimator is: 

( )
1

1 1
0 2 2

1 1ˆ 0, limd
SR

v

F F D DT N p
T Tε

θ θ
σ σ

−  ′ ′ − → +    
.                     (6) 

Our purpose is to compare the asymptotic variance covariance matrix given in (3) and (6), first in the context 
of the standard asymptotic theory, and also in a general alternative context to be defined, based on the structure 
of the variance of the error term v. We start first by the standard asymptotic setting where the following result is 
obtained, already provided by [6] for a linear model. 

Proposition 1. Under SAA, the SR and NLS estimators have the same asymptotic variance covariance matrix.  

The proof is immediate. Since 2
vσ  is constant, 2

1lim 0
v

D Dp
T σ
 ′

= 
 

 and then, 

( )
1

1 1
0 2

1ˆ 0, lim .d
SR

F FT N p
T ε

θ θ
σ

−  ′ − →     
 

 

 

2Although it is not necessarily, neither realistic that the restrictions should be independent and homoscedastic, assuming that make easier the 
understanding the effects of stochastic restrictions on efficiency gains. 
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Hence, ( ) ( )ˆ ˆ
SR NLSAV AVθ θ=  as shown in (3)3. 

Proposition 1 shows that stochastic restrictions bring no asymptotic efficiency gains. The irrelevance of the 
stochastic restrictions is not a satisfactory result for empirical purposes, where the asymptotic distribution has to 
be used to approximate the variance of the estimator, especially when the sample size is small. The question that 
arises is whether or not it would be possible to find a theoretical framework to keep the relevance of the stochastic 
restrictions in asymptotic terms, as stated in [1] for finite samples and normally distributed error term. Also, it is 
a matter of interest the nature of the conditions under which this theoretical framework would be built up. We 
give an affirmative answer to the first question, since I obtain in some cases asymptotic efficiency when using 
stochastic restrictions. Also, I provide an attempt to motivate our assumptions, and to justify such cases. 

The new context is based on the idea that prior information about parameters comes from previous experience. 
Moreover, experience derives from observations that are taken from a sample of size T ∗ . Since T ∗  increases, 
prior information consequently improves, that is, is closer to be correct. Observations are generated by a model 
that is not essentially related with our model of interest, and hence, the disturbance v is independent of ε . The 
asymptotic results in this new framework are to be defined as T and T ∗  goes to infinity. Besides, since I want 
to describe a general analysis, the ratio T T ∗  is allowed to vary from zero to infinity in the limit. The following 
assumptions are in order to formalize the discussion. 

Assumption 01 (A01). The variance of v, the error term of the stochastic restriction, is 2 2
v v Tσ σ∗ ∗=  where 

T ∗  is the sample size of the model generating the prior information. 
This assumption states that the quality of the prior information increases asymptotically with T ∗ . The moti- 

vation for these assumptions is based on the idea that experience matters as described in Section 24. It should be 
noted that A01 implies that the term r in the stochastic restriction is also a random term and hence it depends on 
T ∗ . In order to capture this feature, it is denoted as r∗ . Since A01 states that prior information improves with 
the sample size T ∗ , in the limit r∗  should equal Rβ  and be true. 

The asymptotics is analyzed as T and T ∗  goes to infinite, and different growing rates are allowed for T and 
T ∗ . The following assumptions formalize the setting where the general analysis is carried out. 

Assumption 02 (A02). ( )lim 1T T ∗ = . 

Assumption 03 (A03). ( )lim .T T ∗ = ∞  

Assumption 04 (A04). ( )lim 0.T T ∗ =  
The purpose of (A02) is to maintain equal weights of prior information and sample information in the limit. 

Assumption (A03) states that sample information increases more rapidly than prior information, while (A04) set 
the opposite. We will show that for the three cases, the variance of the SR vary between an inferior bound, given 
by the variance of the deterministically restricted estimator (I will simply call this as the restricted estimator and 
denoted it as R̂θ ) and a superior bound given by the variance of the non-restricted estimator, i.e., ˆ

NLSθ . These 
results are shown in the following propositions, proved Appendix 1. 

Proposition 2. Under SAA, (A01) and (A02), ( ) ( )ˆ ˆ .SR NLSAV AVθ θ<  

This result shows that stochastic restrictions brings asymptotic efficiency gains with respect to the NLS esti- 
mator when sample and prior information increases at the same rate. In other words, Proposition 2 recovers the 
Theil-Goldberger contribution for asymptotic distributions, and for the resulting approximated finite sample 
distributions so derived. 

Proposition 3. Under SAA, (A01) and (A03), ( ) ( )ˆ ˆ
SR NLSAV AVθ θ= . 

This result shows that stochastic constraints do not increase efficiency when sample information increases 
more rapidly than prior information. In other words, Proposition 3 shows the standard asymptotic conclusion of 
Proposition 1 as a particular case of the general analysis described by assumption A01. 

Proposition 4. Under SAA, (A01) and (A04), ( ) ( )ˆ ˆ
SR RAV AVθ θ= . 

This result shows that when prior information increases more rapidly than sample information, stochastic 

 

 

3The suggested approximated distribution for finite sample SR estimator is ( )( )12
0 1 1

ˆ , .SR N F Fεθ θ σ −′≈  
4As is well known, priors in the Theil-Goldberger approach can also be given the interpretation of the posterior mean of a Bayesian estima-
tor. Following this interpretation, we can also justify A01. 
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constraints increase efficiency to the level of the restricted estimator R̂θ . In other words, in the limit, stochastic 
constraints reach the maximum level of information and efficiency. Then Proposition 4 shows the standard finite 
sample conclusion obtained in a deterministic constraint setting as a particular case of the general analysis described 
by assumption A01. The equation of the ( )R̂AV θ  is provided, together with the proof, in Appendix 1. 

Finally, in the following proposition I show a concluding result for a varying limT T ∗  from zero to infinity. 
Proposition 5. Under (A01), as ( )lim T T ∗  increases from zero to infinity, ( )ŜRAV θ  also increase from  

( )R̂AV θ  to ( )ˆ
NLSV θ . That is, if ( )lim ,T T M∗ =  0 ,M< < ∞  then, 

1) 
( )( )ˆd

0,
d

SRAV

M

θ
>  

2) ( ) ( )0
ˆ ˆlim ,M SR RAV AVθ θ→ =  

3) ( ) ( )ˆ ˆlim .M SR NLSAV AVθ θ→∞ =  

We have established a general setting in which several goals are covered. First I have stated a unique analytical 
context to explain restricted and non-restricted estimators, in the general terms of the stochastic restrictions 
approach. In this context, restricted and non-restricted estimators are particular cases of ŜRθ , depending on the 
relative dynamic of sample and prior information. Therefore, when sample information dominates prior infor- 
mation, the general SR estimator leads to the non-restricted estimator. When prior information dominates sample 
information, the general SR estimator leads to the restricted estimator. The described discussion in terms of the 
T T ∗  ratio could also be interpreted as a way of looking at the variance of the stochastic restriction. For finite 
sample size, it is easy to see that the same results could be found when 2

vσ  varies from 0 to infinity5. 

3. Indirect Inference under Stochastic Restrictions 
The indirect inference method is a simulation-based moment matching estimation procedure. The general idea is 
to match the moments of the auxiliary model from the simulated data to observed data to obtain the estimates of 
the structural parameters. The method of Indirect Inference (I.I.) of [9] and the methods of simulated moments 
of [11] and [16] (see similar methods in [10] and [17]), provide a powerful technique to deal with nonlinear 
models where traditional methods fail. In spite of the wide applicability of these methods, there is not a metho-
dology to take into account prior information in their implementation (see, for example, [18]). In this section I 
suggest a way to solve this problem based on the stochastic restriction approach and also on the discussed 
asymptotic efficiency gain of stochastic restrictions. The analysis will be cast in the framework of the I.I., since 
this methodology is more general and other simulation-based estimation methods can be viewed as special cases 
of it. Therefore, notation will follow as closely as possible [9]. The general goal of this section is to provide an 
example of applicability of the results shown in Section 3, where asymptotic efficiency resulting from stochastic 
restriction could be theoretically justified. Moreover, this example has empirical implications, since it provides 
efficiency gains to simulation-based estimators, whose variance is generally high. 

First, I define the Indirect Inference under Stochastic Restrictions (IIR) estimation method and provide its 
distribution. Then, based on the approach introduced in Section 2, I show that the IIR estimator is more efficient 
than the I.I. method, provided that the stochastic restrictions are asymptotically correct. 

In the I.I. approach it is considered a p-dimension vector of parameters θ  of a model of interest (M), given 
by a set of T equations of the form ( ),t t ty f x θ ε= +  and a j—dimension vector of parameters ,β  j p≥  of 
an auxiliary model ( )aM  given by equations ( ), ,t t ty g x uβ= +  which is easier to handle than the model of 
interest. 

Some facts have to be pointed out in order to understand the principle of the I.I. estimation. It is assumed that it 
is not feasible to estimate M by mean of a conventional method, due to its complexity or intractability of a 
conventional criterion for that model. On the other hand, aM  estimation is feasible by using a traditional method, 
based on the optimization of a criterion function ( )T βΨ  or auxiliary criterion6. As of the optimization on  

( )T βΨ  it can be obtained the estimate ˆ,β  denoted as ( )β̂ θ  since the estimate depends indirectly on the 
implicit parameters θ  driving the data generating process. The binding function ( )b θ  is defined as the 

 

 

5This result can be shown on requested to the author. 
6This function could be, for instance, the likelihood function, as considered in the example described in Section 5. 
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parametric counterpart of the point estimate ( )β̂ θ  for a given θ . The I.I. estimation focuses on the estimation of 
the function ( )b θ  from ( )β̂ θ  for a set of values of θ , which generates by simulation independent paths of  

( )sy θ . The function ( )b θ  is assumed to be twice differentiable with respect to θ , and 
( )

0

1

b
D

θ θ

θ
θ

=

∂
=

∂
 is of  

full rank on a neighborhood of 0θ . The I.I. estimator of θ , following [9], is defined as 

{ }1 1 1arg minII m mθ ′= Ω  

where ( )1
1

ˆ ˆ
D

s
s

m Sβ β θ
=

= −∑  and 1Ω  is a j j×  symmetric and positive definite matrix to be determined  

below. Under regular assumptions about the auxiliary criterion ( )T βΨ  and the model—in Appendix 2 this 
assumptions are shown—the asymptotic distribution of the I.I. estimator is 

( ) ( )0 1 1
10, 1d

IIT N W
S

θ θ   − → + Ω  
  

  

where 

( ) ( ) ( ) ( )1 11
1 1 1 1 1 1 1 1 1 1 1 1 1W D D D D D D− −∗−′ ′ ′ ′ ′Ω = Ω Ω Ω Ω Ω  

and 1
1 0 0 0J H J∗ −Ω =  being 

( )( )2

0 lim ,T b
J p

θ
β β

∂ Ψ
= −

′∂ ∂
 0 0 0 ,H H K= −  being 0H  and 0K  are matrixes related 

with properties of the variance-covariance matrix of TT
β

∂Ψ
∂

 and specified in assumptions (A6) and (A7) in  

Appendix 2. 
The matrix 1Ω  is chosen according to the optimality criterion, and then taken as 1 1 .∗Ω = Ω  In this case, the 

asymptotic variance-covariance matrix of IIθ  (taking S →∞ ) is 

( ) 1

1 1 1 1W D D
−∗ ∗′= Ω .                                  (7) 

Since lim ,TT
p∞ →∞

Ψ = Ψ  TΨ  could be used in the place of ∞Ψ  and a consistent estimator of the asymptotic  

variance of β̂  for 0H . 
We now consider the existence of prior information on the parameters of interest ,θ  what could formally by 

written as stochastic restrictions: ( ) ,r G vθ∗ = +  where ( ) 0E v =  and ( ) 2 ,V v ∗= Φ  v independent of ε  and 
u and the parameters of M and aM . Further properties of v are to be specified below. The vector r∗  contains 
the priors about the parameter constraints, and ( )V v  is chosen according to the quality of the prior information.  

Function ( ) ,G θ  that defines constraints between parameters, is differentiable and such that ( )
2

G
D

θ
θ

∂
=

∂
 is a  

q p×  matrix of full rank in a neighborhood of 0θ . 
It is necessary to introduce some additional notation to define the proposed estimation method. Let  

( )1, ,m m G r∗ ′′ ′= − 
 

 ( )1 2, ,D D D ′=  and Ω  a block diagonal matrix, with 1Ω , 2Ω  in their diagonal respec-  

tively. 
Definition The Indirect Inference under Stochastic Restriction (IIR) estimator of θ  is 

( ) ( ){ }arg minIIR m m
θ

θ θ θ′= Ω                               (8) 

where  

( ) ( ) ( )( ) ( )( )1 1 1 2 .m m m m G r G rθ θ θ θ∗ ∗ ′′ ′Ω = Ω + − Ω − 
 

 

Some additional assumptions are in order to derive the asymptotic behavior of the IIR estimator. 
(A1) - (A7). Are the regular conditions needed to obtain the asymptotic distributions if the I.I. estimator, 
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shown in Appendix 2. 

(A8) ( )
2

G
D

θ
θ

∂
=

∂
 is a q p×  matrix of full rank in a neighborhood of 0θ . 

(A9) ( )( ) ( )1
20,dT G r Nθ∗ ∗ ∗−− → Ω . 

(A10) ( )1p
T o
T ∗ = . 

Assumption (A9) describes the asymptotic properties of the stochastic restrictions, and it leads to the appro- 
ximate distribution 

( ) ( )1 1
20,G r N Tθ ∗ ∗− ∗−− ≈ Ω  

and hence similar to assumption (A01) introduced in Section 3. Again, the rationale behind (A9) is the intention 
to maintain a constant relative weight between the sample and prior information asymptotically. The relevance 
of this assumption lies in the fact, already discussed, that under these hypotheses, the approximate distribution 
for small sample size of the resulting estimator is closer to the observed distribution of the estimator. Note that 
(A9) implies consistency of the random variable r∗ . Again, (A9) will bring efficiency gains in the restricted 
estimator7. The asymptotic properties of the IIR estimator are derived next. 

Proposition 6 Under assumptions (A1) to (A10), ,IIRθ  is consistent, asymptotically normal and has the asymp- 
totic distribution 

( ) ( )0
10, 1d

IIRT N W
S

θ θ   − → + Ω  
  

  

where 

( ) [ ]
[ ]

1 1 1
1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2

1
1 1 1 2 2 2 .

W D D D D D D D D

D D D D

− ∗− ∗−

−

 ′ ′ ′ ′Ω = Ω + Ω × Ω Ω Ω + Ω Ω Ω 

′ ′× Ω + Ω
 

This result is proved in Appendix 2. 
For the optimal matrix 1

1 1 0 0 0J H J∗ −Ω = Ω =  and 2 2
∗Ω = Ω  the variance-covariance matrix reduces to: 

( ) 1
W D D

−∗ ∗′= Ω                                     (9) 

where ∗Ω  is the block diagonal matrix with 1
∗Ω  and 2

∗Ω  in the diagonal. 
Proposition 7 Under assumptions (A1) to (A10) IIRθ  is asymptotically more efficient than IIθ . 
To proof this result, I compare Equation (7) and Equation (9). The difference  

( ) ( )1 1

1 1 1 1W W D D D D
− −∗ ∗ ∗ ∗′ ′− = Ω − Ω  

is a negative definite matrix, since  

1 1 1 2 2 2D D D D D D∗ ∗ ∗′ ′ ′Ω − Ω = Ω  

is a positive definite matrix. 

4. Empirical Implementation 
This section conducts a set of empirical estimations to assess the performance, in terms of bias and efficiency, of 
the estimation method described in Section 4 compared to the I.I. method. 

The model of interest is given by a production function and the perpetual inventory method equation for the 
capital stock, K, which depends on the depreciation rate, ,δ  which is considered to be variable. Hence, the 
considered model consist basically on the main structure of a growth model. A specific feature of the model is 
that the capital stock in unknown as it depends on the depreciation rate which is an unknown parameter. The 

 

 

7We can also provide in this section a general setting depending of the limit of ,T T ∗  as done in Section 3. The arguments and conclusions 

will be the same. If limT T ∗ = ∞ , ( ) ( )ˆ ˆ
IIR IIAV AVθ θ=  and no efficiency gains are derived. If lim 0T T ∗ = , ( )ÎIRAV θ  reaches its mini-

mum level. 
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interest of estimating this model is to obtain as a by-product, estimates of the depreciation rate and hence of the 
physical capital stock of the economy. Three cases are considered for estimating the depreciation rate, as in [19] 
where δ  is function of certain explanatory variables and a purely random term. 

To go further into the economic motivation of the model, note that K is one of the basic economic aggregates, 
and following the definition provided by the perpetual inventory method, it is given by: 

( ) 11t t tK I Kδ −= + −                                (10) 

where I is investment and δ the depreciation rate, which measures the loss in value of the existing capital stock 
as it ages. Since δ is an unknown parameter, K is not observable and in practice it is usually measured by 
accounting techniques, which provides not satisfactory figures since, for instance, technological shocks have not 
effects on the actual value of the net capital stock. One solution to measure the capital stock is by mean of the 
simultaneous estimation of δ jointly with the parameters of a production function, ( ), .Y F K L=  That is, the 
estimation of the production function provides, as a by-product, estimates of a variable depreciation rate, which 
will allow the measurement of the capital stock. If δ is not a constant parameter, then the described methodology 
to estimate it is not trivial, as can be seen in [19]-[22]. Moreover, since δ is assumed to be stochastic, its esti- 
mation poses methodological difficulties which are not solvable by standard methods. In this case, simulation- 
based estimation methods seems to be adequate to solve the high complexity of the model, considerably increased 
by the presence of a stochastic parameter. As commonly known, the resulting high variance of the estimator 
seems to be one of the most important costs of using these methods, but on the other hand, as previously mentioned, 
possibly compensated by the availability of prior information. The purpose of this section is to suggest the 
adequacy of the IIR method to estimate the described model, given the feasibility of priors about δ. In parti- 
cular, prior information about the rate of depreciation is available from other sources (e.g. National Accounts, or 
estimates deriving from similar models), which could help in the estimation of the production function, since 
convergence of the algorithms is possibly hard to achieve and estimation is costly in efficiency terms. According 
to this argument, I use the average estimates of δ obtained in similar models as the prior information figures to 
implement the IIR method. 

The theoretical model of interest is given by a Cobb-Douglas production function, and assuming constant 
returns to scale becomes: 

( )0 1t t t ty c k lα α ε= + + − +                               (11) 

where y, l and k are production, labour and capital stock in logs respectively, α  is the elasticity of the capital  

stock and it is assumed that ( )2~ 0,
iid

t N εε σ . The capital stock is given by 

( ) 11t t t tK I Kδ −= + − .                                (12) 

In the above equation, δ  is a time dependent parameter and different assumptions are considered about its 
nature. Three cases are put forward depending on the deterministic part of the depreciation rate: a constant, a 
dummy variable and the growing rate of tY , in order to follow as closely as possible the empirical models 
considered in [19] where a similar model is estimated, although in that case tδ  has no random term. Table 1 
shows the main characteristics of the depreciation rate stochastic processes. In case I, the random depreciation 
rate is a constant plus a disturbance. In cases II and III there is an explanatory variable in the rhs of the equation  

of ,tδ  following closely the baseline model. The disturbance term is assumed to be ( )2~ 0, ,
iid

t N σ   indepen-  

dent of tε  and the whole set of explanatory variables. 
Besides, the model introduces a prior value δ  available for the expected sequence tδ . The prior value is 

taken as the average of the estimated variable depreciation rate in [19], which is 0.06δ =  for all of the cases. 
Finally, in order to make the tδ  equation consistent with the stochastic restriction, this is expressed as: 

0 1z vδ γ γ= + +                                  (13) 

where z  is the sample mean of the explanatory variable of tδ  ( 20, ,tz D=  or 
1

t

t

Y
Y −

∆  for cases I, II and III  

respectively) and v is the error term capturing the uncertainty about δ . Specifically, the quality of prior infor- 
mation is determined by the value of ,vσ  which is taken to be 0.015, since it leads a plausible approximated 
interval [0.03, 0.09] for priors on δ . 
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Table 1. Patterns for the depreciation rate.                                                                                    

Case I. Constant II. Dummy variable III. Growing Rate of Y 

δ  equation 0t tδ γ= +   0 1 2t t tDδ γ γ= + +   0 1
1

t
t t

t

Y
Y

δ γ γ
−

 ∆
= + + 

 
  

Stochastic restriction 0 vδ γ= +  0 1 2D vδ γ γ= + +  0 1Y vδ γ γ= + +  

IIR Estimation 
The empirical model of interest is formed by the following equations: 

( ) ( )
( ) ( )

( )
( )
( )

( )

( )

0 1 1

1

0

0 1 2

0 1
1

0 1

1
1

Case I
Case II

Case III

t t t t t

t t t t

t

t t t

t
t

t

I y c c D k l
II K I K

III D

Y
Y

IV z v

α α ε
δ

γ
δ γ γ

γ γ

δ γ γ

−

−

= + + + − +
= + −




+
= + +
  ∆ + +   

= + +






                       (14) 

where data requires tε  to follow an AR(1) process, modelled as 1 ,t t tε ρε ϖ−= +  ( )2~ 0, .
iid

t N ϖϖ σ  The autorre-  
gressive structure tε  could be understood as a result of total factor productivity shock8. It should be noted that 
data allows for a structural change for the intercept, captured be 1c . The breaking period is the one which leads 
to the best fit among all possible dates. As in the baseline estimation (see [19]), 1 0tD =  if 1986t ≤  and 

1 1tD =  elsewhere. For Case II 2D  is a dummy variable, which becomes empirically relevant, and given by 
2 0tD =  if 1989t ≤  and 2 1tD =  elsewhere. The breaking period is picking selected the best fit among all  

possible dates. For the Case III equation, the rate explanatory variable 
1

t

t

Y
Y −

∆  is considered in order to check the  

role of the intensiveness in using the capital stock in the depreciation pattern. Finally, it is assumed that  

( )2~ 0, .
iid

t N σ   

The parameter vector of model (14) is ( )2 2
0 1 0 1, , , , , , , ,c c εθ α ρ σ γ γ σ=  — 1γ  only appears in Cases II and III— 

which is estimated by IIR using data of the variables y, l, I, 1,D  2D  and z for the sample period 1970-1997. 
Non-residential investment is considered for the estimation. The data are taken from the Spanish National 
Statistical Institute and are measured at 1986 prices. 

The auxiliary criterion is maximum likelihood and the auxiliary model for the IIR estimation is exactly the 
same model considered in [19], which is much closed to the model of interest, being in this case the depreciation 
rate deterministic and no restrictions imposed by the existence of returns to scale into the production function. 
Henceforth, the equations of the auxiliary empirical model are: 

( )
( ) ( )

( )
( )
( )

( )

1 2 1 3 4

1

7

7 8 2

7 8
1

1

Case I
Case II

Case III

t t t t t

t t t t

t t

t

t

I y D k l u
II K I K

III D

Y
Y

β β β β
δ

β
δ β β

β β

−

−

′ = + + + +
′ = + −




′ = +
  ∆ +    

                         (15) 

 

 

8Following real business cycle models, a standard assumption for technology consists of a time trend and an innovation which follows an 
AR(1) process. In this case the error in the production function follows an AR(1), what supports our results. 
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where tu  follows an AR(1) process, given by 5 1 ,t t tu u wβ −= +  ( )2~ 0,
iid

t ww N σ  and ( ) 6.tV u β=  Again the  

random error is considered to follow an AR(1), capturing the total factor productivity dynamics and yielding 
more accurate estimates. Finally, the parameter vector of the auxiliary model (15) is ( )1 8, , ,β β β=   being 

8β  only estimated for cases II and III. 
The motivation for structure of the auxiliary model relies on the fact that it is a more simple model, since no 

random term is considered in the equation of the variable rate of depreciation, and, on the other hand, it is a 
more general model, since no constant returns to scale are imposed in the production function. Very little can be 
said in priors grounds about the adequacy of one specific model to be the best auxiliary model for I.I. estimating. 
Nevertheless, it is in general admitted that the model should be similar, and if possible, more general. Both of 
this characteristics are considered in the selection of the model considered, which is also supported by the 
empirical results. 

As defined in the previous section, the IIR estimator of θ  is given by: 

{ }arg minIIR TQθ =  

being TQ , for the specification of the models given in (14) and (15): 

( ) ( )
( ) 2

1 2
ˆ ˆ ˆ ˆ

T s s
v

E
Q S S

δ δ
β β θ β β θ

σ
∗

 −′     = − Ω − +   ∑ ∑
 

 

where β̂  and ˆ
sβ  are the ML estimators of the auxiliary model obtained from original and simulated data 

respectively, S is the number of simulations, taken to be 100, δ  is the prior value of δ , 2
vσ  the figure 

capturing the uncertainty about the prior information and 1
∗Ω  is the optimal distance matrix, also needed for 

computing ( )IIRAV θ . The term ( )E δ  is given by the specific equation of the stochastic restriction in each 
case and δ  and vσ  are taken to be 0.06 and 0.0015 respectively, as proved in Appendix 2, 

( ) 1

1 1 1 2 2 2
11IIRAV D D D D
S

θ
−∗ ∗   ′ ′= + Ω + Ω    

  

where 1,D  and the matrices 0J  and 0H  included in 1
∗Ω  are computed using the numerical derivatives  

involved in the definition, that is ,β
θ
∂
∂

 the Hessian of the auxiliary criterion and the outer product of gradient. 

The ratio T T ∗  was taken to be equal to one. The reason for this is that since it is numerically equivalent to 
consider different vσ  or ,T T ∗  to test the sensibility of the results I simply considered alternative values of 

vσ . Naturally, the estimates of 0γ  obtained were closed to δ  as vσ  decreases, although 0.015vσ <  leads 
to priors for δ  weakly supported from previous estimates. 

Table 2 shows the estimates results obtained for all of the cases. Each one of the models has been estimated 
simultaneously by I.I. and IIR using the same simulation path, in order to test for the efficiency gains and 
consistency of the results in a more direct way. In all of the cases and for both methods, Table 2 points estimates 
of the intercept, capital elasticity, coefficient of the AR(1) error term and the variance of the error are fairly 
closed to those found in the baseline model estimates of [19], although not always statistically significant. 

The point estimate of 0.3 for α  is very general admitted for production function estimates. The constant 
depreciation rate is estimated at 4.5% and 4.0%, for IIR and II respectively, which is higher than the constant 
and non-stochastic depreciation rate estimate of 3.7% found in the baseline deterministic model. This value is 
still low when compared to conventional values and more complex specifications seem in order. The remaining 
results pursue this point. In Case II, columns 4 and 5 give the results obtained allowing for a dummy variable, 

2tD  which is statistically significant and points to an increased depreciation rate in the second sub sample, 
yielding an average value for the whole sample close to 6.5%. These are more reasonable results, as discussed 
above, and again larger vales estimates than in the deterministic δ  model. 

Columns 6 and 7 give the results for Case III, and the coefficient 1γ  is positive for both methods and 
significant only for IIR method. This would mean that an increase in the GDP growth rate increases the depreci- 
ation rate, which is consistent result with the fact that an increase in aggregate demand explains an intensive use of 
capital and then an increase in its depreciation rate. 

In a more general setting, Table 2 contains several key findings. First, both I.I. and IIR generate estimates  
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Table 2. IIR and I.I. estimates1.                                                                                     

Case I: 0t tδ γ= +   II: 0 1 2t t tDδ δ γ γ= = + +   III: 0 1
1

t
t t

t

Y
Y

δ γ γ
−

∆
= + +   

Method IIR I.I. IIR I.I. IIR I.I. 

0c  5.035 5.022 5.199 5.116 5.166 5.167 

 (4.83) (4.03) (3.14) (3.40) (3.73) (3.21) 

1c  0.040 0.040 0.0403 0.039 0.041 0.041 

 (1.69) (1.45) (1.97) (1.76) (1.73) (1.58) 

α  0.291 0.300 0.2975 0.298 0.297 0.291 

 (5.04) (4.30) (6.22) (6.22) (1.72) (1.20) 

ρ  0.200 0.200 0.201 0.204 0.206 0.206 

 (1.75) (1.62) (1.50) (1.45) (2.42) (2.20) 
2
εσ  1.1 × 10−4 1.1 × 10−4 1.1 × 10−4 1.1 × 10−4 1.0 × 10−4 1.0 × 10−4 

 (9.3) (9.3) (9.5) (9.5) (10.01) (9.1) 

0γ  0.045 0.040 0.065 0.071 0.067 0.070 

 (1.94) (1.68) (2.65) (1.50) (2.05) (1.70) 

1γ  - - 0.010 0.010 0.009 0.008 

   (2.53) (2.47) (2.18) (1.38) 
2σ   0.017 0.016 0.016 0.017 0.015 0.015 

 (0.42) (0.03) (0.15) (0.15) (0.55) (0.35) 

1t-values in brackets. 
 
with very little difference from the baseline model estimates which contains no stochastic depreciation rate. This 
result allows for confidence in terms of bias and adequacy of the simulation-based methods for the estimation of 
this specific model, although not significant differences are found for the estimates of the parameters underlying 
the variable depreciation rate. 

Second, IIR is more efficient than I.I., which is shown for the parameter for which prior information is availa-
ble. In fact, efficiency losses are small provided that I use conservative choices for the variance of the stochastic 
restriction. Alternative estimations were conducted for different quality levels of the prior information, confirm-
ing that efficiency losses are inversely related to the quality of the prior information. 

Third, in the implementation of the IIR method, convergence is achieved faster than for the I.I. estimation, 
which shows that the proposed methodology is a practical way to mix prior and sample information in a simula-
tion-based estimation method. On the other hand, preliminary results suggest that by reducing the number of 
simulations (say, to 50), it will be possible to reduce the computation time of IIR without adversely affecting its 
finite sample properties. 

5. Conclusions 
This paper formalizes some intuitions about the role of prior information on asymptotic rules of inference. In 
particular, the natural idea that despite prior information is asymptotically irrelevant when modeled through 
stochastic restrictions, this theoretical result may not avoid using accurate prior information for empirical pur-
poses. Nevertheless, so far there is no any contribution in the literature providing ground for it. 

Asymptotic theory is a tool that provides approximate figures for the mean and the variance-covariance ma-
trix of estimators that in general may have an empirical interest, that is, may be one of the few practical solu-
tions to estimate a model of interest. Nevertheless, if prior information is irrelevant in asymptotic terms, it will 
be so in the derived finite sample approximation of the variance of such estimator. This result of course is not 
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helpful and leads to discard any use of prior information even knowing that prior information in general may be 
relevant if accurate-in terms of efficiency. This paper is intended to provide an insight in the previous discussion 
in the sense that if prior information is proved to be asymptotically relevant, then it will also be for the finite 
sample approximation and thus will bring efficiency gains on empirical ground. This previous discussion is the 
motivation of this paper and the solution I provide may be understood as a contribution oriented to enhance the 
usefulness of any estimator as in asymptotic terms there is no room for using prior information in the form of 
stochastic restrictions. 

On the other hand it is worth it to recall the large variance of the I.I. estimator (as well as of others simulation 
based estimators). This additional setup provides specific motivation to face the challenge of providing theoreti-
cal ground for the asymptotic efficiency gains due to stochastic restrictions. 

The main contribution, which is the formulation of a new estimator (the IIR estimator), more efficient than the 
baseline estimator is achieved through the introduction of one specific assumption, which in short is that prior 
information increases with sample size. This idea, the cornerstone of the suggested approach, is intended to be 
taken as a potential contribution for the large family of simulation based estimators in the sense that they are 
now allowed to mix sample and prior information to achieve efficiency gains. 

As expected, this discussion is open for future research as empirical results that may be found for testing this 
insight, may support it or not. 
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Appendix 1: Asymptotic Variance Covariance Matrix of the SR Estimator 
We set the following assumptions to prove Propositions 2 to 5. 

(A01). ( ) 2 2
v vV v Tσ σ∗ ∗= = . 

(A02). ( )lim 1p T T ∗ = . 

(A03). ( )lim .p T T ∗ = ∞  

(A04). ( )lim 0.p T T ∗ =  

Proposition 2. Under SAA, (A01) and (A02), ( ) ( )ˆ ˆ .SR NLSAV AVθ θ<  

Proof. Under (A01), by construction, the asymptotic distribution of ŜRθ  (6) is now given by 

( )
1

1 1
0 2 2

1 1ˆ 0, limd
SR

v

F F D DT N p
T Tε

θ θ
σ σ

−

∗

  ′ ′ − → +    
.                  (16) 

From (A02), ( )lim 1,p T T ∗ =  then,  

2 2
1lim lim

v v

D D D Dp p
T σ σ∗

   ′ ′
=   

   
 

and  
1 1

1 1 1 1
2 2 2

1 1 1lim lim
v

F F F FD Dp p
T T Tε εσ σ σ

− −

∗

      ′ ′′   + −      
         

 

is a definite negative matrix, and ( ) ( )ˆ ˆ .SR NLSAV AVθ θ<  The resulting approximated distribution for finite 

sample size is 
1

1 1
0 2 2

ˆ ,SR
v

F F D DN
ε

θ θ
σ σ

−  ′ ′ ≈ +    
 

what means that efficiency gains are also extended to finite sample distributions. 
Proposition 3. Under SAA, (A01) and (A03), ( ) ( )ˆ ˆ

SR NLSAV AVθ θ= . 

Proof. To prove this proposition I use the general form of the Sherman-Morrison-Woodbury formula (see 
[23]), which is 

( ) ( ) 11 1 1 1 1 1A BCB A A B C B A B B A
−− − − − − −′ ′ ′+ = − +                       (17) 

where A and C are k k×  matrixes such that 1,A−  1C−  exist, and B is a k q×  matrix. Now, taking 

1 1
2

1 ,F FA
Tεσ
′

=  

B R′=  and 
( )A01

2 2

1 1 1= .q q
v v

TC I I
T Tσ σ

∗

∗=  

From the distribution given in (16) and taking into account Equation (17), I can rewrite ( )ŜRAV θ  as  

( )

( )

11 1 1 1
21 1 1 1 1 1 1 1

2 2 2 2

1

1 1
2

1 1 1 1ˆ lim

ˆlim

SR q v

NLS

F F F F F F F FTAV p R I R R R
T T T TT

F Fp AV

ε ε ε ε

ε

θ σ
σ σ σ σ

θ
σ

−− − − −

∗

−

         ′ ′ ′ ′  ′ ′= − +        
           

 ′
= = 

 
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since by (A03) lim ,Tp
T ∗ = ∞  and then, 

11
2 1 1

2
1lim 0.q v

F FTI R R
TT ε

σ
σ

−−

∗

  ′
′ + = 

   
 

Proposition 4. Under SAA, (A01), and (A04), ( ) ( )ˆ ˆ ,SR RAV AVθ θ=  where R̂θ  is the restricted nonlinear  

estimator of the model. 
Proof. From the rewritten equation of ( )ˆ ,SRAV θ  

( )
11 1 1 1

21 1 1 1 1 1 1 1
2 2 2 2

1 1 1 1ˆ limSR q v
F F F F F F F FTAV p R I R R R
T T T TTε ε ε ε

θ σ
σ σ σ σ

−− − − −

∗

         ′ ′ ′ ′ ′ ′ = − +                   

.  (18) 

Since (A04) states that lim 0,p T T ∗ =  then, 
111 1

2 21 1 1 1
2 2

1

1 1
2

1 1lim lim

1lim

q v q v
F F F FT Tp I R R p I R R
T TT T

F FRp R
T

ε ε

ε

σ σ
σ σ

σ

−−− −

∗ ∗

−

       ′ ′   ′ ′+ = +             
  ′

′=   
   

 

and, by substituting the above equation into the equation of ( )ˆ ,SRAV θ  I have 

( )
11 1 1 1

1 1 1 1 1 1 1 1
2 2 2 2

11 1 1 1
1 1 1 1 1 1 1 1

2 2

1 1 1 1ˆ lim

1 1lim

SR
F F F F F F F FAV p R R R R
T T T T

F F F F F F F Fp R R R R
T T T T

ε ε ε ε

ε ε

θ
σ σ σ σ

σ σ

−− − − −

−− − − −

         ′ ′ ′ ′  ′ ′= −                   
     ′ ′ ′ ′    ′ ′= −                   






 

which is easily checked to be the asymptotic variance covariance matrix of the NLS estimator of the model 
( ),y f x θ ε= +  

( )r G θ=  

which is the restricted model. 
Proposition 5. Under (A01), and as ( )lim T T ∗  increases from zero to infinity, ( )ŜRAV θ  also increases from 

( )R̂AV θ  to ( )ˆ
NLSV θ . That is, if ( )lim ,T T M∗ =  0 ,M< < ∞  then, 

1) 
( )( )ˆd

0,
d

SRAV

M

θ
>  

2) ( ) ( )0
ˆ ˆlim ,M SR RAV AVθ θ→ =  

3) ( ) ( )ˆ ˆlim .M SR NLSAV AVθ θ→∞ =  

Proof. Taking limits in the term where T T ∗  appears into the Equation (18) I have 

( ) ( )
11

2 1 1
2

1lim sayq v
F FI M Rp R H M
T ε

σ
σ

−−  ′
 ′+ = 
   

                     (19) 

and going back to the Equation (18), I have 

( ) ( )
1 1 1

11 1 1 1 1 1
2 2 2

1 1 1ˆ lim lim lim .SR
F F F F F FAV p p R H M R Rp
T T Tε ε ε

θ
σ σ σ

− − −

−     ′ ′ ′
′ ′= −     

     
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Since ( )d
0,

d
H M

M
<  then 

( )ˆd
0

d
SRAV

M

θ
>  what proves 1). 

From (19), 

( )
11

1 1
20

1lim lim
M

F FH M Rp R
T εσ

−−

→

  ′
′ =  

   
 

( )lim 0
M

H M
→∞

=  

then, by substituting the above results into (18), I obtain ( ) ( )0
ˆ ˆlim ,M SR RAV AVθ θ→ =  and  

( ) ( )ˆ ˆlim ,M SR NLSAV AVθ θ→∞ =  what proves 2) and 3). 

Appendix 2: Asymptotic Distribution of IIR Estimator 3 mm 
Here I develop similar proofs to the used on the asymptotic properties of the I.I. estimator. To show the asymptotic 
distribution of IIR estimator I need several regularity conditions, as for the I.I. distribution. The most important are 

A1) The general auxiliary criterion function ( ), ;T T Ty zψ β  converges to a deterministic limit denoted by 
( ),ψ θ β∞  when T goes to infinity. 

A2) This limit function has a unique maximum with respect to ,β  and this maximum is ( )b θ . That is,  
( ) ( ){ }arg max ,b βθ ψ θ β∞=  

A3) Tψ  and ψ∞  are differentiable with respect to β  and lim Tp ψ ψ
β β

∞∂ ∂
=

∂ ∂
. 

A4) The solution of the asymptotic first order condition ( ),
0

ψ θ β
β

∞∂
=

∂
 is well defined in θ  and β . 

A5) 
( )( ) ( )( )22

0
0lim T bb

p J
θθ

β β β β
∞∂ Ψ∂ Ψ

− = − =
′ ′∂ ∂ ∂ ∂

 and 1
0J −  exist. 

A6) 
( )( ) ( )0

00,T db
T N H

θ

β

∂Ψ
→

∂
. 

A7) 
( ) ( )1 2

0lim ,
s s

T T T T
T

y y
cov T T K

β β→∞

 ∂Ψ ∂Ψ
  =

∂ ∂  
 for 1 2.s s≠  

A8) ( )
2

G
D

θ
θ

∂
=

∂
 is of full rank. 

A9) ( )( ) ( )1
0 2~ 0,dT G r v Nθ∗ ∗ ∗−− → Ω . 

A10) 
,
lim 1

T T

T
T∗ ∗→∞

= . 

Let us first prove the consistency of the IIR estimator. Under assumptions (A1) to (A4), following [9] it is  

proved that the intermediate estimators β̂  and ( )
1

1 ˆ
S

s
sS
β θ

=
∑  ( ( )ˆ

STβ θ≡  to simplify notation) converge to ( )0b θ   

and ( )b θ  respectively. Also, from (A9), ( )0 .r G θ∗ →  Then, 

( ) ( ){ } ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

( )

1 2

0 1 0 2 0

0 0 1 2

0

ˆ ˆ ˆ ˆ ˆarg min arg min

ˆ ˆ

: , since , are positive definite
since and are well defined .

IIR ST ST

ST

m m G r G r

b b G G G G

b b G G
b G

θ θ
θ θ θ β β θ β β θ θ θ

θ θ β β θ θ θ θ θ

θ θ θ θ θ
θ

∗ ∗ ′ ′   ′= Ω = − Ω − + − Ω −     
′ ′      → − Ω − − Ω −      

= = = Ω Ω
=
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Let us now find the asymptotic distribution of ÎIRθ . Under assumptions (A1) to (A7), asymptotic expansions  

of ˆ
Tβ  and ( )0

1

1 ˆ
S

S
sS
β θ

=
∑  are deduced from the first order condition. We have, that (following [9]) 

( )( ) ( )( ) ( )01
0 0

ˆ 1T
T p

b
T b J T o

θ
β θ

β
− ∂Ψ

− = +
∂

                      (20) 

and 

( ) ( )( ) ( )( )
( )

1
00

0 0
1

,ˆ 1
sS T T

ST p
s

y bJT b T o
S

θ
β θ θ

β

−

=

∂Ψ
− = +

∂∑ .                  (21) 

The asymptotic expansion of ( )ÎIRθ Ω  is deduced as follows. The first order condition for ÎIRθ  (θ̂  for short) 
from the criterion (8) is: 

( )
( )( )

( ) ( )

1
1 1

2

ˆ ˆ
ˆ ˆ ˆ

ˆ
ˆ

0.

ST
T ST

G
G r

β θ
β β θ

θ
θ

θ
θ

∗

 ′∂ Ω   − Ω − Ω ∂
′∂

 + Ω − ∂
=

 

An expansion around the limit value 0θ  gives 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )

0 0
1 0 2 0

0 0 0 0
1 2 0

1 2 3

ˆ
ˆ ˆ

ˆ ˆ
ˆ

1 say

ST
T ST

ST ST
IIR

p

G
T T G r

G G
T

o S S S

β θ θ
β β θ θ

θ θ
β θ β θ θ θ

θ θ
θ θ θ θ

∗′ ′∂ ∂   − Ω − + Ω −  ∂ ∂
 ′ ′∂ ∂ ∂ ∂

+ Ω + Ω Ω − 
∂ ∂ ∂ ∂  

= ≡ + +

 

since ( )1 1 ,pS o=  as shown in the asymptotic properties of the ÎIθ  estimator under the considered assumptions. 
From (A9) and the consistency of ÎIRθ , it follows that 2 3S S+  is also ( )1po . Rewriting the above equation in  

the limit, and calling ( )
0

1
b

D
θ θ

θ
θ

=

∂
=

∂
 and ( )0

2 ,
G

D
θ
θ

∂
=

∂
 

( )( ) [ ] ( )

[ ] ( ) ( )

1
0 1 1 1 2 2 2 1 1 0

1
1 1 1 2 2 2 2 2 0

ˆ ˆ ˆ

1 .

IIR T ST

p

T D D D D D T

TD D D D D T G r o
T

θ θ β β θ

θ

−

− ∗ ∗

∗

 ′ ′ ′Ω − = Ω + Ω Ω − 

 ′ ′ ′− Ω + Ω Ω − + 
        (22) 

From (21), (20), I get 

( )( ) ( )1
0 0

1

1ˆ ˆ
sS T TT

T ST
s

y
T J T

S
β β θ

β β
−

=

 ∂Ψ∂Ψ − = −
∂ ∂  

∑  

and using (A6), (A7),  

( )( ) 1
0 1

1ˆ ˆ 0, 1d
T STT N

S
β β θ ∗−  − → + Ω  

  
 

where 1 0 0 0 ,J H J∗Ω =  and 0 0 0.H H K= −  
Finally, using assumptions (A8), (A9) and (A10): 

( )( ) ( )0
1ˆ 0, 1d

IIRT N W
S

θ θ   Ω − → + Ω  
  

 

where  
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( ) [ ] [ ]
[ ] [ ]

[ ]
[ ]

1 11
1 1 1 2 2 1 1 1 1 1 1 1 1 2 2

1 11
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1
1 1 1 2 2 1 1 1 1 1 2 2 2 2 2

1
1 1 1 2 2 .

W D D D D D D D D D D
D D D D D D D D D D

D D D D D D D D

D D D D

− −∗−

− −∗−

− ∗− ∗−

−

′ ′ ′ ′ ′Ω = Ω + Ω Ω Ω Ω × Ω + Ω

′ ′ ′ ′ ′+ Ω + Ω Ω Ω Ω × Ω + Ω

 ′ ′ ′ ′= Ω + Ω × Ω Ω Ω + Ω Ω Ω 
′ ′× Ω + Ω

 

The optimal iΩ  is i
∗Ω  by the Gauss-Markov theorem. The AVC matrix of the IIR estimator, taking S →∞ , 

is: 
1 1

1 1 1 2 2 2 .W D D D D D D
− −∗ ∗ ∗ ∗   ′ ′ ′= Ω + Ω = Ω     
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