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Abstract 
This study attempts to analyse one-day-ahead out-of-sample performance of the stochastic volatility 
model of Heston (SVH) in the Indian context. Also, the study compares the ex-ante performance of 
the SVH with that of a Two-Scale-Realised-Volatility (TSRV)-based Black-Scholes model (BS) using 
the liquidity-weighted performance metrics. For the purpose, we utilise the tick-by-tick data of the 
CNX Nifty index and options thereon, the most liquid equity options in the world in terms of the 
number of contracts traded1. Additionally, the study compares the two models across subgroups 
based on the moneyness, volatility of the underlying and time-to-expiration of the options. The 
results establish that the SVH model is better than the BS model in pricing equity index options. 
Further, the SVH model appears to be superior across all the subgroups, for both call options and 
put options. 

 
Keywords 
Black-Scholes, Heston, Stochastic Volatility, Two Scale Realized Volatility, Tick-by-Tick Data,  
Indian Options Market 

 
 

1. Introduction 
The time-varying volatility is considered one of the most cited stylised facts revealed by the traded financial as-
sets. The property is well documented in the financial economics literature. The practitioners and academia have 
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contributed in development of a variety of econometric models that account for this characteristic. Options pric-
ing is no exception. These models have made their way to the options pricing as well in order to capture market 
dynamics more closely. Option pricing has been studied and debated in the academic world. At the same time, 
practitioners have brought in their advancements and improvements to pricing models best suited to their needs. 
These factors have led to the development of numerous option pricing models. The seminal work amongst these 
is that of Black and Scholes [1]. Many studies were conducted to test the performance of this model across the 
world. A few studies found results favouring the Black-Scholes (BS) model [2]-[6]. At the same time, another 
set of studies exists that reported against the model [7]-[10]. The chief amongst the criticisms of the model is the 
constant volatility assumption. Empirical evidence suggests that the volatility of an underlying is not constant.  

As a result, new/modified models were proposed to overcome this assumption. A class of such models builds 
on the stochastic volatility framework. These models endeavour to relate volatility to a Cox-Ingersoll-Ross (CIR) 
process [11]-[17]. CIR is a square root process introduced by Cox et al. [18]. These models are computationally 
challenging. Amongst these models, the one proposed by Heston [11] remains very widely used as it offers a 
semi-closed form solution. 

While these models have been studied in great detail in the developed markets, there are very few such studies 
in the developing markets. The number of similar studies in the Indian market is even less. Amongst such stu-
dies [19]-[22], a vast majority of these made use of the closing data. The use of closing data subjects them to 
some serious issues/limitations, e.g., non-synchronous error.  

Based on the literature reviewed, it appears that only a few studies have been conducted in the Indian market 
using high-frequency data. In this regard, Singh and Vipul [23], in their analysis of a Two-Scale Realised Vola-
tility (TSRV)-based BS, found that the BS model failed to capture the pricing dynamics of the Indian index op-
tions market. However, they documented that the TSRV-based estimates of volatility improved the performance 
of the BS model. Another study [24] on the BS model, using intraday data, confirmed the bias in the BS implied 
volatility (IV). However, a study on more mathematically sophisticated models such as the stochastic volatility 
model of Heston (SVH) using tick data is missing.  

Given the literature gap mentioned above and in view of the fact that the CNX Nifty index options are the 
most liquid equity options in the world in terms of the number of contracts traded, it becomes imperative to 
conduct a comprehensive comparison of select option pricing models in this context. This study accomplishes it 
by performing an empirical analysis of the one-day-ahead out-of-sample performance of the SVH model. Fur-
ther, we compare its performance to that of the TSRV-based BS model, using two years of tick data from the 
index options. Prices obtained by using these models are compared with the market prices of the options. Nota-
bly, the pricing errors are weighted with the respective liquidity of the options to compute the pricing errors for 
the entire index options market. The liquidity-weighted mispricing/pricing error is used to ascertain the best 
model for pricing the index options. The performance metrics are liquidity-weighted as options for some catego-
ries (e.g., in-the-money options) attract poor trading volumes. Using liquidity-weighted metrics would reduce 
any bias induced in the comparison due to liquidity issues. Additionally, to make the comparison robust, the 
performance of the models is evaluated across moneyness, maturity, and volatility of the underlying. 

The remaining paper has been organised as follows: The details of the data and related issues are provided in 
Section 2. The formulation of the SVH model, the calibration approach, and the algorithms used are provided in 
Section 3. This section also includes the volatility calculation and the performance measures used for the com-
parison. Section 4 offers the results and discussions. The paper concludes with Section 5. 

2. Data and Scope 
Index options were introduced in India in June 2001. This study uses data from the CNX Nifty index options to 
examine and compare the performances of the two option pricing models, viz., a TSRV-based BS model and the 
SVH model. Tick data of two years (486 trading days), from 03 January 2011 to 31 December 2012, is used for 
the purpose of this study. The F&O segment, as well as the equity segment in India, trade during 9:15 a.m. to 
3:30 p.m. from Monday to Friday, other than the designated holidays. The data for both segments are sourced 
from the NSE. 

Below we provide the details of how the various inputs to the models were obtained: 
Time to Expiration: Only trading days (instead of the calendar days) have been counted towards measuring 

the time-to-expiration [25].  
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Risk-free rate: NSE provides the daily “zero-coupon yield curve” rates, based on the prices of the traded 
Treasury bills and bonds, on a weekly basis. In line with the approach followed by Vipul [26] and Singh and 
Vipul [23], these rates are used as a proxy for the risk-free rate. For each day over the period of the study, the 
required risk-free rates for 7, 14, 21, 28, 35, 42, 49, 56 and 63 days are extracted from the data. Subsequently, 
each option is assigned a risk-free rate closest to its number of its days-to-maturity. 

The BS model requires volatility of the underlying index to price options in addition to the other inputs. The 
details pertaining to the method and estimation of volatility are discussed in Section 3.  

Data Screening 
The following criteria are employed for data screening: 

Options Data: Nifty index options with over 60 calendar days to maturity have poor liquidity (Figure A1 and 
Figure A2). Such options are therefore excluded from the study. Similarly, options with less than two days to 
maturity are removed as their prices may get distorted due to the expiration day effects [27]. 

Non-synchronous Trading: To reduce the effect of non-synchronous trading, timestamp of transactions in the 
equity segment and the derivatives segment are matched (up to the second, hh:mm:ss).  

Moneyness: Literature proposes several measures to calculate moneyness. In this study, the measure proposed 
by Bakshi et al. [28], S/X, is used. In-the-money (ITM) options have this ratio greater than one for the call op-
tions, while out-of-the-money (OTM) options have this ratio as less than one. For the put options, the ratios are 
reversed. At-the-money (ATM) options, for both call and put, have the ratio equal to one. 

Options which are far from the money lack sufficient liquidity, hence their price discovery may not be accu-
rate. Such options are removed from the study and only options with moneyness range as 0.90 - 1.10 are consi-
dered [29].  

Based on the above-mentioned screening criteria, the number of options analysed in the study are 2290714 for 
calls and 2201306 for puts. 

Equity Data: In addition to the options data, certain filtering criteria are employed to screen the data for Nifty 
spot prices as well. Transactions during sessions which do not reflect the normal market behaviour, like the pre- 
open session (9:00 a.m.-9:15 a.m.) and the special extended trading session (beyond 3:30 p.m.), are removed. 
Furthermore, Nifty being an index, its value changes whenever there is a transaction for any of its constituent 
stock(s). Since the tick data is recorded up to second and not beyond it, there are numerous cases of more than 
one value for a single timestamp. To remove any selection bias, all the values for a given timestamp are aver-
aged. This average is taken as the index value for that timestamp. 

3. Methodology 
This section details the SVH model and the calibration methodology adopted. It also describes the procedure for 
TSRV calculation and the performance measures used for comparison of the pricing performance of the two 
models. The details of the BS model are not presented here. 

3.1. Stochastic Volatility Model of Heston  
Heston [11] proposed the first stochastic volatility model to have a semi-closed form solution. This is one of the 
main reasons for the popularity of the SVH model. It extends the BS model by accounting for its shortcomings 
like the non-normal distribution of the assets returns, the mean-reverting property of volatility and the leverage 
effect. The SVH model’s analytically tractable nature makes it preferred over similar models, despite its com-
plexity. Attempts have been made to overcome other assumptions of the BS model, like the non-constant inter-
est rate, and to add jumps to the return process. However, Bakshi et al. [28] concluded that adding jumps and 
stochastic interest rates, while increasing the complexity of the model, did not provide commensurate improve-
ments. 

There are two Brownian motions at work in a stochastic volatility model, one for the drift of the underlying 
price process and the other for its variance, unlike the BS model, where only the former is present. The SVH 
model follows the basic assumption of the stochastic volatility models that the variance of the underlying is a 
random variable. Also, it accounts for the asymmetric contribution of new information (a stylised fact in the fi-
nancial markets) by assuming that the two stochastic processes are correlated.  
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The bivariate Ito’s lemma is used to derive the fundamental partial differential equations. The derivation fol-
lows the no-arbitrage argument, similar to that of the BS model. However, as opposed to the BS model, two de-
rivative assets are required here to make the resulting portfolio risk-free, as there are two sources of randomness. 
The two derivative assets are on the same underlying, but differ in strike price and maturity. Because of the 
second Brownian motion, it is not possible to find a closed-form solution for the European options. Here, the 
SVH model has an advantage over other models in its category that it has a semi-closed form (or quasi-closed- 
form) solution available for the plain vanilla European options. This, in turn, makes it feasible to calibrate the 
model to market prices. 

The model builds on the following partial differential equations (the time subscript has been dropped from 
spot price and variance for better readability): 

1d d dS S t S v Wµ= +                                     (1) 

( ) 2d d dv v t v Wκ θ σ= − +                                   (2) 

To take the leverage effect into account, the Wiener stochastic processes W1, W2 should be correlated 
1 2d d d .W W tρ=∗  

The quasi-closed form of the Heston model for a European option on a non-dividend paying stock is as fol-
lows: 
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For j = 1, 2 we have 

1 2 1 2
1 1, , , ,
2 2

u u a b bκθ κ λ ρσ κ λ= = − = = + − = +  

where, 
S—Spot price; K—Strike Price; v—Variance; W1,2—Standard Brownian movements/Wiener processes; κ— 

Mean reversion rate; θ—Long run variance; σ—Volatility of variance; ρ—Correlation parameter; µ—Drift of the 
underlying; λ—Volatility risk; T—Maturity Date; τ-T-t (time remaining to maturity). 

The model was implemented using the package “NMOF”, based on the work of Gilli et al. [30], in the statis-
tical tool R [31]. Since there is no direct solution available for the put options, its price is calculated using the 
put-call parity equation. Hence, for a given call option, the price of the put option on the same underlying, with 
the same strike and maturity, can be given by the below equation: 
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( )e r T t
i i i iP C K S− −∗= + −                                 (11) 

Due to the issues involved in the calculation of put option prices, studies of this nature generally concentrate 
on the call options for evaluating the performance of models, as the results of the put options are not a fair ref-
lection on the performance of the model.  

The SVH model does not have a closed form solution even for the call option. While some parameters of the 
model can be observed in the market (S, µ, K, T and τ), the other parameters need to be estimated. For this pur-
pose, the model needs to be calibrated to the market price of the options. The calibration details, along with the 
algorithms considered for calibration, are provided in the next sub-section. 

3.1.1. Calibration of the Model 
Given the available market price of a European call option, we try to find parameters of a model such that the 
price of the option obtained from the model is very close to the market price of the option. This process is called 
calibration. Different algorithms are available depending on the requirements of the problem at hand. What is 
common in all calibration algorithms is that all such algorithms search a region of parameter space in their spe-
cific method, by trying to minimise the error between the market price and model price. So, while the accuracy 
is important, we also have to consider the time taken by an algorithm to converge. For this reason, global opti-
mizers are usually not recommended as they are very slow. Particularly, this disadvantage becomes more prom-
inent in studies like the present work, where a large amount of data is involved. The general approach involves 
box constraints; that is, applying upper and lower limits to all the parameters need to be calibrated. It also re-
quires a good initial value as the starting point for the parameter vector.  

Five parameters of the SVH model need to be estimated (κ, θ, σ, ρ and v0). The “inverse” method was adopted 
to estimate these parameters. It involves finding those parameters that produce the correct market prices of va-
nilla European options. To accomplish the same, an optimisation problem needs to be solved where the absolute 
differences between market prices and model prices of the vanilla European call options are minimised over the 
parameter space. We use the below equation for this minimisation procedure: 

( ) ( )( )1min , , , ,N M
i in abs C S K C S Kτ τΦ

Φ =
−∑ 2                     (12) 

where ( ), ,iC S K τΦ  denotes the price of the ith call option obtained using the parameters denoted by vector Ф, 
( ), ,M

iC S K τ  denotes the market price of the ith call option, and N is the number of options used for calibration 
on any given day. K and τ are the strike price and time to maturity for the ith option, and S is the spot price.  

The choice of the optimisation algorithm to be used is discussed in the following subsection. 

3.1.2. Choice of Optimisation Method 
Ten optimisation algorithms were considered for this study. A ten day sample of the data was considered, and 
each algorithm was tested on the basis of accuracy and the execution time, to decide on the best algorithm. Due 
to time and resource constraints these algorithms could not be tested on the entire dataset. The following me-
thods, used in this study, are implemented in R and have been modified as per the requirements:  

(1) The two variants of the Differential Evolution (DE), a population based optimisation heuristic, proposed 
by Storn and Price [32]. (2) The Nelder-Mead algorithm [33], which does not require derivatives of the objective 
function. (3) The BFGS algorithm, given by Broyden-Fletcher-Goldfarb-Shanno [34]; it is known as the Varia-
ble Metric algorithm. It uses a Quasi-Newton method that does not require computing of the Hessian, instead 
uses an approximation for the same. (4) The nonlinear Conjugate Gradient method [35], which is used to find 
the local minimum of a nonlinear function using only its gradient. (5) Simulated Annealing [36], which can op-
timise nonlinear, discontinuous, as well as stochastic objective functions and can work with constraints. (6) The 
Limited Memory BFGS algorithm (L-BFGS-B), proposed by Byrd et al. [37], is an extension of the BFGS; it 
approximates the Hessian. 

Additionally, the two built-in R functions (namely, the “nlm” and the “nlminb”) were also considered. The 
“nlm”, proposed by Schnabel et al. [38], uses Newton-like method for unconstrained problems which requires 
first derivatives. The “nlminb”, on the other hand, uses PORT routines, and was coded by David Gay in the Bell 
Labs PORT library collection [39] [40]. It is a reverse-communication Quasi-Newton method, which uses the 

 

 

2The subscripts “i” and “t” have been dropped from K and T for clarity of presentation. 
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trust-region approach. It is stable, efficient and does not depend too much on the initial input. It uses a gradient 
to solve unconstrained as well as box-constrained optimisation problems. 

Based on the analysis detailed above, “nlminb” proved to be the best method for accuracy. Even though it was 
not the quickest method to converge (3rd out of the ten methods), it gave the best results in an acceptable time-
frame. Hence, the subsequent analysis was conducted using this method. 

The parameters of the SVH model have lower and upper bounds, beyond which the model is not defined. De-
spite the ability of “nlminb” to perform unconstrained optimisation, it is advisable to apply bounds to parameters, 
if available. This makes the convergence faster as the parameter space that an algorithm has to traverse, reduces. 
Hence, the lower and upper bounds were applied to the parameters. 

The initial parameter vector (starting point) for the first day of the sample was obtained using a trial and error 
method. The model parameters were altered manually to minimise the “mean absolute error of the model price 
from the market prices”, and the vector thus obtained is used as the initial vector. For the subsequent days, the 
optimised parameter vector for day n is taken as the initial parameter vector for the day (n + 1). The assumption 
made here was the nature of the market would not change drastically over one day. Hence, the optimised para-
meters for the previous day can act as a good starting point for the current day. 

The optimisation procedure results in parameter vectors Ф1, Ф2, ∙∙∙ Ф485, which give the best results for the 
minimisation equation for days 1 - 485 of the sample. The parameter vector of day n is then used to price op-
tions for the day (n + 1). For instance, Ф1 is used to price options on day 2, Ф2 on day 3, and so on. The call op-
tion prices obtained are subsequently used to calculate the prices of the corresponding put options using put-call 
parity. Liquidity-weighted performance measures are then calculated to ascertain the efficiency and consistency 
of the SVH model. The same is further used for comparison across the different pricing models. The perfor-
mance measures are detailed in Section 3.3. The next subsection provides details of TSRV calculation. 

3.2. Volatility Estimation Using TSRV 
The issues related to the volatility calculated using closing prices are well documented. TSRV, proposed by 
Zhang et al. [41], on the other hand is calculated using intraday data and is a much more efficient volatility es-
timate compared to estimate based on the closing prices. As the name suggests, it is estimated using two fre-
quencies, a low frequency (typically five minutes) and a high frequency (typically one second). The former is 
primarily used for getting the estimate of the realised volatility, while the latter is used to remove the micro-
structure noise inherent in the price process. Singh and Vipul [23] provide more details of the estimation proce-
dure and the issues involved with it. 

The variance at the low frequency ( )2
5minσ  is estimated on the returns data of the index, sampled at every 

five minutes. And, returns corresponding to one-second interval are used to estimate the variance at the high 
frequency ( )2

1secσ . The realised variance is estimated for any trading day (day t) using the TSRV formula as 
given below: 

( ) ( )2 2 2
,5min ,1sect t t

N n
N n N

σ σ σ = − −  
                           (13) 

where n  is the average number of returns across all the subsamples at the low frequency and N is the number 
of returns at high frequency for the day t. 

The TSRV estimator calculates the variance only for the trading hours, whereas most pricing models require 
the variance of the entire calendar day. Hence, the estimate obtained in the above equation is scaled up by the 
ratio of daily close-close to open-close historical variances. Below is the scaling factor that has been used in this 
study: 

2
1

2
1

T
tt

T
ott

r

r
ρ =

=

= ∑
∑

 

The same scaling factor has been used by Jacob and Vipul [42], Koopman et al. [43], and Martens et al. [44]. 
Following this, the close-close TSRV estimate is calculated as follows: 

,close-close ,open-closet tTSRV TSRV ρ= ∗                            (14) 

This study attempts to test both the models ex-ante. Therefore, in the case of BS model, the sum of the 
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close-close TSRV estimates for the previous n-days has been used as a proxy for the actual variance to be expe-
rienced by the market in the next n-days. The variance estimate is annualised assuming 252 days in a year, as the 
BS formula requires annualised volatility. This approach makes the implementation easier as the market partici-
pants do not have the benefit of hindsight, and using this method does not require to forecast the volatility for 
the remaining time-to-expiration. 

Regularising the Series 
In any time series of tick data, there may be missing values for certain timestamps due to no trading at those in-
stances of time. For TSRV calculation in this study, the series is regularised such that all timestamps have a cor-
responding index value. For ticks with no transaction, the last available price is considered as a proxy for the 
current tick price.  

3.3. Performance Measures 
Liquidity-weighted performance measures are used to ascertain the one-day-ahead out-of-sample performance 
of the two option pricing models. It must be noted that the base is taken as the market price as it would ensure a 
fair comparison across different models by providing a common basis. 
• Liquidity-weighted Mean Percentage Error (MPE)  

( )1

1

MPE 100
N

i i i ii
N

ii

Q A C A

Q
=

=

∗ −
= ∗ ∑

∑
                           (15) 

• Liquidity-weighted Mean Absolute Percentage Error (MAPE) 

( )1

1

MAPE 100
N

i i i ii
N

ii

Q A C A

Q
=

=

−
=

∗
∗ ∑

∑
                          (16) 

where Ci and Ai are the calculated and actual prices of the ith option, respectively. Qi is the quantity traded for the 
ith option and N is the total number of options analysed. 

The results and analysis of this comparison are presented in the next section. 

4. Empirical Results and Discussion 
The one-day-ahead out-of-sample analysis of the two models shows that the SVH model performs better than 
the BS model, both in terms of the frequency as well as the magnitude of the pricing errors (Table 1 and Table 
2). We observe that the bias exhibited by the SVH model is less compared to that of the BS model, for both op-
tion types. While the BS model shows consistent overpricing with more than 90% call options as overpriced, the 
same figure for the SVH model is only 64.12%. For the put options, the SVH model also shows a consistent 
negative bias. Though, the same is still lower than that in the case of the BS model. It could be due to the error 
induced by the use of the put-call parity condition to arrive at the put prices, as the SVH does not provide the put 
prices directly. 

The results provided in Table 1 are based on the frequency of mispricing. Hereafter, the study deals with the 
magnitude of mispricing, unless otherwise stated. 

The overall results on the performance of both the models are provided in Table 2. The table contains three 
metrics, viz., the liquidity-weighted mean percentage error (MPE), the liquidity-weighted mean absolute per-
centage error (MAPE), and the liquidity-weighted standard deviation of the MPE (SD). The preliminary analysis 
indicated the presence of outliers in the data. The same were identified and removed. The results provided in 
Table 2 and the subsequent tables are based on the data trimmed at 5% level. 

The results provided in Table 2 depict that the performance of the SVH model is superior to that of the BS 
model, with regard to both MAPE and MPE. The MAPE for the BS model is 48.15% and 62.07% for the call 
options and the put options, respectively. Notably, the same corresponding to the SVH model is 29.79% and 
48.21%. The results of the MPE provide further evidence of the improvements shown by the SVH model over 
the BS model. However, prima-facie, the SD of the MPE indicates poor performance of the SVH model. In this 
regard, it is important to note that, in the first place, the SDs of the two models are not comparable. Additionally,  
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Table 1. Pricing bias exhibited by the select models.                                                                                        

  Total No. of options Cases of overpricing 
(market price > model price) 

BS 
Call 2290714 2090177 (91.25%) 

Put 2201306 2137066 (97.08%) 

SVH 
Call 2290714 1468740 (64.12%) 

Put 2201306 1908943 (86.72%) 

Note: This table contains the bias shown by each model in terms of frequency of overpricing. The value in parenthesis shows the % of overpriced op-
tions in relation to total options contracts studied. 
 
Table 2. Liquidity-weighted performance metrics for mispricing.                                                           

Model 

Mean absolute percentage error Mean percentage error Standard deviation 

(MAPE) (MPE) (SD) 

Call Put Call Put Call Put 

BS 48.1510**** 62.0758 47.8299 62.0758 30.9852 29.6548 

SVH 29.7929**** 48.2165 18.6902 46.4818 37.3197 35.4226 

Note: This table provides the overall performance measures for the BS Model and the SVH Model. All the metrics considered are liquidity-weighted 
and are based on trimmed data. The total no. of options analysed are 2290714 and 2201306 for the calls and puts, respectively. This table also reports 
the significance of the difference between the mispricing of call and put options, tested using the Wilcoxon Rank-Sum test. For both the models, the 
alternate hypothesis tested is that mispricing in call options is lower than that of the put options. “****” denotes significance at α = 0.01%. 
 
the lower (higher) SD in the case of the BS (SVH) model appears a result of the higher (lower) MPE and skew-
ness of the pricing errors. It may be noted that the BS model produces one-sided bias (negative) for more than 
90% of the cases; this leads to lower SD of the MPE. 

Also, a statistical comparison of the mispricing magnitudes of both the models confirms that the SVH model 
outperforms the BS model comprehensively, for both option types. The results are provided in Table 3 and Ta-
ble 4. The null hypothesis is rejected at 0.01% level of significance. It confirms that mispricing in the model 1 is 
statistically less than that in the model 2. 

Further, for a robust comparison, the mispricing has been examined across different subgroups formed by 
moneyness, volatility and time-to-expiration of an option. It would enable us to identify whether the BS model 
performs poorly only for certain cases of volatility, moneyness, and time-to-expiration; or, it is inferior to the 
SVH model across the subgroups. 

4.1. Mispricing Patterns across Moneyness 
The performance across various moneyness groups is provided in Table 5 and Table 6. It may be noted that the 
results are presented in a way that conveys the meaning rather than the ratio of moneyness. It can be observed 
that the performance of the SVH model is far superior to that of the BS model, both in terms of MAPE and MPE. 
In the case of the BS model, the MAPE for the ATM call options is 27.20% vis-à-vis a considerably low MAPE 
of 12.72% for the SVH model. Similarly, for the ATM puts, the MAPE for the BS model and the SVH model 
are 35.12% and 21.27%, respectively. The results of the ATM subgroup and the other subgroups provide further 
proof that the SVH model is superior to the BS model. 

The pattern across various subgroups is relevant once we establish that the mispricing in each subgroup is 
different from the remaining subgroups. To investigate this, the Kruskal-Wallis test (H-statistic) is used. This is 
a non-parametric test that compares the equality of medians for three or more subgroups. However, this test does 
not provide any information about the pair-wise differences. To overcome this, the Dunn’s test for the posthoc 
analysis was performed. The results validate that the subgroups indeed differ for both the option types, except 
for the ITM-deep ITM pair in the case of call options. 

Table 5 and Table 6 demonstrate that both the models follow the same pattern for the MAPE and MPE. Both, 
MAPE and MPE reduce as options go from deep OTM to ITM. Similar patterns were documented by Bakshi et  
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Table 3. Comparison of models using Wilcoxon rank-sum test for call options.                                                           

Model 1 Model 2 Test Stat. (p-value) 

BS SVH 3.34817e+12 
(1.0000) 

SVH BS 1.8992e+12**** 
(0.0000) 

 
Table 4. Comparison of models using Wilcoxon rank-sum test for put options.                                              

Model 1 Model 2 Test Stat. (p-value) 

BS SVH 2.8690e+12 
(1.0000) 

SVH BS 1.9766e+12**** 
(0.0000) 

Notes for Table 3 and Table 4: These tables provide the comparative performance of both the models, using Wilcoxon Rank-Sum test. The test is ap-
plied on absolute percentage error of the trimmed data. The alternate hypothesis states that the mispricing in model 1 is less than that of model 2. The 
values given in the table are the test statistic. The values in “()” give the p-values of the same. “****” denotes significance at α = 0.01%. This is a 
one-sided test; therefore, it become necessary to conduct a two-way comparison. 
 
Table 5. Liquidity-weighted performance metrics for mispricing across moneyness for call options.                               

Moneyness 
range 

No. of 
records 

Mean absolute percentage error 
(MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

Deep OTM 374923 74.2984 55.8299 74.1226 42.0319 27.8771 48.7923 

OTM 950352 61.0122 38.9083 60.7085 22.8575 29.1915 44.8022 

ATM 924630 27.2004 12.7289 26.7631 5.0707 17.5958 17.6362 

ITM 37192 7.0644 3.6435 6.9501 1.5580 4.7184 4.1708 

Deep ITM 3617 3.0501 1.8693 3.0501 1.5543 2.0107 1.7954 

Note: This table provides the performance measures for all the models for various moneyness categories of NIFTY call options. All the metrics con-
sidered are liquidity-weighted metrics on the trimmed data. The moneyness range is taken from 0.90 - 1.10 with blocks of 0.04 points forming a group. 
For example, the “at-the-money” (ATM) range is 0.98 - 1.02. 
 
Table 6. Liquidity-weighted performance metrics for mispricing across moneyness for put options.                               

Moneyness 
range 

No. of 
records 

Mean absolute percentage error 
(MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

Deep OTM 399575 94.8584 90.7328 94.8584 90.7328 7.5783 11.5977 

OTM 784955 79.9728 61.4171 79.9728 61.1088 17.2617 27.5145 

ATM 968587 35.1221 21.2730 35.1221 16.7311 17.9281 19.4275 

ITM 44341 8.8085 7.6556 8.7123 6.1742 6.3367 7.4749 

Deep ITM 3848 4.3303 4.5474 4.3258 4.1556 2.9167 3.4789 

Note: This table provides the performance measures for all the models for various moneyness categories of NIFTY put options. All the metrics con-
sidered are liquidity-weighted metrics on the trimmed data. The meaning of moneyness for calls and puts is reversed. The moneyness range is taken 
from 0.90 - 1.10 with blocks of 0.04 points forming a group. For example, the “at-the-money” (ATM) range is 0.98 - 1.02. 
 
al. [28] for S&P 500 index options. Moreover, for the call options, even the SD follows the same pattern, though 
it deviates from the pattern slightly for the put options. The SVH model performs reasonably well for the ATM 
and ITM options, with lesser mispricing as well as increased consistency. 
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For the deep OTM options, the performance of both the models appears to be poor and unreliable. In this re-
gard, two possible reasons can be proposed. Firstly, such options are very cheap compared to other options with 
different moneyness. This leads to a large percentage error even for a small pricing error as the base is very 
small. Secondly, owing to the high demand for the OTM options, the option writers seem to charge a premium 
for providing such options. Furthermore, even the SD for all models is very high in the case of the OTM options. 
It indicates that the results in the OTM category may not be very reliable, as the SVH and the BS do not appear 
to be equipped with required inputs to deal with such options. 

4.2. Mispricing Patterns across Volatility 
This section details the performance of the two models across four different subgroups based on the volatility of 
the underlying (TSRV-based estimates). The subgroups “0.05 - 0.10” and “0.20 - 0.25” refer to low and high 
volatility regimes, respectively. The remaining subgroups, viz., “0.10 - 0.15” and “0.15 - 0.20”, represent the 
normal market. 

The Kruskal-Wallis test and the Dunn’s test for posthoc analysis were performed. The analysis shows that the 
subgroups formed based on the volatility subgroups are statistically different from each other, for both the mod-
els and the option types.  

The analysis of the subgroups, presented in Table 7 and Table 8, reinforces the superiority of the SVH model 
over the BS model. This holds true for both MAPE and MPE, across option types. This is intuitive because the 
SVH model, being a stochastic volatility model, is expected to perform better on volatility changes, compared to 
a model based on constant volatility. The SVH model performs reasonably well for the call options in the nor-
mal volatility regimes, with the average MAPE and MPE for these around 23% and 10%, respectively. The per-
formance of the BS model is poor, with the average MAPE and MPE being around 44% and 42%, respectively.  
 
Table 7. Liquidity-weighted performance metrics for mispricing across volatility range for call options.                               

Volatility 
range 

No. of 
records 

Mean absolute percentage error 
(MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

0.05 - 0.10 370798 70.8821 63.1972 70.8821 44.2736 25.2402 74.4797 

0.10 - 0.15 930104 54.1409 23.2749 54.1409 11.1616 28.5283 31.4509 

0.15 - 0.20 704045 33.0342 22.2841 29.8520 8.1447 29.3576 30.5589 

0.20 - 0.25 285767 37.4126 32.0323 34.3166 25.0277 29.9567 34.7098 

Note: This table provides the performance measures for all the models for various volatility subgroups of NIFTY call options. The volatility presented 
in the table is the annualised sum of the daily realised volatility of the underlying, scaled to close-close timeframe, for the days remaining to expira-
tion. Volatility presented is in ratio form and can be converted to percent terms. All the metrics considered are liquidity-weighted metrics on the 
trimmed data. 
 
Table 8. Liquidity-weighted performance metrics for mispricing across volatility range for put options.                          

Volatility 
range 

No. of 
records 

Mean absolute percentage error 
(MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

0.05 - 0.10 357794 74.3831 57.9888 74.3831 54.0769 27.4733 38.3063 

0.10 - 0.15 946246 70.0622 49.6813 70.0622 48.2407 27.0095 36.6037 

0.15 - 0.20 654398 50.0259 43.1687 50.0256 41.4129 28.3606 33.1657 

0.20 - 0.25 242868 42.1069 41.1126 41.9557 38.3126 27.9002 33.1957 

Note: This table provides the performance measures for all the models for various volatility subgroups of NIFTY put options. The volatility presented 
in the table is the annualised sum of the daily realised volatility of the underlying, scaled to close-close timeframe, for the days remaining to expira-
tion. Volatility presented is in ratio form and can be converted to percent terms. All the metrics considered are liquidity-weighted metrics on the 
trimmed data. 
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However, the models perform poorly when the volatility is either very high or very low. The volatility- 
risk-premium, charged by the option writers for options in the high volatility regime, may explain this behaviour. 
This premium overstates the market price of the options. Given the fact that none of the models are designed to 
account for such a premium, we observe large deviations from the market prices when the volatility is high.  

Both models follow similar patterns for the call options. Further, the put options have the same pattern; 
though, it is different from the one observed for the call options. The similarity in the performances of the two 
models is surprising as both models have different theoretical foundations and also have different estimation 
methods. 

4.3. Mispricing Patterns across Time-to-Expiration 
Lastly, this section examines the behaviour of the mispricing with respect to the time-to-expiration of the op-
tions. For the purpose, the subgroups for this analysis are based on the calendar days. Therefore, the maturity of 
the option contracts covered in this study would translate to 2 - 60 days calendar days as we have ignored option 
with maturity less than two days to contain expiration effect. The data is divided into eight subgroups based on 
time-to-expiration. 

Similar to the preceding subgroups, the Kruskal-Wallis test and the Dunn’s test for posthoc analysis were 
performed. These tests confirm that, for both models and option types, all subgroups are significantly different 
from each other. 

As can be observed from Table 9 and Table 10, here again, the SVH model outperforms the BS model across 
all subgroups, for both MAPE and MPE. However, in the case of put options, the difference is not as large as in 
the case of the call options. 

While there are no clear patterns, except the first subgroup (≤5 days), the SVH model gives a consistently 
good performance. In fact, the MPE for time-to-expiration of 31 days and more is close to just 3%. Although the 
liquidity is not very high for these subgroups, it is still enough to suggest that the SVH model can be used as a 
viable method for pricing the call options with larger maturities. A vast majority of the trades in the Indian op-
tions market takes place in the category of 6 - 30 days to maturity. Notably, in this region, the SVH model gives 
a reasonably good performance. Therefore, the SVH model seems to capture the pricing dynamics in the Indian 
index options market fairly well. 

In sum, the findings from the preceding subsections confirm that the SVH model is a far better choice for 
pricing Indian index options, as compared to the BS model; it comprehensively outperforms the BS model for 
all subgroups, across option types. It gives a reasonably good performance independently as well. In totality, the 
SVH proves to be a better model for pricing the index options in the Indian context.  

It may be noted that all the results presented here are without considering the transaction costs. However, the 
same would not have any implications when mispricing is compared across different models. 

 
Table 9. Liquidity-weighted performance metrics for mispricing across time-to-expiration range for call options.                     

Time-to-expiration 
range 

No. of 
records 

Mean absolute percentage  
error (MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

≤5 353625 68.3102 44.4955 68.3102 28.6121 31.0013 49.1893 

6 - 10 708027 55.8222 32.2794 55.8222 15.5565 30.6488 42.2656 

11 - 15 349593 48.6490 26.3771 48.6490 16.9757 27.0676 34.0255 

16 - 20 275752 39.0921 25.2858 37.0106 18.2660 28.8838 31.7347 

21 - 25 293214 36.0255 24.4485 31.4689 17.7689 29.7643 31.6276 

26 - 30 164185 31.9995 26.8742 27.6458 20.2429 29.1165 33.1840 

31 - 40 96884 33.4891 22.0280 32.6871 3.3748 23.0099 31.0082 

41 - 60 49434 32.1764 25.6592 26.7592 3.7892 27.4121 36.0873 

Note: This table provides the performance measures for all the models for various subgroups of NIFTY call options, based on time-to-expiration. The 
time-to-expiration range is based on calendar days. All the metrics considered are liquidity-weighted metrics on the trimmed data. 
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Table 10. Liquidity-weighted performance metrics for mispricing across time-to-expiration range for put options.                      

Time-to-expiration 
range 

No. of 
records 

Mean absolute percentage  
error (MAPE) 

Mean percentage error 
(MPE) 

Standard deviation  
(SD) 

BS SVH BS SVH BS SVH 

≤5 359884 73.7870 55.9240 73.7870 48.9164 30.3493 43.9246 

6 - 10 686077 65.0926 46.8797 65.0926 41.8778 31.1297 40.9364 

11 - 15 323565 60.7841 43.5895 60.7841 43.0155 27.7266 33.4927 

16 - 20 268104 57.0187 49.0960 57.0187 48.9592 28.0565 30.3546 

21 - 25 261325 53.1039 48.5147 52.8436 48.4755 29.0431 29.8062 

26 - 30 160541 55.0958 52.9967 55.0958 52.9967 26.1643 26.8838 

31 - 40 94501 56.6399 44.3648 56.6399 44.3059 22.1895 26.9158 

41 - 60 47309 55.2337 49.1082 55.2337 49.0415 23.0327 26.1230 

Note: This table provides the performance measures for all the models for various subgroups of NIFTY put options, based on time-to-expiration. The 
time-to-expiration range is based on calendar days. All the metrics considered are liquidity-weighted metrics on the trimmed data. 

5. Summary and Conclusions  
The SVH model seems to be a popular choice amongst academicians and practitioners alike. Despite that, there 
has been no study in India which analyses the performance of the model using tick data. This study tries to fill 
the gap by conducting a one-day-ahead out-of-sample performance analysis of the SVH model, and compares its 
performance to that of a TSRV-based BS model, using liquidity-weighted performance metrics.   

The findings of this paper establish that the SVH model comprehensively outperforms the BS model, for both 
option types. Notably, the superior performance of the SVH model gets corroborated across moneyness/volatility/ 
time-to-expiration subgroups. Also, the statistical comparison among the models shows that the SVH model is a 
far better model for pricing Indian index options. Even the bias exhibited by the SVH model is significantly 
lower than that of the BS model. 

Remarkably, the pattern followed by both the models appears to be the same across subgroups based on mo-
neyness and volatility, especially for the call options. However, it appears to be a bit counter-intuitive as both 
models build on completely different theoretical foundations, and even their estimation procedures are not the 
same. For the moneyness subgroups, both models show that the mispricing reduces as an option goes from deep 
OTM to deep ITM. In the case of volatility subgroups, both models perform the best in the normal volatility re-
gime.  

Prima-facie, the SVH model appears to perform poorly compared to the BS model with regard to the SD of 
MPE, especially for the low volatility and the deep OTM subgroups. However, it is important to note that the 
large (small) SD of MPE is attributable to the small (large) MPE. In the case of the BS, the MPE is highly 
skewed; this leads to the small SD of MPE compared to that in the case of the SVH model. In sum, it may be 
concluded that the SVH model outperforms the BS model comprehensively. In other words, it captures the pric-
ing dynamics of the Indian index options market fairly well. 

Regarding its contribution, the study offers a significant extension to the existing empirical option pricing li-
terature in India. It bridges an important gap on option pricing as no study has been conducted in the Indian op-
tions market on the Heston model, using tick data. This would help the trades and other stakeholders in the op-
tions market in identifying a suitable model to price and hedge their positions with higher accuracy. 
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Appendix 

 
Figure A1. Average traded volume over time-to-expiration for the NIFTY call options. 
 

 
Figure A2. Average traded volume over time-to-expiration for the NIFTY put options. 
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