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Abstract 
We present and discuss a conceptual decision-making procedure supported by a mathematical 
device combining expected utility and a generalized information measure: the weighted Gini- 
Simpson index, linked to the scientific fields of information theory and ecological diversity analy-
sis. After a synthetic review of the theoretical background relative to those themes, such a device— 
an EU-WGS framework denoting a real function defined with positive utility values and domain in 
the simplex of probabilities—is analytically studied, identifying its range with focus on the maxi-
mum point, using a Lagrange multiplier method associated with algorithms, exemplified numeri-
cally. Yet, this EU-WGS device is showed to be a proper analog of an expected utility and weighted 
entropy (EU-WE) framework recently published, both being cases of mathematical tools that can 
be referred to as non-expected utility methods using decision weights, framed within the field of 
decision theory linked to information theory. This kind of decision modeling procedure can also 
be interpreted to be anchored in Kurt Lewin utility’s concept and may be used to generate scena-
rios of optimal compositional mixtures applied to generic lotteries associated with prospect theory, 
financial risk assessment, security quantification and natural resources management. The epis-
temological method followed in the reasoned choice procedure that is presented in this paper is 
neither normative nor descriptive in an empirical sense, but instead it is heuristic and herme- 
neutical in its conception. 
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1. Introduction 
Expected utility theory may be considered to be born in 1738, relative to the general problem that choosing 
among alternatives imply a consistent set of preferences that can be described by attaching a numerical value to 
each—designated its utility; also, choosing among alternatives involving risk entails that it is selected that one 
for which the expected utility is highest (e.g. [1]). As Weirich [2] points out, such an utterance inherits from the 
theory of rationality a collection of problems concerning evaluation of acts with respect to information. It is 
useful to distinguish among decisions under risk, meaning circumstances or outcomes with known probabilities, 
as opposed to situations on uncertainty where probabilities are not known (e.g. [3]). Shannon entropy [4] meas-
ures the uncertainty of a random variable, and, for example, an entropy-based risk measure concerning financial 
asset pricing is claimed to be more precise than other models [5]. A recent review of applications of entropy in 
finance, mainly focused in portfolio selection and asset pricing, but also in decision theory, can be acknowl- 
edged in [6]. 

This work is an analogous development of another paper recently published, where it was discussed an ex-
pected utility and weighted entropy framework, with acronym EU-WE [7]. We shall prove that the claimed 
analogy has here a proper sense, as either weighted Shannon entropy or weighted Gini-Simpson index may be 
considered two cases of generalized useful information measures. Hence, the conceptual framework to be dis-
cussed and elucidated in this paper is referred to with the acronym EU-WGS, and, as it will be justified later, 
consists of another form of mean contributive value of a finite lottery in the context of decision theory. 

Combining the concepts of expected utility and some measure of variability of the probability score—generat- 
ing utility functions that are nonlinear in the probabilities—is not an innovative method and we can identify an 
example concerning meteorology forecasts dating back to 1970 [8]. Those approaches were later merged under 
the name of “non-expected utility” methods in the 1980s and consist of different conceptual types, the one we 
shall be dealing with framing into the category of decision models with decision weights or non-additive proba-
bilities, also named capacities. A decision-making model based on expected utility and entropy (EU-E) intro-
ducing a risk tradeoff factor was discussed by Yang and Qiu [9], where Shannon entropy measures the objective 
uncertainty of the corresponding set of states, or its variability; recently, the authors reframed their model into a 
normalized expected utility-entropy measure of risk [10], allowing for comparing acts or choices where the num- 
ber of states are quite apart. 

First, we shall present a synthetic review of the theoretical background anchored in two scientific fields: ex-
pected or non-expected utility methods and generalized weighted entropies or useful information measures. Then, 
we shall proceed merging the two conceptual fields into a mathematical device that combines tools from each 
and follow studying it analytically and discussing the main issues that are entailed for such a procedure. The spi-
rit in which this paper is written is neither normative nor descriptive—instead it is conceived as a heuristic ap-
proach to a decision procedure tool whose final judge will be the decision maker. 

2. Theoretical Background 
2.1. Expected and Non-Expected Utility Approaches 
The concept of “expected utility” is one of the main pillars in Decision Theory and Game Theory, going back at 
least to 1738, when Daniel Bernoulli proposed a solution to the St. Petersburg paradox using logarithms of the 
values at stake, thereby making the numerical series associated with the calculation of the mean value conver-
gent (there referred to as “moral hope”). Bernoulli [11] explicitly stated that the determination of the value of an 
item should not be based on its price but rather on the utility that it produces, being the marginal utility of mon-
ey inversely proportional to the amount one already has. Bernoulli approach—considered the first statement on 
Expected Utility Theory (EUT)—presupposes the existence of a cardinal utility scale, and that remained an ob-
stacle until the theme was revived by the remarkable work of John von Neumann and Oskar Morgenstern in 
1944, showing that the expected utility hypothesis could be derived from a set of axioms on preference [12], 
considering the utilities experienced by one person and a correspondence between utilities and numbers, involv-
ing complete ordering and the algebra of combining. Nevertheless, based on their theorem one is restricted to 
situations in which probabilities are given (e.g. [13]). 

Since that time there were innumerable contributions on the theme. For instance, Alchian [14] outlines the is-
sue stating that if, in a given context, it is possible to assign numerical values for different entities competing, 
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then a selection process of rational choices is made to maximize the utility and one can say that the normal form 
of expected utility reduces to the calculation of the average value of a pattern of preferences expressed by li- 
mited numerical functions. But soon also appeared the objections relative to the adherence of EUT to empirical 
evidence, namely the Allais paradox which was first published in 1953, showing that individual’s choices in 
many cases collided with what was predicted by the theory, one reason being because expected utility devices 
associated with lotteries do not take into account the dispersion of the utilities around their mean values and also 
because, in general, people overweight positive outcomes that are considered certain compared to outcomes which 
are merely probable (e.g. [15] for a review). 

Subjective expected utility, having a first cornerstone in the works of de Finetti and Ramsey [16] both pub-
lished in 1931, followed by a further substantial development with Savage in 1954, was regarded by most deci-
sion analysts to be the preferred normative model for how individuals should make decisions under uncertainty, 
eliciting vectors of probabilities given the preferences in outcomes; but that approach was also revealed to be 
violated in empirical situations, what was illustrated for example by the Ellsberg paradox published in 1961. 
Other paradoxes were mentioned later such as those referred to by Kahneman and Tversky concerning prospect 
theory [17] where the carriers of value are changes in wealth or welfare rather than final states. Machina [18] 
highlighted that the independence axiom of EUT tends to be systematically violated in practice and concluded 
that the main concepts, results and tools of expected utility analysis may be derived from the much weaker as-
sumption of smoothness of preferences over alternative probability distributions; this remarkable work outlined 
the scope of generalized expected utility analysis or non-expected utility frameworks. Other methods were pro- 
posed and used such as mean-variance analysis (e.g. [19] [20]); based on this type of method and using mean 
absolute deviation instead of standard deviation, Frosini [21] presented recently a discussion revisiting Borch 
paradox linked to a general criterion of choice between prospects. 

Here we will be focused in lotteries, a concept we shall retain (e.g. [22]): a lottery is defined as a list or finite 
collection of simple consequences or outcomes ( )1, , nX x x=   with associated, usually unknown, probabili-
ties stated as [ ]Pr i iX x p= =  for 1, ,i n=   completed with the standard normalization conditions 0ip ≥  
and 1 1n

ii p
=

=∑  defining a 1n −  simplex ( )1n−∆  and denoting a vector ( )1, , np p=p  . The axioms of EUT 
with the most usual version—ordering, continuity and independence—allow for preferences over lotteries to be 
represented by the maximand functional ( ) ( )1

n
i iiV u x p

=
= ∑p , where ( ).u  is a utility function mapping the 

set of consequences with image conceived as a set of real numbers ( )i iu u x=  with 0iu >  for 1, ,i n=  . 
For simplicity of notation we shall write a discrete random variable representing a finite lottery denoted as 

[ ]1 1, ; ; ,n nU u p u p=  , from what follows that expected utility is therefore evaluated like [ ] 1
n

i iiE U U u p
=

= = ∑ . 
The geometry of ( ).u , supposed monotonous, has a simple behavioral interpretation under EUTaxioms, 

whereby being concave implies risk aversion—such as the logarithm function used by Bernoulli—and convexity 
entails risk prone behavior by an individual agent. The Arrow-Pratt measure (e.g. [23]) is commonly used to as-
sess the issues of risk-avert or risk-prone behavior. Recently, Baillon et al. [24] presented a general and simple 
technique for comparing the concavity of different utility functions isolating its empirical meaning in EUT, and 
an example of a concave utility function used to assess optimal expected utility of wealth under the scope of in-
surance business can be acknowledged in [25]. 

As Shaw and Woodward [26] say, focusing on the issue of natural resources management, the problem in 
classical utility theory is that the optimization of the models may have to accommodate preferences that are non-
linear in the probabilities. There are many approaches with this perspective, known at least since Edwards in 
1955 and 1962 [27] discussed in parallel the theory of Kurt Lewin utility and the theory of subjective probability 
of Francis Irwin, introducing the concept of decision weights instead of probabilities; the Lewin utility theory 
was referred to as anchored in the concept that an outcome which has a low probability will, by virtue of its rarity, 
have a higher utility value than the same outcome would have if it had a high probability. 

A substantial review was made by Starmer [28] under the name of non-expected utility theory, the case of 
subjective probabilities being framed within the conventional strategy approach focused on theories with deci-
sion weights, in particular the simple decision weight utility model where individuals concerned with lotteries 
are assumed to maximize the functional ( ) ( ) ( )1

n
i iiW u x pπ

=
= ∑p ; the probability weighting function ( ).π  

transforms the individual probabilities of each consequence into weights, and, in general, it is assumed that 
( ).π  is a continuous non-decreasing function with ( )0 0π =  and ( )1 1π =  (e.g. [13] [28] [29]); decision 

weights are also named capacities if additionally they satisfy monotonicity with respect to set inclusion. An ex-
ample of a decision weight procedure concerning assessing preferences for environmental quality of water under 



J. P. Casquilho 
 

 
188 

uncertainty is outlined in [30]. 
There are many other approaches to surpass the limitations of independence axiom, and, for example, Hey and 

Orme [31] compared traditional expected utility and non-expected utility methods with a total of 11 types of 
preference functionals, evaluating the trade-off of explaining observed differences of the data relative to the 
models versus loosing predictive power. Recently, a reasoning of decision-making with catastrophic risks moti-
vated the incorporation of a new axiom named sensitivity to rare events [32]. But simple decision weight utility 
modeling is the conceptual type of non-expected utility methods that is relevant in this paper. 

2.2. Generalized Useful Information Measures and Weighted Gini-Simpson Index 
The quantitative-qualitative measure of information generalizing Shannon entropy characterized by Belis and 
Guiasu [33] is additive and may be associated with a utility information scheme, anchored in a finite sample 
space, establishing that an elementary event iε  occurring with (objective) probability ip  entails a positive (sub- 
jective) utility iu . Thus, retrieving the discrete random variable we denoted previously as [ ]1 1, ; ; ,n nU u p u p=   
and identifying the event iε  with the outcome ix  of utility ( )i iu u x= , it follows that the mathematical ex-
pectation or mean value of U  is evaluated with the standard formula ( ) 1 logn

i i iiI U u p p
=

= −∑  and is usually 
referred to as weighted (Shannon) entropy. This mathematical device was further discussed and studied analyti- 
cally by Guiasu in 1971 [34], considered as a measure of uncertainty or information supplied by a probabilistic 
experiment depending both on the probabilities of events and on corresponding qualitative positive weights. The 
functional ( )I U  was also named useful information (e.g. [35]). At least since the eighties of last century 
weighted entropy was used in economic studies concerning investment and risk [36] and that scope of approach 
used in financial risk assessment and security quantification proceeds until nowadays (e.g. [37]-[40]). Also, new 
theoretical developments concerning weighted entropy mathematical properties are available (e.g. [41]). 

In 1976, Emptoz—quoted in Aggarwal and Picard [42]—introduced the entropy of degree β  of an experi-
ment outlined with the same premises of the information scheme referred to above and defined as: 

( ) ( )1 1
1 1 1 2 with 1.n

i i iiH u p pβ β
β β− −

=
= − − ≠∑  

Using l’Hôpital’s rule it is easy to prove the result of the limit ( )1lim H I Uβ β→ = , thus allowing for the ex-
tension by continuity to the case 1β = , hence retrieving weighted Shannon entropy. In 1978, Sharma et al. [43] 
discussed a non-additive information measure generalizing the structural α -entropy previously studied by 
Havrda and Charvat [44]; they named their mathematical device “generalized useful information of degree α ”, 
relative to the utility information scheme stated above and denoted as: 

( ) ( ) ( )1 1
1 1 2 1 with 1.n

i i iiI U u p pα α α α− −
=

= − − ≠∑  
The formula above means exactly the same entity as entropy of degree β  of Emptoz—what we can check 

making α = β and rearranging the terms. Hence, the result ( ) ( )1lim I U I Uα
α→ =  also holds, and when 2α =  

we get ( ) ( )2
12 1n

i i iiI U u p p
=

= −∑ , which we can acknowledge as meaning “double” weighted Gini-Simpson 
index, as we shall see; the authors interpret the number α  as a flexibility parameter, exemplifying its semantic 
content either as an environmental factor or a value of “information consciousness” in aggregating financial ac-
counts. 

Weighted Gini-Simpson (WGS) index was outlined by Guiasu and Guiasu [45] in the scope of conditional 
and weighted measures of ecological diversity denoted as ( )1 1n

u i i iiD u p p
=

= −∑  where the positive weights 
iu  reflect additional information concerning the importance (abundance, economic significance or other rele-

vant quantity) of the n  species in an ecosystem represented by their proportions or relative frequencies 0ip ≥
(for 1, ,i n=  ) associated with the closure condition 1 1n

ii p
=

=∑ , hence defining the standard 1n −  simplex. 
Whether we use the objective or physical concept of probability practically as a synonym for proportion of suc-
cesses in trails governed by large numbers laws as discussed in Ramsey [16]—outlined subsequently as inter- 
subjective probabilities by Anscombe and Aumann [46]—or even as subjective probability measuring the degree 
of belief of an agent, we can provide the result ( )2

22 2uD I U H= =  using the formulas for generalized use-
ful information of degree 2α =  previously referred to by Sharma et al. [43] or the entropy of degree 2β =  
of Emptoz (see [42]). Guiasu and Guiasu proceeded with several developments of the WGS index as a relevant 
measure in the context of ecological diversity assessment (e. g. [47] [48]). 

The formulation and analytical study of weighted Gini-Simpson index was first introduced by Casquilho [49] 
within a set of indices built as mathematical devices applied to discuss compositional scenarios of landscape 
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mosaics (or ecomosaics), using either ecological or economic weights—there referred to as positive characteris-
tic values of the habitats—in order to assess the relevance of the actual extent of the components, as compared 
with the optimal solutions of the different indices. 

One main feature of WGS index we must keep in mind is that we have 0uD ≥  as a diversity measure should 
behave, because WGS index is composed of a sum of positive terms, attaining the null value at each vertex of 
the simplex ( 1, 0k ip p= =  if i k≠ ), meaning that just that component is present and all the others absent. In 
the context of lottery theory 0uD =  entails there exists only a single consequence, the result of a certain event; 
whether we should be dealing with prospect theory the result 0uD =  has a semantic shift and would mean that 
there is a single pure strategy. 

Weighted Gini-Simpson index is used in several domains, besides ecological and phylogenetic assessments— 
focusing in economic applications we have examples such as: estimating optimal diversification in allocation 
problems [50] and other developments concerning ecomosaics composition assessment with forest habitats [51] 
[52]. In [49] [51] it is shown that weighted Gini-Simpson index can be interpreted as a sum of variances of in-
terdependent Bernoulli variables thus becoming a measure of the variability of the system and enabling a crite-
rion for its characterization. 

3. Combining Expected Utility and Weighted Gini-Simpson Index 
3.1. Definition and Range 
In what follows, the simple lottery [ ]1 1, ; ; ,n nU u p u p=   is conceived as having fixed strictly positive utilities1 

0iu >  for 1, ,i n=   and i ju u≠  if i j≠ , while the variables are the probabilities defined in the standard 1n −   
simplex: { }1

10 for 1, , ; 1nn
i iip i n p−

=
∆ = ≥ = =∑ . 

In this setting used to characterize the discrete random variable U  we shall denote the EU-WGS mathemat-
ical device as uZ  in analogy with the formula of the EU-WE framework discussed in [7], to be defined as: 

.u uZ U D= +                                        (1) 

Equation (1) therefore has the full expression ( ) ( )1 1 11 2n n n
u i i i i i i i ii i iZ u p u p p u p p

= = =
= + − = −∑ ∑ ∑ . We see 

that we can also interpret it as a preference function under the scope of non-expected utility theory with the cha-
racteristic formula ( ) ( )1

n
i iiW u pπ

=
= ∑p  where the decision weights defined as ( ) ( )2i i ip p pπ = −  for 

1, ,i n=   verify the standard conditions ( )0 0π =  and ( )1 1π = ; also it is easily seen that the function 
( ) ( )2p p pπ = −  is strictly increasing in the open interval 0 1p< <  and concave, as we have that the calcu- 

lus of derivatives entails: ( ) ( )2 1 0p pπ ′ = − >  and ( ) 2 0pπ ′′ = − < . 
Still, we can proceed with the subsequent interpretation: denoting Y  a random variable with values 

( )2i i iy u p= −  for 1, ,i n=  , we have an expression for utilities in the sense of Lewin (referred to in [27]), as 
when the event is quite rare we have 0ip ≅  entailing 2i iy u≅  and, on the contrary, when the event is about 
to be certain we get 1ip ≅  and i iy u≅ ; hence, in this approach, utility values iy  are also function of the pro- 
babilities being enhanced by rarity as claimed in that theory and with this interpretation we compute the mean 
value as [ ]uZ E Y= . 

The function uZ  is differentiable in the open simplex as it is composed of a sum of quadratic elementary real 
functions, thus being continuous in its domain, which is a compact set (a closed and limited subset contained in 

nR ), hence Weierstrass theorem ensures that uZ  attains minimum and maximum values. Also it is easily seen 
that uZ  is a concave function—the simplest way to show that is recalling that it was previously proved that 
weighted Gini-Simpson index is a concave function (e.g. [45] [49]) and adding the bilinear function U  does 
not change the geometry. 

Concerning the evaluation of the minimum point we see that denoting { }1, ,minm i n iu u==


 we have ensured 
that u mZ u≥  because mU u≥  and we have 0uD =  at every vertex of the simplex as noticed before, other-
wise uD  being strictly positive; hence, u mZ u=  is the minimum value attained in the correspondent vertex of 
the simplex, this vertex being the minimum point. Though we don’t know yet which is the maximum value of 

uZ  we know it exists, so if we denote it as *
uZ  we can write the range—or the image set—of function uZ , a 

closed real interval defined as: 

 

 

1We discard the cases with null utilities ( )0ju =  considered here not relevant, or equal utilities ( )i ju u=  as that would entail editing the 

lottery in a more compact and simplified form. 
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*.m u uu Z Z≤ ≤                                    (2) 

3.2. Searching the Maximum Point 
Searching for the maximum point correspondent to the maximum value *

uZ  we shall proceed in stages: first, we  
build the auxiliary Lagrange function ( ) ( ) ( )1 1; 2 1n n

i i i ii iL U u p p pµ µ
= =

= − − −∑ ∑
 

and then we compute the  

partial derivative(s) as follows: ( )2 1i i iL p u p µ∂ ∂ = − − ; solving the equation 0iL p∂ ∂ =  we obtain the criti-
cal values of the auxiliary Lagrange function, evaluated as * *1 2i ip uµ= −  for 1, ,i n=  . As we also have 
that the equation 0L µ∂ ∂ =  entails the condition 1 1n

ii p
=

=∑ , merging the results and simplifying we get
( )*

1 1 2 1n
ii uµ

=
− =∑  and solving the equation for the Lagrange multiplier µ  we obtain the result: 

( ) ( )*
12 1 1n

iin uµ
=

= − ∑                                  (3) 

Using Equation (3) combined with the equation * *1 2i ip uµ= −  we can substitute, writing the formula for 
the candidates to optimal coordinates of the maximum point: 

( ) ( )*
11 1 1 for 1, , .n

i i iip n u u i n
=

= − − =∑                           (4) 

As it is known, the critical value of the Lagrange multiplier reflects the importance of the constraint in the 
problem and we can check directly from Equation (3) that we have * 0µ ≥ ; for the trivial case concerning the 
certain consequence lottery ( 1n =  with 1p = ) we get * 0µ =  and also Equations (4) solves like * 1p =  as it 
should be; when 2n =  we obtain ( )*

1 2 1 22 0u u u uµ = + >  and we can proceed to the evaluation of the criti-
cal coordinates, obtaining: 

( ) ( )* *
1 1 1 2 2 2 1 2and .p u u u p u u u= + = +                           (5) 

We can also check that the result *
1 1n

ii p
=

=∑  holds, confirming that the candidates to the maximum point 
defined in Equations (4) are in the hyperplane of the simplex. But, when 3n ≥  we have to be careful; this is 
because the auxiliary Lagrange function did not include the constraints of non-negativity ( )0ip ≥  thus allow-
ing for non-feasible solutions. Explicitly, for 3n =  and the set of utilities { }1 2 3, ,u u u  with 1 2 3u u u> >  we 
can check directly, manipulating Equations (4), that if the following inequality holds ( )3 1 2 1 2u u u u u≤ + , then 
we get *

3 0p ≤ . 
Thus, combining * 0ip >  in Equation (4) and Equation (3) we obtain the condition * 2iu µ>  to get feasi-

ble values, and we deduce the general feasibility conditions which show to be closely related to the harmonic 
mean of the utilities, Equations (4) being directly applicable to evaluate the optimal point when we have that all 
the relations defined by Inequalities (6) are verified: 

( ) ( )11 1 for 1, , .n
i iiu n u i n

=
> − =∑                              (6) 

Otherwise, we have to proceed using an algorithm, as it will be shown next. But we can already notice, from 
direct inspection of Equation (4) to Inequality (6) that the candidates to optimal coordinates would be the same 
if we use a positive linear transformation of the utilities such as i iw cu=  with 0c > , thus meaning that the 
maximum point of uZ  is insensitive to a positive linear transformation of the original values. 

3.3. Algorithms for Obtaining the Maximum Point 
It must be noted that we are certain that the maximum point exists as it is implied by Weierstrass theorem. The 

problem we are dealing has an old root, as Jaynes [53] in 1957 had already noticed, saying that the negative term 
2
ip−∑  has many of the qualitative properties of Shannon’s entropy but has the inherent difficulty arising from 

the fact that using Lagrange multiplier method entails that the results in general do not satisfy the feasibility 
conditions relative to 0ip ≥ . 

Here, first we shall choose a forward selection procedure since we know that when 2n =  it follows that Equa-
tions (5) ensure proper optimal solutions. Also, a direct inspection of Equations (4) highlights that the value *

ip  
increases with the correspondent iu  since the term 11

n
ii u

=∑  is common to all critical values; in fact, we have that 
for a fixed j when ju → +∞  the limit value in Equation (4) is * 1jp = , and, conversely, when 0ju +→  we  
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get the result ( ) ( )10
lim 1 1 1 2

j

n
j iip

n u u n+ =→
− − = −∑ . 

So, given the set of utilities defined in U  we begin ordering the set such as we are now dealing with the lot-
tery in the form of an act described as a lottery where the outcomes or utilities are real numbers ordered in a de-
creasing way (e.g. [54]): ( ) ( )1 nu u≥ ≥ ; as it is for sure that ( )1u  and ( )2u  imply strictly positive *

1p  and *
2p   

the problem begins with the evaluation of *
3p . Does ( )3u  verifies the condition ( ) ( ) ( ) ( ) ( )( )3 1 2 1 2u u u u u> + ? 

Whether not, stop and state *
3 0p =  and evaluate the optimal solution with Equations (5), all the other com-

ponents of higher order having null probability or proportion; if it does verify the feasibility condition proceed,  
now with the condition (6) restated as ( ) ( ) ( ) ( ) ( )( )4 1 2 3 43 1 1 1 1u u u u u> + + +  and pose the same recurrent ques-  

tion until you verify that there is an order ( )1k +  for which some of the inequalities (6) fail; then settle 
*

1 0kp + =  as well as all the other proportions until order (n) and evaluate the optimal solutions with the first k 
ordered utilities ( ) ( )1 , , ku u  using Equations (4). The dimension of the problem is reset as n k= , all the other 
proportions being null. 

It must be noted that we could have chosen a backward elimination procedure instead with a faster algorithm, begin- 
ning with the lowest utility ( )nu , then using Equation (4) to compute ( ) ( ) ( )( )*

11 1 1n
in n ip n u u

=
′= − − ∑  with n n′ =   

and if observing ( )
* 0np <  then setting ( )

* 0np =  and proceeding to the evaluation of ( )
*

1np −  with 1n n′ = − , 
recurring until we obtain ( )

* 0kp > ; then, all the other subsequent variables will be positive and are evaluated 
with Equations (4) setting n k= . 

3.4. Numerical Example 
Assume that we have the following lottery with n = 5 and ordered utilities: ( )1 5u = , ( )2 4u = , ( )3 3u = , ( )4 2u =  
and ( )5 1u = ; then the first doubt is relative to whether it is true or not that ( )3 2 1 5 1 4 1 3> + + ; computing 
the right member of inequality we obtain the numeric value 2.5532 so the condition 3 > 2.5532 holds and we 
proceed to the next stage: does the condition ( )2 3 1 5 1 4 1 3 1 2> + + +  is true? Computing the right member 
of the inequality we get 2.3377 so the condition does not hold; thus, stop, set *

4 0p =  and *
5 0p = , hence eva-  

luate the optimal point with Equations (4) relative to the set ( ) ( ) ( ){ }1 2 3, ,u u u , being the dimension of the problem  

reset to 3k = , with approximate values: *
1 0.4894p ≅ , *

2 0.3617p ≅  and *
3 0.1489p ≅ . 

Now, exemplifying the backward elimination procedure with the same utility values: first we evaluate  
( ) ( ) ( )*
5 1 5 1 1 5 1 4 1 3 1 2 1 0.75182 0p = − − + + + + = − <  so we have ( )

*
5 0p =  and set 4n′ = ; thus, we calcu-  

late ( ) ( ) ( )( )*
4 1 4 1 2 1 5 1 4 1 3 1 2 0.16883 0p = − − × + + + = − <  so we also have ( )

*
4 0p =  and set 3n′ = ; next,  

we get ( ) ( ) ( )( )*
3 1 3 1 3 1 5 1 4 1 3 0.14894p = − − × + + = , a proper value, and the evaluation of the other optimal 

coordinates proceeds with 3n k′ = =  applying Equations (4). 

3.5. The Maximum Value 
The maximum value of uZ  in itself does not seem to be relevant, because our search was attached to the evalu-
ation of the maximum point as the criterion to find the best lottery according to the framework, but obviously it 
is possible to evaluate *

uZ  and become clear about the range defined in Inequalities (2); supposing that 
*0 1ip< < , for 1, ,i k=   are the proper non-null optimal coordinates previously evaluated we have that  

( )* * *
1 2k

u i i iiZ u p p
=

= −∑  but we also can calculate the maximum value just with the utility values as written in Equa- 
tion (7), what follows from combining Equation (1) and Equation (4) and simplifying: 

( ) ( )22*
1 11 1 1k k

u i i ii iZ u k u u
= =

 = − − 
 

∑ ∑ .                          (7) 

In the case of the numerical example described above we get the number * 6.8936uZ ≅ . 

4. Discussion 
Going back to the beginning, we can state that the reasoned choice modeling we introduced was a sequential de-
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cision-making procedure that began with a lottery U  with given utilities and unknown probabilities—thus 
facing a problem of decision under uncertainty—and, following the maximum principle attached to function uZ , 
we ended with a unique *U  associated with a problem of decision under risk. The EU-WGS device discussed 
in this paper is suitably defined as a non-expected utility method with decision weights, a tool built combining 
expected utility and weighted Gini-Simpson index as claimed in the title. 

First, we shall focus the discussion comparing optimal proportions of function uZ  with index uK  presented 
and discussed in [7]. The analogy stated in the introduction follows from the standard result that Taylor’s first 
order (linear) approximation of the real function ( ) logf x x= −  is log 1x x− ≅ −  for 0x > , the approxima-
tion being fair near 1x = . So, the EU-WGS device outlined in this paper and the EU-WE framework referred to 
in [7] are intimately related and the analogy is a proper one.  

Nevertheless, there are differences, perhaps the most noticeable ones being qualitative, as the fact that the op-
timal point of uK  always remains in the interior of the simplex ( *0 1ip< <  for 1, ,i n=  ) while in the case 
of index uZ , except for quite balanced sets of utilities verifying altogether Inequalities (6), we shall obtain in 
general *0 1ip< < , for 1, ,i k=   with k n< , all the other coordinates being null, meaning geometrically 
that the maximum point is located in another simplex 1k−∆  which is a face of the original. In other words, the 
optimum point of uK  reveals to be more conservative relative to low utility values compared with the corres-
pondent maximum point of uZ  that discards those cases from the composition of *U . Also the optimal value 
of the Lagrange multiplier of index uK  evaluates as the weighted entropy of the coordinates of the optimal 
point, while in index uZ  the value *µ  defined in Equation (3) is closely related to the harmonic mean of the 
utilities. Another different technical issue is that the evaluation of the maximum point of index uK  entails 
solving numerically an equation while in the case discussed here we shall have in most cases to use an algorithm 
but the solutions are explicit. 

Yet there is another point that deserves an explanation: it was claimed in [7] that index uK  could be named 
“mean contributive value” because of the rationale that is exposed in a more detailed version in [55], concerning 
Kant valuation moral philosophy. What about the maximand functional uZ ? The similitude is so compelling 
that we have no option but to claim it should be considered as a formulation of “mean contributive value type II” 
since the difference between uK  and uZ , besides what was mentioned in the first paragraph of this section, 
may be referred to the numeric values of parameters relative to generalized weighted entropies or useful infor- 
mation measures ([42] [43]), extended by continuity: uK  index relative to the case 1α β= =  and uZ  the semi- 
value obtained with 2α β= = . 

There is also another issue that demands an explanation, or, the least, to be posed straightforwardly: consider 
the lottery U  ordered in a decreasing way such that ( ) { }1, ,1 maxi n iu u==



; for what reason should *U  be 
preferred to the certain event ( ){ }1u  that maximizes traditional expected utility with *

1 1p = ? The reason that 
seems appropriate to answer such a question is that the maximum principle attached to function uZ  (or, equi-
valently, to index uK ) contains an implicit hidden “utility value” linked to valuing diversity as opposed to ex-
clusivity. Is that intrinsic valuation of diversity a proper issue in Economics theory? That is a question that will 
not be answered here, may be the answer will be positive concerning some issues—for example in ecological 
economics, where diversity of the ecosystems is considered to be directly affected by their ecological richness in 
species and indirectly related to the properties of resilience and/or stability—and negative in other cases. As 
Shaw and Woodward [26] say, there may be no general theory of decision making under uncertainty. 

Weirich [2] points out, concerning the discussion of generalized expected utility methods, that comprehensive 
rationality requires adopting the right option for the right reason. Whether these models are appropriate for 
rooting such an utterance is a question that remains open, as we were not concerned with the moral issues that 
could be raised related to the criteria embodied in the formulas. 

Discussing the limitations of this modeling approach we have to highlight that the weighting function ( ).π
here used, though verifying the standard conditions stated when defining Equation (1), does not hold for other 
properties such as sub-certainty discussed in [17]; also, quite rare events that could presumably have a very high 
utility value in the sense of Lewin’s conception, are enhanced in this model by a maximum two-fold factor, as 
pointed out in Section 3.1, what can be considered in some cases a significant limitation (which didn’t occur, for 
instance, with index uK ). 

Gilboa [13] says that a decision is objectively rational if the decision maker can convince others that she is 
right in making it, whether it is subjectively rational for her if others cannot convince her that she is wrong in 
making it—the ultimate judge of the choices remaining the decision maker. Hence, with this reference on mind, 



J. P. Casquilho 
 

 
193 

taking the decision of adopting the optimal result *U  as a decision-making procedure is still under subjective 
assessment, and the problem is after all reframed as if the function uZ  and the correspondent maximum prin- 
ciple—consisting of mathematical tools embodying decision weights linked to information theory—are used to 
assess subjective probabilities or proportions, since it entails an implicit degree of belief that the device is suita- 
ble for the case at study. 

5. Conclusions 
In this work we outlined a reasoned decision-making tool combining traditional expected utility with a genera-
lized useful information measure (a type of weighted entropy) referred to as the weighted Gini-Simpson index— 
thus becoming a conceptual framework with acronym EU-WGS. This device is original and applies to simple lot-
teries defined with positive utilities and unknown probabilities, denoted as a real function 𝑍𝑍𝑢𝑢  with domain in the 
standard simplex. 

It was shown that this mathematical device frames into the class of non-expected utility methods relative to the 
type concerning the use of decision weights verifying standard conditions; also, it was shown that function 𝑍𝑍𝑢𝑢  
could be interpreted as a mean value of a finite lottery with utilities conceived in the sense of Kurt Lewin, where 
the rarity of a component enhances the correspondent utility value by a maximum of a two-fold factor. For each 
set of fixed positive utilities, the real function 𝑍𝑍𝑢𝑢  is differentiable in the open simplex and concave, having an 
identifiable range with a unique and global maximum point; we settled the procedure to identify the optimal point 
coordinates, highlighting the sequence of stages with a numeric example; also, we conclude that the maximum 
point doesn’t change if utilities are affected by a positive linear transformation. 

Such a framework can be used to generate scenarios of optimal compositional mixtures relative to finite lotte-
ries associated with prospect theory, financial risk assessment, security quantification or natural resources man-
agement. Nowadays, different entropy measures are proposed to be used to form and rebalance portfolios con-
cerning optimal criteria, and some state that the portfolio values of the models incorporating entropies are higher 
than their correspondent benchmarks [56]. Also, we discussed the similarity between this EU-WGS device and 
an EU-WE framework recently published denoted index uK  (which is a particular case of a one-parameter fam-
ily of models outlined and discussed in [57]), pointing out the main analogies and differences between the two re-
lated issues which can be , in any case, referred to as mean contributive values of compositional mixtures. Last, in 
this paper, we didn’t face normative or descriptive challenges concerning the behavior of this decision modeling 
approach relative to paradoxes of expected or non-expected utility theories and adherence to empirical data, 
which is a field that remains open for future research. 
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