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ABSTRACT 

Expenditure multipliers are routinely used to evaluate the effectiveness of government spending. When interested in 
disaggregated effects, interindustry models provide the necessary tools to be able to look at very detailed sectorial re- 
sults. These models are theoretically simple and empirically operational, which makes them easily implementable and 
therefore popular with policy makers. They miss, however, quite a bit of the interaction that takes place at the micro 
level. On the one hand, they ignore the role exerted by supply constraints in primary factors; on the other hand, they 
look at the world as though it is fully linear. We overcome these limitations by using an opposite Walrasian general 
equilibrium model to compute marginal multipliers. By using differential calculus, we also offer some insights regard- 
ing the “under-the-hood” circuits of influence. 
 
Keywords: Marginal Multipliers; General Equilibrium; Linear vs. Nonlinear Models 

1. Introduction 

Let us begin by considering the general setup of an eco- 
nomy described by m endogenous variables and k exter- 
nal exogenous variables, (say, policy instruments) affect- 
ing the equilibrium state. In this economy, multipliers 
connect exogenous injections xi (I = 1,2 ··· k) with en- 
dogenous responses ej (j = 1,2 ··· m). If the vector func- 
tion : m k mF R  

( , )e x
R  represents the equilibrium state 

, then it is possible to use differential calcu- 
lus [1] to study the equilibrium dependence of endoge- 
nous variables e with respect to exogenous one x. In this 
case, we would have 

e F

     , ,de F e x e de F e x X dx      . 

Solving now for de would yield 

      1
, ,

( , )

de F e x e F e x x dx

e x dx


     



I

M
 

where M is a (m × k) matrix whose generic element 
∂ej/∂xi = mji(e, x) is an estimate of the (marginal) multi- 
plier effect exerted by injection xi upon endogenous 
variable ej. Notice that in principle the multiplier matrix, 
M itself may be variable since it depends on the particu- 

lar equilibrium state e induced by instruments x and the 
characteristics of the economy, as embodied in F. Since 
the vector function F is not usually directly observable, 
neither are its derivatives nor is matrix M, hence there is 
the need for relying on some type of approximation. One 
such approximation is to linearize the economy; another 
is to use numerical methods for the evaluation of nonlin- 
ear equilibrium relationships. 

2. Linear Multipliers 

We now consider a linear economy of the interindustry 
type. For this type of economies we have n endogenous 
(m = n) and n exogenous variables (k = n). The endoge- 
nous variables correspond to total output in each of the n 
sectors, whereas the exogenous variables describe final 
demand. This includes discretional government demand 
for the goods and services of each of the n sectors. We 
will use the n-vector q to denote output (i.e. e = q now) 
and keep x for the exogenous variables. The equilibrium 
state for this linear economy is represented, again using 
the vector function F, by q = F(q, x). Thanks to the line- 
arity assumption this can be seen to adopt the form q = 
Aq + x, where A is a n×n nonnegative, productive and 
homothetic technical coefficient matrix. From the equi- 
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librium state we can quickly write the reduced form 
linking output with instruments as q = (I − A)−1x = Mx, 
with M representing the multiplier matrix of the linear 
economy. Because of the assumptions on A, the matrix 
M is constant. Its entries are independent of the equilib- 
rium state. Taking derivatives, it is quite simple now to 
relate changes in output with external changes in instru- 
ments 

  1
q x

     I A M x



2

           (1) 

Multipliers are given directly by the cells in matrix M, 
i.e. ∂qj/∂xi = mji. All that is needed to compute (linear) 
multipliers is the coefficients matrix A. Since this matrix 
is readily available from official statistics, this explains 
the popularity of linear models in policy oriented em- 
pirical economics. Even more, linear models are so sim- 
ple that we need not worry about prices. Prices, in fact, 
can be seen to be completely independent from quantities 
in linear interindustry models. Notice that if quantities 
are not affected by prices, neither are multipliers. End of 
the story, all needed multiplier information is contained 
in matrix M. But we know that the actual story is bit 
more complicated than that since, in general, prices and 
quantities are mutually dependent. 

3. Applied General Equilibrium Multipliers 

In a standard general equilibrium model the interactions 
of supply and demand determine, at the same time, prices 
and quantities. We use now a general equilibrium frame- 
work to elucidate multipliers and compare them to their 
linear counterpart. Endogenous variables include now n 
output levels q and n prices p, that is, , so in 
total we have 2n endogenous variables. Let us consider 
again that the government decides how much to buy of 
each of the n goods and services; the government’s de- 
mand levels are denoted by the vector x representing 
policy instruments. The structural function F represent- 
ing the equilibrium state would now be of the type 

 ,e q p

2: n n nF R R 
2:q n

 which in turn can be split in two func- 
tions n nF R  R  and 2:p n n nF R 

q p

R  determin- 
ing quantities and prices, respectively. The complete 
general equilibrium state is represented by (q, p) = F(q, p, 
x), or using the fact that F F F  , it can also be seen 
as 

 
 

, ,

, ,

p

q

p F q p x

q F q p x




                (2) 

We perform comparative statics on the equilibrium 
state represented in Equation (2) considering an exoge- 
nous change dx in the instruments x. We would obtain  

qq qp qx

pq pp px

dq M dq M dp M dx

dp M dq M dp M dx

  

  
          (3) 

where we use, in Equation (3), the notational convention 
 , ,q

qqM F q p x q   ,  , ,q
qpM F q p x p   , and so 

on. Solving for dp in the second expression in Equation 
(3) and substituting the result in the first equation would 
yield 
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 
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1

1

1
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qx

qq qp pp pq

qx qp pp px

dq M dq M dp M dx
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M dx

M M I M M dq

M M I M M dx

  


   



    
 

    
 

  (4) 

Solving now for dq in Equation (4) we finally obtain 

   
   

11

1
, ,

qq qp pp pq

qx qp pp px

dq I M M I M M

M M I M M q p x dx


   

     
 

M

  (5) 

where  , ,q p xM

M

 stands for the general quantity mul- 
tiplier matrix1. We now proceed to relate the linear mul- 
tiplier matrix in Equation (1) with the general multi- 
plier matrix  , , xq pM  derived in Equation (5). 

Recall first that in linear models quantities and prices 
are independently determined. Under this assumption the 
partial derivative matrices Mpq and Mqp would be such 
that Mpq = Mqp = 0 and then Equation (5) can be easily 
verified to reduce to  

  1

qq qxdq I M M dx


             (6) 

The simplified expression that appears in Equation (6) 
is of course the differential version of the classical linear 
multiplier expression picked up in Equation (1) above, 
with Mqq = A and Mqxdx = Δx. The chains of interactions, 
however, can be seen to be quite more complex in Equa- 
tion (5) than in Equation (1), in accordance with the 
higher complexity of nonlinear models vis-a-vis linear 
ones. 

Figure 1 below depicts the way the model’s intercon- 
nections work. Facing an external disturbance in x, the 
system first reacts with changes in prices and quantities 
through matrices Mpx and Mqx. Price effects repeatedly 
self multiply through the loop Mpp along the cost struc- 
ture which, in turn, are affected by cross effects Mqp from 
quantities to prices. Similarly, the initial effect of the 
disturbance on quantities gets itself multiplied by the 
chain reaction that moves directly from quantities to 
quantities, i.e. Mqq, and indirectly from quantities to 
looped prices and back to quantities via the combined  

1A similar derivation, that we omit, would produce a general price 
multiplier matrix. 
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Figure 1. Example of the circuits of influence. 
 
effect measured by 

  1

qp pp qpM I M M


 . 

Notice again the role exerted by cross effects, in this 
case from prices to quantities through Mqp. The dashed 
arrows show the only influence that would remain in the 
typical linear model where prices and quantities are in- 
dependently determined. The linear model effects would 
be restricted to matrices Mqx and Mqq. 

4. Some Numerical Results 

We show now some results of implementing these two 
models, namely, a linear interindustry model first (see [2] 
for a reference of linear models), and then a Walrasian 
general equilibrium model (see [3,4] for examples and 
details of empirical general equilibrium models and their 
methodology). We use data from the Spanish economy [5] 
for 2006 to calibrate both models. Calibration entails the 
selection of parameters so as to reproduce the empirical 
data as an equilibrium under both models—the linear and 
Walrasian versions (see [6] for a step-by-step guide to 
calibration). The Spanish data distinguishes 26 produc-
tive sectors. For each sector we show the multiplier ef-
fects under the two models in Table 1 below. For in- 
stance, the linear multiplier value of 1.4620 indicates the 
(positive) change in economy-wide production when a 
unitary exogenous demand for Agriculture is injected 
into the economy. The general equilibrium multiplier of 
−0.5341 tells a different story. Now overall production 
would go down, once all general equilibrium adjustments 
had taken place. Supply restrictions and interconnected 
price and quantity effects explain the different sign. The 
initial injection into Agriculture is not able to activate 
any overall output increase. The need for more primary 
factors to satisfy the extra demand for Agriculture re- 
quires siphoning them from elsewhere in the economy, 
triggering an economy-wide fall in production. The indi- 
rect output substitution effects more than compensate the 
direct output volume effect arising from the extra injec- 
tion. 

Unlike the general positive multiplier effects of linear 
models, multipliers results can perfectly be negative in a 

Table 1. Multiplier comparison. 

Multiplier Estimates 
Spanish 

Data Economic Sector 
Linear  

Multipliers 
Gen. Equilib. 
Multipliers 

1. Agriculture 1.4620 −0.5431 

2. Fisheries 1.0394 0.3305 

3. Coal 1.0211 0.5179 

4. Petroleum and Gas 1.0056 0.9825 

5. Mining 1.0974 0.3106 

6. Oil Refining 2.0322 1.3076 

7. Electricity 3.1015 0.2129 

8. Gas 1.2480 0.8665 

9. Water 1.0640 −0.5126 

10. Foodstuffs 2.7998 0.4838 

11. Clothing 1.3781 0.7127 

12. Wood Products 1.5952 0.2936 

13. Chemicals 1.8607 0.6111 

14. Building Materials 2.0411 0.0953 

15. Iron and Steel 2.2508 0.5351 

16. Metal Products 2.0267 0.2699 

17. Machinery 2.1037 0.6224 

18. Vehicles 2.1284 0.8703 

19. Other Transport. Equip. 1.3384 0.5763 

20. Other Manufactures 2.2511 0.2646 

21. Construction 6.2904 −0.0082 

22. Commerce 3.5528 −1.7232 

23. Transport. and Comm. 2.8001 −03582 

24. Other Services 2.2807 −0.6793 

25. Services for Sale 2.2151 −1.1277 

26. Public Services 2.2962 −1-1607 

 Total multiplier effect 54.2805 3.7503 

 
Walrasian general equilibrium model. Moreover, the 
combined multiplier effects can be dramatically different 
in size. Under the linear model, aggregate output effects 
can be as high as 54.2805, meaning that an additional 
unitary demand for each and every of the 26 sectors 
would give rise, on average, to a multiplier effect of 
54.2805/26 = 2.0877 new output units. The general equi- 
librium model, however, reduces this estimate drastically, 
with an average value of only 3.7503/26 = 0.1442 new 
units of output. 
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5. Conclusion 

The interaction of demand and supply in goods, services 
and productive factors in response to external, policy 
oriented induced changes makes multiplier estimates be 
substantially smaller, and even negatively valued, in a 
general equilibrium model than in a linear model where 
price effects are disregarded and resource constraints are 
not binding. Expenditure policies designed upon optimis- 
tically estimated linear multiplier values should therefore 
be carefully reevaluated, and perhaps even abandoned. In 
fact the use of the name “multiplier” could even be a 
misnomer. Under general equilibrium, multipliers are not 
systematically above 1, or even positive in sign for that 
matter; hence output levels need not “multiply” over 1, 
as the standard linear models conclude. The tradition is 
however too strong to be changed, and we will still refer 
to the effects of external injections in endogenous output 
as “multipliers”, provided the modeling assumptions un- 
der which they are estimated are explicitly laid out. 
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