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ABSTRACT 

This paper generalizes the model of Becker, Grossman, and Murphy (1994) to the multivariate case. The multivariate 
model generates Frisch demand functions where current consumption is related to prices of all goods, and lagged and 
future consumption of all goods. The theoretical restrictions are that current price effects (holding lagged and future 
consumption constant) are negative definite, and lagged and future consumption are proportional to one another, the 
proportionality factor being the consumer’s discount rate. The conditions for dynamic stability are derived, and the so- 
lution to the matrix difference equation is derived. General formulas for multivariate Frisch price elasticities with re- 
spect to different lengths of time are also derived. Finally, alternative econometric specifications are derived, showing 
how theoretical restrictions can be imposed to test the theory and to reduce the number of estimable parameters. It is 
also shown how the model can be modified to account for different discount rates by commodity when estimating the 
model using aggregate data. 
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1. Introduction 

The workhorse of empirical analysis of dynamic demand 
is the rational addiction model of Becker, Grossman, and 
Murphy [1]. This model has proved useful in estimating 
short-run and long-run demand elasticities, but it only 
allows for one commodity and one composite good. To 
the author’s knowledge, no one has rigorously formu- 
lated and analyzed the multivariate counterpart to the 
single-equation model. Bask and Melkersson [2] and 
Pierani and Tiezzi [3] extend the rational addiction 
model to two goods (and the composite good), but do not 
analyze the restrictions imposed by theory or derive the 
dynamic properties of the model. The purpose of this 
paper is to present the multivariate addiction model and 
analyze the restrictions imposed by theory as well as the 
dynamic properties of the solution to the matrix differ- 
ence equation. 

2. The General Rational Addiction Model 

The simple rational addiction model is extended by 
specifying that the consumer’s utility function for period 
t is given by the strictly concave, twice-differentiable 
function 
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1Becker, Grossman, and Murphy [1] also include unobserved lifecycle 
variables in the utility function. These variables could easily be ac-
commodated in the multivariate version but are not included to sim-
plify the model. For econometric implementations, the main implica-
tion is that we would need to assume both lagged and future quantities 
are endogenous variables because inclusion of lifecycle variables 
would imply the error term would have a moving average structure. 
2Because the price of the composite good is 1, each price of the con-
sumption goods is deflated by the price of the composite good. 
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where    
tC

on (4a)
 is is the marginal utility of wealth and 

the gra ient vector with respect to . Equati , as d t

in [1], is the condition that the marginal utility of the 
composite good equals the marginal utility of wealth. 
Equation (4b) generalize the univariate case to the mul- 
tivariate case where the marginal utility of current con- 
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ginal utility of wealth times the price of the good. As in 
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is negative definite. Therefore, its inverse exists and has 
the following partitioned form: 
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(6), the solution to  is 
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In contrast to the univariate rational addiction model, 
consumption of good  in t
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of all ot

values 
her consumption goods. Moreover, current con- 

sumption of good i is related to consumption of all con- 
sumption goods in period 1t  . Because D 1
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tive definite, current period price effects (holding future 
consumption constant) are negative definite. When B  
is diagonal 

3The assumption that λ is constant over the planning horizon is pre-
cisely what the model implies. With perfect certainty, the consumer 
would expect to choose life-time consumption allocations holding λ
constant. 
4In this specification, the effect of a change in lagged consumption of 
the jth variable on current consumption of the ith good (holding future 
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3. Stability and General Solution of Matrix  
Difference Equation 

Proposition 
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lagged consumption arestill interdependent when expressed in this 
form. 
5This specification generalizes [2] and [3], who also make the marginal 
utility of  independent of C . t t

6The quadratic function is not necessary but is introduced in order to 
evaluate the stability of the system in the neighborhood of the station-
ar

Y

y equilibrium. See [1] for a similar approach in the univariate case.

When tP  is bounded, the general solution to the matrix
ference Equation (7) can be
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Finally, the long-run price effects are 
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This example shows that the solution to the matrix 
difference equation is stable because the matrix 1 con- 
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it circle, and
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e unit circle. The solution also shows that both goods 
are interrelated in consumption through lagged qu tities 
and current and future prices. Note also that the matrices 
of price effe s as shown in (14a’)-(14c’) indicate that all 
own-price effects are negative, and all cross-price effects 
are symmetric and positive. This numerical illustration 
indicates that we should expect changes in current and 
future price effects to exhibit complementary effects 
when both goods exhibit habit formation. In addition, all 
long-run price effects (in absolute value) should be larger 
than short-run price effects. 

6. Econometric Implications 

There is more than one approach to take for quantifying 
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Because D  is a matrix of constant one could also 
impose negative definiteness on the contemporary sub-
stitution matrix using one of the several methods avail-
able in the literature (e.g., [7]). The other restriction that 
one may wish to impose is 

 

E B . With diagonal ma-
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equation. 

From an econometric point of view, it is straight for- 
ward to est e model using generalized method of imate th

10We follow [1] in approximating the product of the marginal utility of 
income and price by a linear function in income and the price. The 
fixed marginal utility of wealth multiplying price in the linear ap-
proximation is then normalized to unity by dividing both sides of the 
equation by the fixed constant. Since this constant is the same for all 
equations, the general forms of the matrices in Equation (15) are un-
changed. 
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moments  finding instruments such that the orthogo- 
nality condition 

by
t tE  U Z 0  holds, where tZ  is a 

vector of instrumental variables. In this case, as in [1], 
we could use current, lagged, and futures prices as in- 
struments, in addition to inco t is not reasonable to 
assume that consumers know future prices with high 
probability
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where i  is indexed by the particular good consumed. 
This means different discount rates can be accommo- 
dated by the model, while preserving symmetry and 
negative definiteness in own quantity effects. Note that 
all the above results still hold when 1  I  is replaced 
with 1β , where 1β  is the diagonal matrix with di- 
agonal elements 1

i
 11. 

7. Concluding Remarks 

pe

e d nite, holding lagged and future 
ent and past consumption 
 the proportionality factor 

This pa r formulates and analyzes the multivariate ver- 
sion of the rational addiction model of Becker, Goldman, 
and Murphy [1]. The multivariate counterpart to the uni- 
variate model is that consumption of a specific good in 
the current period depends on prices of all goods, lagged 
consumption of all goods, and future consumption of all 
goods. The theoretical restrictions are that current price 
effects are negativ efi
consumption constant, and curr
are proportional to one another,
being the consumer’s discount rate. These results indi- 
cate that the main restrictions of the univariate model are 
preserved in the multivariate model. 

The conditions in which the model is shown to be dy- 

11Of course, we assume that distribution of effects across individual 
consumers is relatively constant over time so that i  can be taken as 

constant. Otherwise, we would need to modify the model to make i
a function of variables characterizing changes in the distribution, e.g., 
proportion of population in different age groups. 
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Service, Raleigh, North Carolina, 27695. 

NCES 

 
Review, Vol. 84, No. 3, 1994, pp. 396-418. 

[2] M. Bask and nally Addicted to 
Drinking and S , Vol. 36, No. 

namically stable are derived. When the model is stable, 
the solution will have exactly 2n real roots, n of the roots 
falling within the unit circle and n falling outside the unit 
circle. The smaller roots can be used to solve the problem 
backward in time, or to express the current-period solu- 
tion conditional on the levels of consumption of all goods 
in the previous period. The set of larger roots are used to 
express current consumption as a linear function of all 
future prices. Short-run and Long-run ulas 

4, 2004, pp. 373-381. 
doi:10.1080/00036840410001674295r the multivariate version are derived and are shown to 

be generalizations of the univariate version. 
Estimation can be undertaken on one of three different 

forms: 1) The first-order conditions directly, Equation 
(15); 2) the so-called structural form, Equation (16); or 3) 
the reduced form, Equation (18). Which of the above 
approaches to estimation is best can only be determined 
through further empirical work. Regardless of the ap- 
proach taken for estimation, the theoretical framework 
developed in this paper should prove useful to researchers 
modeling addictive goods that are interrelated in con-
sumption. 
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