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ABSTRACT 

This paper generalizes the model of Becker, Grossman, and Murphy (1994) to the multivariate case. The multivariate 
model generates Frisch demand functions where current consumption is related to prices of all goods, and lagged and 
future consumption of all goods. The theoretical restrictions are that current price effects (holding lagged and future 
consumption constant) are negative definite, and lagged and future consumption are proportional to one another, the 
proportionality factor being the consumer’s discount rate. The conditions for dynamic stability are derived, and the so- 
lution to the matrix difference equation is derived. General formulas for multivariate Frisch price elasticities with re- 
spect to different lengths of time are also derived. Finally, alternative econometric specifications are derived, showing 
how theoretical restrictions can be imposed to test the theory and to reduce the number of estimable parameters. It is 
also shown how the model can be modified to account for different discount rates by commodity when estimating the 
model using aggregate data. 
 
Keywords: Rational Addiction Model; Dynamic Frisch Demand Functions; Dynamic Consumer Demand; Habit  

Formation 

1. Introduction 

The workhorse of empirical analysis of dynamic demand 
is the rational addiction model of Becker, Grossman, and 
Murphy [1]. This model has proved useful in estimating 
short-run and long-run demand elasticities, but it only 
allows for one commodity and one composite good. To 
the author’s knowledge, no one has rigorously formu- 
lated and analyzed the multivariate counterpart to the 
single-equation model. Bask and Melkersson [2] and 
Pierani and Tiezzi [3] extend the rational addiction 
model to two goods (and the composite good), but do not 
analyze the restrictions imposed by theory or derive the 
dynamic properties of the model. The purpose of this 
paper is to present the multivariate addiction model and 
analyze the restrictions imposed by theory as well as the 
dynamic properties of the solution to the matrix differ- 
ence equation. 

2. The General Rational Addiction Model 

The simple rational addiction model is extended by 
specifying that the consumer’s utility function for period 
t is given by the strictly concave, twice-differentiable 
function 
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   1 1, , , ,
t tC CC C C C P t t t t t t tU Y U Y   1 0    (4b) 

1Becker, Grossman, and Murphy [1] also include unobserved lifecycle 
variables in the utility function. These variables could easily be ac-
commodated in the multivariate version but are not included to sim-
plify the model. For econometric implementations, the main implica-
tion is that we would need to assume both lagged and future quantities 
are endogenous variables because inclusion of lifecycle variables 
would imply the error term would have a moving average structure. 
2Because the price of the composite good is 1, each price of the con-
sumption goods is deflated by the price of the composite good. 
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where    
tC

on (4a)
 is is the marginal utility of wealth and 

the gra ient vector with respect to . Equati , as d t

in [1], is the condition that the marginal utility of the 
composite good equals the marginal utility of wealth. 
Equation (4b) generalize the univariate case to the mul- 
tivariate case where the marginal utility of current con- 
sumption of each good plus the discounted value of next 
period’s marginal utility of consumption equals the mar- 
ginal utility of wealth times the price of the good. As in 
[1], the model allows for both harmful addiction 
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If the consumer takes the marginal utility of wealth 
constant in formulating decisions for the first-period of 
his planning horizon, then we can derive marginal utility 
of wealth constant (Frisch) demand functions showing 
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3. Stability and General Solution of Matrix  
Difference Equation 

Proposition 
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5This specification generalizes [2] and [3], who also make the marginal 
utility of  independent of C . t t

6The quadratic function is not necessary but is introduced in order to 
evaluate the stability of the system in the neighborhood of the station-
ar

Y

y equilibrium. See [1] for a similar approach in the univariate case.

When tP  is bounded, the general solution to the matrix
ference Equation (7) can be
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Finally, the long-run price effects are 
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the matrix consists of positive real roots al side 
th

an

ct

rational addiction behavior. The simp
be to start with the F.O.C. from Equation (5), after 
eliminating from the set of equations related to 
to obtain 

t

lest approach would 

tY  tC , 

it circle, and
l out2  

e unit circle. The solution also shows that both goods 
are interrelated in consumption through lagged qu tities 
and current and future prices. Note also that the matrices 
of price effe s as shown in (14a’)-(14c’) indicate that all 
own-price effects are negative, and all cross-price effects 
are symmetric and positive. This numerical illustration 
indicates that we should expect changes in current and 
future price effects to exhibit complementary effects 
when both goods exhibit habit formation. In addition, all 
long-run price effects (in absolute value) should be larger 
than short-run price effects. 

6. Econometric Implications 

There is more than one approach to take for quantifying 

1t t 1t tI    tDC BC EC c P U       (15) 

where c  is a vector of constants, I t  

hus

is income, and 

am
negat  definite. T , the symmetry 

restriction

tU  is a vector of disturbance terms . The advantage of 
this specification is that it simplifies imposing and testing 
for the theoretical restrictions. The testable restrictions 
are that the matrix D , which represents intra-period 
substitution ong the individual consumption goods, is 
symmetric and 

10

ive
 D D  could be imposed earl lin

s, 
y and tested. 

Because D  is a matrix of constant one could also 
impose negative definiteness on the contemporary sub-
stitution matrix using one of the several methods avail-
able in the literature (e.g., [7]). The other restriction that 
one may wish to impose is 

 

E B . With diagonal ma-
trices, this means the restriction is ii iie b  for each 
equation. 

From an econometric point of view, it is straight for- 
ward to est e model using generalized method of imate th

10We follow [1] in approximating the product of the marginal utility of 
income and price by a linear function in income and the price. The 
fixed marginal utility of wealth multiplying price in the linear ap-
proximation is then normalized to unity by dividing both sides of the 
equation by the fixed constant. Since this constant is the same for all 
equations, the general forms of the matrices in Equation (15) are un-
changed. 
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moments  finding instruments such that the orthogo- 
nality condition 

by
t tE  U Z 0  holds, where tZ  is a 

vector of instrumental variables. In this case, as in [1], 
we could use current, lagged, and futures prices as in- 
struments, in addition to inco t is not reasonable to 
assume that consumers know future prices with high 
probability

me. If i

 then we could use current and enough lagged 
pr

one good ([2], [ o

ices sufficient enough to identify the parameters of the 
F.O.C. 

The few attempts to extend the rational addiction mo- 
del to more than 3]) specify the m del as 
follows 

1 1 1 1 1 1
1 1

ˆ ˆ ˆ ˆ ˆ ˆ
tD DC D BC D EC D c D P D Ut t t t tI     

     
(16) 

where 1ˆ D  is the diagonal matrix whose diagonal ele- 
ments are 1

iid   so that the ith equation can be written as 

C 1 1πit ij jt ii it ii it i t ii it itj i
C C C I P     

       

(17) 

In light of (16), the symmetry constraint, which is now 
nonlinear, would be imposed as follows: 

1 1
π πij ji

ii jj 

The param r ii

 . 

ete   could then be estimated separately 
and an estimat alue ofed v    obtained by dividing the
estimate of 

 

ii  by ii . 
h tThe othe o est ation is what [2] an

ca
r approac im d [3] 

ll the reduced-form approach and is indicated by Equa- 
tion (7), generalized below as follows 

1 1 tC FC GC g PH t t t tI       t      (18) 

where  

f all goods in the 
current period simultaneously. It is notable tha

pted to utilize these restrictions fro
 Equation (16) or Equation (18) in their em- 

pirical work. 
We typically do not have the luxury to ork with 

panel data at the individual household level. Therefore, it 
is

onsumption of good i, when the discount 
rate is allowed to be different for each consumer, can be 

w

1 1

1 1 1

,

nd

,

a, ,

F D G D B

g D c H D D U

B  

  

   

   
 

t t

This set of equations like (16) has nonlinear restrict- 
tions. Equation (18), however, is consistent with the view 
that the consumer chooses quantities o

t neither [2] 
m theory or [3] attem

implied by

w

 clear that the estimates of the discount factor may dif- 
fer from one commodity to another. This is particularly 
true with aggregate data as in [3], where it is shown that 
the discount rates for alcohol and tobacco are quite dif- 
ferent. To see why estimates based on aggregate data 
could produce divergent estimates by commodity, note 
that average c

ritten as follows (over-bars denote simple averages 
over the total population of consumers): 

1 1πit ij jt ii it ii it i t ii it itj i
C C C C I P     

        

(19) 

where 1

1

k kit

k it

C

C









  , 

k  is the discount factor for consumer k, 1kitC   is con- 
sumption of consumer k for good i at time t+1, and 1itC   
is aggregate consumption of good i. The significant fea- 
ture of Equation (19) is that the aggregate discount factor 
  is a weighted average of discount fact

n relativ
t be th

 the sam
ncome

on good
rent d

ors, eac
ghted by consumer k’s consumptio e to to

ption. Clearly these weights need no e 
 consumers. For example, even with
ction, a consum  with a higher i
e a different mix of all consumpti s t

h 
tal

e util- 
 could 

han a 

wei
consum
for all

con

 
same 

ity fun er
consum

sumer with a lower income. With diffe iscount 
rates, the average discount rate   could be differen  
different goods. Therefore, for aggregate data, Equation 
(19) should be modified as follows: 

t for

1 1πit ij jt ii it i ii it i t ii it it
j i

C C C C I P      


       

(20) 

where i  is indexed by the particular good consumed. 
This means different discount rates can be accommo- 
dated by the model, while preserving symmetry and 
negative definiteness in own quantity effects. Note that 
all the above results still hold when 1  I  is replaced 
with 1β , where 1β  is the diagonal matrix with di- 
agonal elements 1

i
 11. 

7. Concluding Remarks 

pe

e d nite, holding lagged and future 
ent and past consumption 
 the proportionality factor 

This pa r formulates and analyzes the multivariate ver- 
sion of the rational addiction model of Becker, Goldman, 
and Murphy [1]. The multivariate counterpart to the uni- 
variate model is that consumption of a specific good in 
the current period depends on prices of all goods, lagged 
consumption of all goods, and future consumption of all 
goods. The theoretical restrictions are that current price 
effects are negativ efi
consumption constant, and curr
are proportional to one another,
being the consumer’s discount rate. These results indi- 
cate that the main restrictions of the univariate model are 
preserved in the multivariate model. 

The conditions in which the model is shown to be dy- 

11Of course, we assume that distribution of effects across individual 
consumers is relatively constant over time so that i  can be taken as 

constant. Otherwise, we would need to modify the model to make i
a function of variables characterizing changes in the distribution, e.g., 
proportion of population in different age groups. 
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 elasticity form
fo

Service, Raleigh, North Carolina, 27695. 

NCES 

 
Review, Vol. 84, No. 3, 1994, pp. 396-418. 

[2] M. Bask and nally Addicted to 
Drinking and S , Vol. 36, No. 

namically stable are derived. When the model is stable, 
the solution will have exactly 2n real roots, n of the roots 
falling within the unit circle and n falling outside the unit 
circle. The smaller roots can be used to solve the problem 
backward in time, or to express the current-period solu- 
tion conditional on the levels of consumption of all goods 
in the previous period. The set of larger roots are used to 
express current consumption as a linear function of all 
future prices. Short-run and Long-run ulas 

4, 2004, pp. 373-381. 
doi:10.1080/00036840410001674295r the multivariate version are derived and are shown to 

be generalizations of the univariate version. 
Estimation can be undertaken on one of three different 

forms: 1) The first-order conditions directly, Equation 
(15); 2) the so-called structural form, Equation (16); or 3) 
the reduced form, Equation (18). Which of the above 
approaches to estimation is best can only be determined 
through further empirical work. Regardless of the ap- 
proach taken for estimation, the theoretical framework 
developed in this paper should prove useful to researchers 
modeling addictive goods that are interrelated in con-
sumption. 
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