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ABSTRACT

The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous
time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck
process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the expo-
nentially f-mixing property. Our results can cover a wide variety of areas by selecting suitable Lévy processes and be
used as fundamental tools for statistical analysis concerning the processes. Well known stochastic volatility model in

finance such as Lévy-driven Ornstein-Uhlenbeck process is examined as a special case.
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1. Introduction

Many continuous time processes are suggested and stud-
ied as a natural continuous time generalization of a ran-
dom recurrence equation, for example, diffusion model
of Nelson [2], continuous time GARCH (COGARCH)
(1,1) process of Kliippelberg et al. [3] and Lévy-driven
Ornstein-Uhlenbeck (OU) process of Barndorff-Nielsen
and Shephard [4] etc. Continuous time processes are par-
ticularly appropriate models for irregularly spaced and
high frequency data [5]. We consider the generalized
Ornstein-Uhlenbeck (GOU) process (¥,) _, which is de-
fined by

V.= Voeﬂf’ te J.;e%*dns, t>0, )

where (&.7,)_, isatwo-dimensional Lévy process and
the starting random variable V, is independent of
(é,i]t )tzo. Lévy processes are a class of continuous time
processes with independent and stationary increments
and continuous in probability. Since Lévy processes &
and 7, are semimartingales, stochastic integral in Equa-
tion (1) is well defined.

The GOU process is a continuous time version of a
stochastic recurrence equation derived from a bivariate
Lévy process (de Haan and Karandikar [1]). The GOU
process has recently attracted attention, especially in the
financial modelling area such as option pricing, insur-
ance and perpetuities, or risk theory. Stationarity, mo-
ment condition and autocovariance function of the GOU
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process are studied in Lindner and Maller [6]. Fasen [7]
obtain the results for asymptotic behavior of extremes
and sample autocovariance function of the GOU process.
For related results, we may consult, e.g. Masuda [8],
Kliippelberg et al. [3,9], Maller et al. [5] and Lindner [10]
etc.

Mixing property of a stochastic process describes the
temporal dependence in data and is used to prove consis-
tency and asymptotic normality of estimators. For a sta-
tionary process (X,)_ ,F, =o(X, :s<t) and

>0 "1

G =0(X, :s21),let
ﬂ(t)zsup%ii‘l)("limB.i)_P(Ai)P<Bj)

B eG

u+t?

b

where the supremum takes over 4, € F,

u’

4nA4,=9,BNB, =,

if i#j and U4 =U_ B =Q.If B(1)>0 as
t—coo, then (X,)_, is called f-mixing. (X,)_, is
called exponentially -mixing if S(7)<Ke™™ for some
K,a>0 andall +>0.

In this paper we prove the exponential ergodicity and

exponentially S-mixing property of the GOU process

t
of the Lévy-driven OU process as a special case.

For more information on Markov chain theory, we re-
fer to Meyn and Tweedie [11]. We refer to Bertoin [12]
and Sato [13] for basic results and representations con-
cerning Lévy processes.

(¥,),., of Equation (1) and obtain the -mixing property
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2. Exponential Ergodicity of (V)
2.1. The Model

A bivariate Lévy process (ft,nt )t>0 defined on a com-
plete probability space (,F,P) is a stochastic process
in R®, with cadlag paths, (&,,7,)=(0,0) and station-
ary independent increments, which is continuous in
probability.

Consider the GOU process V, given by

t

[220)

V,=e (J;egs‘drylY +V0), t20.

Assume that ¥, is independent of (&,,7, )rz .- Let
4= e7(§‘7§5'), B =e* J.:ef“‘dr]u. 2
Then we have that
Vi = AtV + B(';hﬂ)h, h>0,n>0. 3)

Let n denote an integer and ¢ a real number. We can
easily show that ( A(’”’ B ) in Equation (2) is a
n=0

n+1)h > = (n+1)h
sequence of independent and identically distributed ran-
dom vectors and (7;)_, in Equation (1) is a time ho-
mogeneous Markov process with #-step transition prob-
ability function

PY(x,C)=P(V,eC|V, =x),xeR,Cec B(R),

where B(R) is a Borel o-field of subsets of real num-
bers R.

We temporally assume that 2> 0 is fixed. (V, )n>0
in Equation (3) can be considered as a discrete time
Markov process with n-step transition probability func-
tion P (x,C)=P(V, eClV,=x),n=1. (V,) , is
called the A-skeleton chain of (V) _, . A Markov process
(V). 18 ¢-irreducible if, for some o -finite meas-
ure ¢, > 27" pi (x,B)>0 for all xe R whenever
¢(B)>0. (¥,)., is said to be simultancously ¢ -ir-
reducible if any h-skeleton chain is ¢ -irreducible. It is
known that if (V,)t>0 is simultaneously ¢ -irreducible,
then any /-skeleton chain is aperiodic (Proposition 1.2 of
Tuominen and Tweedie [14]).

For fixed %> 0, we make the following assumptions:

(Al) 0<E()<E|é|<o and Elog’|g,| <.

(A2) E‘e*gh "<, E

- h "
e Ioeéﬁdm‘ < oo for some »>0.

Theorem 2.1 Under the assumption (A1), (V,,) _,
defined by Equation (3) converges in distribution to a
probability measure m which does not depend on V.
Further, m is the unique invariant initial distribution
fOV (Vnh )nzo'

Proof. The conclusion follows from Theorem 3.1 and
Theorem 3.4 in de Haan and Karandikar [1]. Note that if
the assumption (A1) holds, then it is obtained that
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E(logA,?)<O and E(log"|B)|) <o .0J

Remark 1 Assume that 0 < E(&,)<E|&,|<oo. Then
E10g+|77h| <o 1is also necessary for the existence of a
strictly stationary solution. (See Theorem 2.1 in Lindner
and Maller [6].)

Remark 2 Suppose that there exist a >0 and
p,q>1 with 1/p+1/g=1 such that

max{l,a}q <o

Y. (a)< O,E(eﬂ“ax{l’g’}pfl ) < 00,E|771

4

where W, () denotes the Lévy exponent of the Lévy
process &: W, () = log Ee “'. If in addition, E(gﬁ*) <o,
then assumptions (A1) and (A2) hold (Proposition 4.1 in
Lindner and Maller [6]).

2.2. Drift Condition for (V,,,) |

n20

A discrete time Markov process (X,) _  is said to hold
the drift condition if there exist a positive function g on R,
a compact set K, and constants v>0 and 0< p<I
such that

E(g(X,, )X, =x)< pg(x)-v, xeK*

and supE (g (X, )X, =x) <.
xeK
Theorem 2.2 Under the assumptions (A1) and (A2),
(Vi) given in Equation (3) satisfies the drift condition.
Proof. For notational simplicity, let 4, = A4),B, = By .
From assumptions, we have that E(log4)<0 and
E|Al|r <o forsome r>0.Then

E(|4])" et

as r—0 ( Hardy er al. [15]). Here E(log4,)<0
implies the, existence of »* <1, 0<r <r such that
p =E|4| <1. Now define a nonnegative test func-

tiongon Rby g(x)=|x|" +1.Then we have that
E(g(AV,+B,), =x)

= E|A1x+Bl|r* +1
“

<E|4| | +E|B| +1

X

=pg(x)+M,

where M = E|Bl|r —p +1<o, by assumption (A2).
Since g(x) increases to oo as |x| increases to oo,
for any v>0 , there exist p,0<p <p<Il and
k>0 with K= {x||x| < k} , such that

pg(x)+M < pg(x)-v, xeK". )
Clearly,
supE|A4x+B,[ <. (6)

xekK

Combining Equations (4)-(6), the drift condition for
V) oo holds. []
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2.3. Simultaneous ¢ -Irreducibility of (V)

120
For reader’s convenience, we state the following theo-
rems which play important roles to prove our main re-
sults.

Theorem 2.3 (Meyn and Tweedie [11]) Suppose that a
Markov chain (Xn )HZO has the Feller property. If
(X ., )HZO satisfies the drift condition for a compact set
K , then there exists an invariant probability measure. In
addition, if the process is ¢ -irreducible and aperiodic,
then the given process is geometrically ergodic.

Theorem 2.3 shows that the crucial step to prove the
geometric ergodicity of a Markov process is to show that
the given process is ¢ -irreducible and holds the drift
condition. In many cases, however, proving irreducibility
of a Markov process is an awkward task. Consulting the
following Theorem 2.4, irreducibility of the process can
be derived from connection between ¢ -irreducibility
and the uniform countable additivity condition. A Markov
chain (X,) s said to hold the uniform countable
additivity condition (Liu and Susko [16]) if its one-step
transition probability function satisfies that for any de-
creasing sequence G, @ inside compact sets,

lim supP(x, G, ) = 0 for every compact set K.
G, 1D xek

Theorem 2.4 (Tweedie [17]) Suppose that the drift
condition holds with a test set K and the uniform count-
able additivity condition holds for the same set K. Then
there is a unique invariant measure for (Xn )n>0 if and
onlyif (X,)  is ¢-irreducible. B

Let K= {x||x| < k} be the compact set defined in the

proof of Theorem 2.2.

Theorem 2.5 Under the assumptions (A1) and (A2),
(Vr);zo is simultaneously n-irreducible if for any h>0,
P(h)(x,~) has a probability density function p,(x,y)
(with respect to the Lebesgue measure u), which is
uniformly bounded on compacts for xe€ K .

supP(h) (

xek

< [, supp, (x,9)duu(v) = Mg - (G, ),

56,) = supf, p, (5.3)du()
Xe (7)

where M, :=sup{ph(x,y)|xeK,yeG1}<oo.

The inequality in Equation (7) and the condition that G,
is any sequence inside compact sets in B(R) with G, \N%)
imply that

1im,,_,ocsupxeKP(h) (x, G, ) <limasMg 'ﬂ(Gn ) =0.

Therefore the uniform countable additivity condition
holds for the compact set K. Theorem 2.4 and the exis-
tence of a unique invariant initial distribution for
(V),., vield the m-irreducibility of any A-skeleton
chain (V) _, -

To complete the proof, we need to show that the as-
sumption (A1) and (A2) hold for all %> 0. Since Lévy
processes have stationary and independent increments, it

is easy to show that the assumption (A1) and E|e"f" |r <oo
hold for all %> 0. It remains to prove that

»
< 00

Ele J.Oheés‘ dn,

for all #>0 with some r>0. We first define a finite
Lévy process (L) as follows:

t=0

L=mn+ ), (eiAgS —1)A77S

0<s<t

~t Cov(B,,.B,,), t20.

Then it is shown that V¢ >0,
A L
Joe dL =e ’Ioe dn,.

(See Proposition 2.3 in Lindner and Maller [6]). Without
loss of generality, we may assume that 0<r<I1 .
Choose any />0 . Then [/=nh+ah, where n is a

Proof. Let G, be any decreasing sequence inside nonnegative integer, 0<a <1 and A>0 1is in the
compact sets with G, @& . Then assumptions (A1) and (A2), we have that
g0 e |
Ele Ioe dn,
B R o Al g '
=FE .[Oe dz, E ;Lj_l)he dL, +Inhe dL,
_ g[Sy e g G [ (66w _ ,-
E/Z:;e .[(j—l)he d(Ls —Lijp) te hJ.”he d(L,~L,) 8)
< ~S(j-1)h g h g _ " ‘ -anl" ah _g "
S;Ee 4 EUOe dLs‘ +Ele EUO e dLS‘
=Y Ele | Ele J.Oheés‘dm +E |e’5”’1 " E|e I:hegs‘dm‘ < o0,
Al
Copyright © 2012 SciRes. TEL
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The first inequality in Equation (8) follows from station-
ary and independent increments property of Lévy proc-
esses ()., and (L,)_, .

Therefore for any h>0, h-skeleton chain (7,,)
is m-irreducible and hence (¥;)_, is simultaneously

t
n-irreducible and (V) _ is aperiodic.

n=0
2.4. Exponential Ergodicity of (V,) _,
The next theorem is our main result.

Theorem 2.6 Suppose that the assumptions of Theo-
rem 2.5 hold. Then the GOU process (Vt)tzo in Equa-
tion (1) is exponentially ergodic and holds the exponen-
tially B -mixing property.

Proof. Theorem 2.5 shows that any /A-skeleton chain

(V1) 18 m-irreducible and aperiodic. Note that

(V4),2o 1s a Feller chain, that is, E(f(I/(n+])h) V,= x)
is a continuous function of x whenever f is continuous
and bounded. Therefore any nontrivial compact set is a
small set. Theorem 2.2 ensures that (V)  holds the
drift condition and hence Theorem 2.5 and Theorem 2.3
imply that (V,,)  is geometrically ergodic, that is,

there exists a constant p €(0,1) such that
[P () = (] = 0( ") ©)

m-a.a. x as n —> o, where |||| denotes the total varia-
tion norm. Under simultaneous = -irreducibility condi-
tion of (V[)t>0 , Equation (9) and Theorem 5 in Tuomi-
nen and Tweedie [14] guarantee the exponential ergodic-

ity of (7)., in the following sense:
[P () =) = 0(e),

as t—>o, for some >0 and m-a.a. x. [ -mixing
property for the continuous time GOU process (V; ).,
is also obtained.

2.5. Examples

In this example, we assume that & = pt,p>0.1f 7, is
any Lévy process, then V, in Equation (1) is the Lévy-
driven OU process which is studied by Barndorff-Nielsen
and Shephard [4]. In particular, if 7, is a subordinator,
that is, 7, has nondecreasing sample path, finite varia-
tion with nonnegative drift and Lévy measure concen-
trated on (0,), then (V, ). is called the Lévy-driven
stochastic volatility model. For the case that 7, is a
Brownian motion, ¥, is the classical OU process. Let
IT, be the Lévy measure for the process 7, and as-

sume that E|77h|r <o for some h>0 and »>0.
Then J.‘ ‘>110g|z|l_[,7 (dz) <. Here we can easily show

that the assumptions (Al)and (A2) hold. Theorem 2.2
implies that (¥,,)  holds the drift condition. More-

nh
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over, it is known that P(’)(x,-) admits a C,;° density
)2 (x,y) for each #>0 (Sato and Yamazato [18]) and
by Theorem 2.5, (V,,)  is ¢ -irreducible. Abov

statements hold for anynzgz >0 and hence (V,)_, fis
simultaneously ¢ -irreducible. Therefore exponential
ergodicity and exponential £ -mixing property of

(V )t2 , follow from Theorem 2.6.

t

3. Conclusion

Recently, time series models in finance and econometrics
are suggested as continuous time models which are par-
ticularly appropriate for irregularly spaced and high fre-
quency data. The GOU process is a continuous time sto-
chastic process driven by a bivariate Lévy process. The
stationarity, moment conditions, autocovariance function
and asymptotic behavior of extremes of the process are
studied in [6,7], but exponential ergodicity does not seem
to have been investigated as yet. In this paper, we give
sufficient conditions under which the process is expo-
nentially ergodic and f -mixing. The drift condition and
the simultaneous ¢ -irreducibility of the process that is
induced from uniform countable additivity condition play
a crucial role to prove the results. Our results are used to
show, in particular, consistency and asymptotic normal-
ity of estimators.
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