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Abstract 
 
In this paper, a new optimization-based approach to constructing a poverty index is considered. From a gen- 
eral perspective, first and second order conditions based on a general poverty intensity function are derived. 
Then using specific intensity functions defined by [1,3] respectively, we specify related necessary and suffi- 
cient conditions and the underlying poverty indices. An extension based on a large class of intensity function 
is also investigated. 
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1. Introduction 
 

How poverty is measured is a central topic in economic 
and policy analyses. This paper contributes to the litera- 
ture on this topic by providing methods for measuring 
poverty in a static environment. In particular, one can 
define a general poverty index and show that the existing 
ones are some special cases of a more general index. An 
extension is also proposed.  

The remainder of the paper is organized as follows: a 
general approach to constructing a poverty index is con- 
sidered in Section 2. In particular; necessary as well as 
sufficient conditions to determine the number of poor 
persons are derived. In Section 3 based on specific inten- 
sity functions, conditions to determine the number of poor 
persons are specified. In Section 4, an extension based on 
a more general poverty intensity function is proposed. 
Finally, some concluding remarks are presented in Sec- 
tion 5. 

 
2. A General Approach to Construct A 

Poverty Index 
 
2.1. The Problem 

 
In general poverty issue can be seen as an optimization 
problem of the so called average intensity poverty func-
tion defined as . Specifically, the prob-
lem is to minimize a constrained program, 
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where r  is a given strictly positive value which 
represents the level richness of the  individuals and 

i  is the income of individual . The above minimiza-
tion program is also equivalent to, 
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where  represents the Lagrangian and   the Lagrange 
multipliers. Equation (2) can be solved to determine the 
number of poor persons, . Q

 
2.2. Solution 

 
To solve the above minimization program, first and sec- 
ond order conditions are required.  

Theorem 1 Necessary Condition 
A necessary condition to get a critical point to problem 

(1) or (2) is that, 
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Proof:  
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The system of equations is 
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and . From the first equation one gets, 2
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Summing over , one gets, i
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Theorem 2 Sufficient Condition 
Let  and  g  be two functions of class  where 
 is the poverty intensity function and  
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r . Suppose that A is defined such that 
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Assume that , then, if    0g A 

   i1 det 0, i 2, ,M A    Q         (4) 

i.e., if all determinants of the bordered principal minors 
 iM A  are negative, then   has a strict minimum 

subject to the constraint A  g Y 0 . 
Proof: (A general proof is given in Proposition 3) 
Since one is dealing with a constrained optimization 

problem, one can consider the matrix of bordered prin-
cipal minors  iM A  of A which is defined as, 
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and therefore, 
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One can then deduce the following proposition: 
Proposition 3  
Under the assumptions of Theorem 2, if 
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Proof:  
One just needs to show that there exists a neighbor-

hood  such that AU AX U S   and X A ,  
   X A  , with   0XQS X g   . 
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Q  is a continuous function on A . Assuming  
is a closed of non empty interior and bounded set; 
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By continuity of , there exists a neighborhood 
 such that: 
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3. Specific Poverty Indices 
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Proposition 4 
Consider [1]’s average intensity function. Th

number of poor persons in a population of  individu-
al e constraint is obtained as, 

en, the 
N

s given a revenu

 
 2

1

i 1
1,

1
Q

j

Q
r

Z Q j


 


     

i 1, , ; 1, ,Q Q N  

      (10) 

Proof: (Straightforward) 
 
3.3. Forster, Greer and Thorbecke’s (FGT) 

, 

Solution (1984)  
 
[2] propose the following average intensity function
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where and the other parameters are 
defi to verify th
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average intensity function is strictly convex while for 

10    quadratic form is negative 
definite and therefore the [2] average intensity function 
is strictly concave. The [2] result is obtained as follows, 
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Using Theorem 2, one immediately gets 
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Consider [3]’s average intensity function. Th
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4. An Extension 
 
C neral average intensity func-
tio is a regular function which 
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et the Taylor expansion of the 

tion at
g co

onsider  .,.  a more ge
. Assume that  .,.  n

can be decomposed usi
ector origin, one can g

ng a 
v
above func  any order. Then, using regression tech-
niques, the underlyin efficients can be estimated. In 
this case, it is important to get a dispersion measure, i.e., 
the variance which can then be minimized thereafter.  

In this paper, for simplicity, one considers Taylor ex-
pansion of order 1 only which gives very interesting re-
sults.  

Specifically, consider an average poverty intensity 
function which is derivable in  , ,A Z Z   (vector 
A  has Q  columns) and which is such that the deriva- 

tives of superior orders are null in A . Note that the tech- 
niques proposed in this paper can be used only in the 
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able to get a Taylor expansion in th ghborhood of the 
origin  0 0, ,0  . The general intensity function con- 
sidered is, 

   

 condition is n

e nei
ie

 1

1
, ,

Q j

j

Z Y
Y f N j H

H Z


 

 
   

 
     (20) 

where  ,H Q N ,  , f and  are some given func-
tions an e defined as previously. 
Its Taylor expansion is, 
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By setting and assuming that the minimiza- 
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5. Final Remarks 
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rived the first and second order conditions to get such an  

1

1, ,

jj
Z

Q N









     (28) 

Proof: (Straightforward). 
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