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Abstract 
In many cases randomness in community detection algorithms has been avoided due to issues 
with stability. Indeed replacing random ordering with centrality rankings has improved the per-
formance of some techniques such as Label Propagation Algorithms. This study evaluates the ef-
fects of such orderings on the Speaker-listener Label Propagation Algorithm or SLPA, a modifica-
tion of LPA which has already been stabilized through alternate means. This study demonstrates 
that in cases where stability has been achieved without eliminating randomness, the result of re-
moving random ordering is over fitting and bias. The results of testing seven various measures of 
centrality in conjunction with SLPA across five social network graphs indicate that while certain 
measures outperform random orderings on certain graphs, random orderings have the highest 
overall accuracy. This is particularly true when strict orderings are used in each run. These results 
indicate that the more evenly distributed solution space which results from complete random or-
dering is more valuable than the more targeted search that results from centrality orderings. 
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1. Introduction 
Many real world systems and networks can be represented by graphs of edges and nodes. These systems include 
such diverse areas of study as social networks, html structure, and highway systems. One machine learning task 
which is often performed on these graphs is community detection in which algorithms attempt to find groups of 
nodes which have a significant difference in density between intragroup edges and intergroup edges, otherwise 
known as communities. These communities often provide some useful information about the elements represented 
by the nodes of a graph. For example communities in social network graphs likely define distinct social groups 
or subgroups. Similarly communities in an html graph might represent pages on the same domain or the same 
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topic. A variety of techniques have been developed to find good communities in graphs; however, many of these 
methods are suitable only for finding discrete communities or communities with disjoint sets of nodes. This un-
fortunately is not how true communities form in many networks. In social networks, it is quite common for an 
individual or node to belong to multiple friend groups or communities. Similarly in a co-authorship network it 
would be expected that certain authors who are focused on interdisciplinary studies might belong in roughly 
equal parts to two or more of the communities for the disciplines in which he is involved. This problem has 
largely been addressed through modifications to existing discrete community detection algorithms. 

One of the best known and simplest community detection algorithms is LPA or Label Propagation Algorithm 
[1]. Using this technique each node begins with a unique label. During each iteration, each node updates itself to 
the label which occurs most frequently amongst its neighbors choosing randomly among the most common if 
there is a tie. This continues until no labels are changed during an iteration. While this method produces surpri-
singly high accuracy its primary weaknesses are its lack of stability given that the ending condition may never 
be reached, and its inability to detect overlapping community structures. Both of these issues were corrected in 
SLPA or Speaker-listener Label Propagation Algorithm. SLPA keeps record of all of the labels it has received 
from its neighbors rather than simply the most recent label. This additional information allows for the detection 
of nodes with high belonging to multiple communities, as well as a change in termination requirements. Because 
the label received in each iteration is recorded, SLPA is able to run for a specified number of iterations without 
risking its detection results by terminating during a poor iteration. Despite its simplicity this algorithm has re-
mained state of the art in overlapping community detection [2]. 

It has been demonstrated that centrality functions can improve the community detection results of standard 
LPA. Therefore in this paper we combine SLPA with a variety of centrality functions on an assortment of net-
works with varied structures in order to determine the effects of centrality functions used in conjunction with 
SLPA. This study includes among others degree, betweenness, and closeness centrality functions. The commu-
nity detection quality of SLPA for each centrality function and graph combination is given in Section 3.4. Prior 
to performing these tests however it was necessary to determine the convergence rate of SLPA on each of the 
chosen network graphs as SLPA unlike LPA requires input to determine the number of iterations of label prop-
agation will be performed. These results are summarized in Section 3.1. The social networks, centrality func-
tions and evaluation metrics used in this study are described in detail in the following section. 

2. Data and Methods 
2.1. Social Networks 
This study makes use of four social networks, karate, pilgrim, dolphins, and high school. Karate represents the 
social structure of a karate club from the 1970’s and is composed of thirty-four individuals and seventy-eight 
connections; it is perhaps the most commonly referenced social network [3] (Figure 1). The pilgrim network 
represents the friendships of a high school senior class. It contains thirty-four nodes, one-hundred twenty-eight 
edges, and an assortment of community types from densely interconnected communities and cliques, to a sparse 
fringe community [4] (Figure 2). The dolphins graph is a social interaction graph representing contact time be-
tween dolphins within a pod off the coast of New Zealand. It is made up of sixty-two nodes and one-hundred 
fifty-nine edges [5] (Figure 3). Finally the largest network used in this study was high school with sixty-nine 
nodes and two-hundred eighteen edges. This network represents a large body of students at a single high school 
ranging from seventh to twelfth grade [2] (Figure 4). These networks were selected for their diversity in struc-
ture and for their small size. Diversity should prevent result bias towards certain graph structures, while a small 
size will allow repeated testing to account for random variance in the results of label propagation. 

2.2. Centrality Functions 
In order to evaluate the benefits of applying centrality to the ordering of nodes for propagation, seven different 
centrality functions were selected. These include degree centrality, subgraph centrality, closeness centrality, 
betweenness centrality, alpha centrality, leadership quality, and Page Rank. Degree centrality was the first and 
simplest measure of centrality. In undirected graphs such as those used in this study, the centrality of a node is 
merely its degree. Subgraph centrality is based on the number and size of all closed walks within the graph that 
contain each node [6]. Similarly closeness centrality is based on the number of steps required to access every 
other node from each node [7]. Betweenness centrality on the other hand evaluates nodes based on the number  
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Figure 1. Karate social network. 

 

 
Figure 2. Pilgrim high school network. 

 

 
Figure 3. Dolphins interaction network. 
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Figure 4. High school network. 

 
of shortest paths passing through them [8]. Leadership quality introduced by B. Valyou et al. in [9] weights 
nodes based on their aggregate neighborhood similarity with each node in their neighborhood. Alpha centrality 
is a modification of the eigenvector centrality function which weights nodes based on their degree and the de-
gree of their neighbors [10]. Finally PageRank is a variant of eigenvector centrality which weights connections 
in a slightly different way [11]. Each of these centrality functions rate the centrality of each node differently and 
as a result will often result in different orderings for the purpose of ordering nodes for label propagation. 

2.3. Speaker-Listener Label Propagation Algorithm 
In the original Label Propagation Algorithm (LPA), each node is initially assigned a unique label. During each 
iteration each node is visited in a random order, and when visited assigns itself the label most common amongst 
its neighbors. In the case of a tie one label is selected randomly from the set of maximal labels. This process 
continues until each node’s label is a most common label amongst its neighbors. Each node is then assigned to a 
community based on the label it currently has after the final iteration. This technique is very effective for its 
simplicity; unfortunately however it can produce disconnected communities and is rather unstable due to its un-
certain termination condition. 

The Speaker-Listener Label Propagation Algorithm or SLPA is an extension of the standard label propagation 
algorithm which attempts to imitate the natural process of human communication for information dissemination 
[1]. Like LPA, SLPA begins by assigning each node a unique label. Similarly at each iteration every node is vi-
sited in a random order. When visited however, rather than simply accepting the maximal label amongst neigh-
bors, the node polls its neighbors for labels. Each neighboring node then randomly selects one label it has pre-
viously received with proportional probability to the number of times it has been received. The listening node 
then chooses the most common label from these received labels. Again in the case of a tie one label is selected 
randomly from the maximal set of received labels. This algorithm is summarized in Figure 5. The process of 
maintaining a list or table of received labels instead of simply the most recent label greatly stabilizes the results 
of SLPA. It also removes the necessity of LPA’s uncertain termination condition and instead substitutes a simple 
parameter for the number of iterations which should be completed. This is made possible by the method for as-
signing nodes to communities after propagation is completed. Since a count for the number of labels received is 
available, nodes may either be assigned to the most common community in their collection of received labels, or 
may be assigned to multiple communities based on a percentage of labels received threshold. In either case gen-
erally very few iterations are needed to reach optimal community detection. SLPA is then a stabilized version of 
LPA which has been adapted to find overlapping community structures. It was selected for its stabilization since 
the goal of this study is to evaluate the effects of centrality ordering on label propagation in cases where the al-
gorithm does not need to be stabilized. It has already been demonstrated that centrality ordering can increase 
stability; however there are no indications of its other effects on community detection quality [12]. 
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Figure 5. SLPA pseudo-code. 

 
Ordering nodes according to centrality was performed as a two-step process. First centrality values were cal-

culated for each node using a selected centrality function. Then nodes were selected for ordering with probabili-
ty proportional to their centrality value. This resulted in high centrality nodes appearing more frequently early in 
the ordering and low centrality nodes usually occurring later in the ordering while still maintaining some level of 
randomness. The second step of this process was repeated at each iteration resulting in a new ordering each 
time. 

2.4. Community Quality Metrics 
There are several ways to measure the quality of detected communities in a graph. By far the most popular me-
thods for this task on discrete community partitions are normalized mutual information and modularity. Mod-
ularity evaluates the goodness of a community structure by looking at intercommunity edges and intracommun-
ity edges within a graph [13]. Normalized mutual information on the other hand compares the community vector 
of the algorithm’s partitioning with a known ground truth partitioning of the network [14]. A few different 
adaptations of modularity have been suggested for measuring the goodness of overlapping communities. For this 
study we will adopt the Modularity EQ method formula presented by Shen et al. [15]. Each of these metrics has 
a slightly different method of measuring different facets of the goodness of a community partitioning and will 
provide full insight to the quality of communities generated by our algorithms. 

3. Results 
All testing was done a collection of identical machines operating Linux Mint 17. For the purpose of this study 
the clock speed and available RAM of these machines is irrelevant as convergence and efficiency are measured 
in number of runs and number of iteration per run while all processing takes place on the JVM version 1.7.0_79. 
SLPA was implemented in Java and received centrality values from the built in centrality functions included in 
the igraph package of R. Random number generation was handled by the native SecureRandom package of Java. 

3.1. Convergence Rates of SLPA Using Different Centrality Metrics 
In order to determine how quickly SLPA converged on an accurate community partition for each graph, SLPA 
was run with a varying iterations parameter from five to one-hundred. SLPA was run twenty-five times at each 
number of iterations, and the median value was kept to better gauge how an average run at that iteration count 
would perform. This was repeated for each of the seven centrality functions, each time ordering nodes for label 
propagation based on their ranking from the selected centrality function using the process described in the pre-
vious section. The median overlapping modularity value on every graph for each number of iterations and cen-
trality function are shown in Figures 6-9. It is clear although perhaps surprising that on these small networks 
convergence occurs for most algorithms after only five or ten iterations. For this reason all subsequent accuracy 
tests were run with only twenty-five iterations to minimize runtime without compromising accuracy. 

3.2. Community Partitioning Quality of SLPA Using Various Centrality Measures 
Each centrality function was used in running SLPA one-hundred times on each graph. The results of these runs 
were recorded and evaluated based on three metrics: normalized mutual information, modularity, and overlap  
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Figure 6. Median overlapping modularity value of SLPA on the karate network with different iteration parameters. 

 

 
Figure 7. Median overlapping modularity value of SLPA on the pilgrim network with different iteration parameters. 

 

 
Figure 8. Median overlappingmodularity value of SLPA on the dolphin network with different iteration parameters 

 
modularity. The median value for each of these metrics was selected and presented in Figures 9-13 to provide a 
clear picture of the average performance of SLPA using each centrality function. It is quickly apparent that few 
of the centrality functions have a significant effect on community detection quality. In fact the only clearly sig-
nificant centrality function is betweenness which drastically reduces the quality of community partitions. This is 
likely due to this functions emphasis on shortest paths which will cause it to identify bridge nodes between 
communities. If these nodes are allowed to propagate first it can result in labels flowing between communities 
more easily than they might otherwise. This likely is the cause of merging communities and poor community 
structure in these runs of SLPA. Several other functions regularly outperformed random ordering on some 
graphs and underperformed on others. This may indicate that different centrality functions are more valuable on 
certain graphs. This may be a sign of over fitting results towards a subset of graphs with certain characteristics. 
For this reason it appears that completely random ordering is optimal for SLPA since its more evenly distributed 
solution space can account for all possible graph structures. 
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Figure 9. Median overlapping modularity value of SLPA on the high school network with different iteration parameters. 

 

 
Figure 10. Community partition quality for karate by centrality function used for ordering label propagation in SLPA. 

 

 
Figure 11. Community partition quality for pilgrim by centrality function used for ordering label propagation in SLPA. 

 

 
Figure 12. Community partition quality for dolphins by centrality function used for ordering label propagation in SLPA. 

4. Conclusions 
The results of this testing show that for a variety of label propagations which have already been stabilized, or-
dering nodes for label propagation based on centrality functions do not improve predictive quality. In fact in 
most cases it slightly decreases performance when compared across a variety of different social network structures.  
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Figure 13. Community partition quality for high school by centrality function used for ordering label propagation in SLPA. 

 
This is especially true of betweenness centrality which significantly reduces performance in almost all cases. 
The reason for this becomes quite apparent when one considers how reordering can effect community detection. 
Since betweenness has a tendency to give priority to bridge nodes which border multiple communities, allowing 
these nodes to propagate first increases the chances of a label overflowing its community bounds skewing prop-
agation results. Other centrality functions may also cause this bias on certain graphs where bridge nodes have 
other qualities such as high degree or closeness centrality. This demonstrates that the primary value of ordering 
label propagation based on centrality is in its stabilizing effect; however, other methods such as those employed 
by SLPA may prove more effective since they do not as a consequence negatively affect community partitioning. 
For this reason we assert that in the case of SLPA random node ordering is the optimal ordering when testing 
across different graph structures. 

Further research in this topic could focus on the application of centrality functions to other versions of label 
propagation which have not yet produced stable termination. Centrality based order has already demonstrated 
that it can have a stabilizing effect on standard label propagation and this study demonstrates that centrality or-
dering has little or no negative effect on final community detection. Centrality ordering therefore could enhance 
the stability of other label propagation algorithms without reducing the effectiveness of their clustering. 
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