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ABSTRACT 

In this work we propose a centrality measure for networks, which we refer to as Laplacian centrality, that provides a 
general framework for the centrality of a vertex based on the idea that the importance (or centrality) of a vertex is re-
lated to the ability of the network to respond to the deactivation or removal of that vertex from the network. In particu-
lar, the Laplacian centrality of a vertex is defined as the relative drop of Laplacian energy caused by the deactivation of 

this vertex. The Laplacian energy of network  with n  vertices is defined as G   2

=1
=

n

L ii
E G  , where i  is the 

eigenvalue of the Laplacian matrix of . Other dynamics-based measures such as that of Masuda and Kori and Pag-
eRank compute the importance of a node by analyzing the way paths pass through a node while our measure captures 
this information as well as the way these paths are “redistributed” when the node is deleted. The validity and robustness 
of this new measure are illustrated on two different terrorist social network data sets and 84 networks in James Moody’s 
Add Health in-school friendship nomination data, and is compared with other standard centrality measures. 
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1. Introduction 

The recent growth in the use of Social Network Analysis 
(SNA) to understand complex networks demonstrates the 
importance of the implicit connections within groups that 
arise from day to day social activity. Similarly, our in-
creasing interest in observing, detecting and analyzing 
terrorist networks leads us to be extremely interested in 
understanding who is central to the functionality of these 
groups that form around the common goal of engaging in 
terrorist activities. As a result, researchers and analysts 
from several areas have a strong interest in understanding 
centrality within networks for both academic and opera-
tional reasons. 

SNA provides us tools for mapping and measuring re-
lationships and flows between people, groups, organiza-
tions, computers, URLs, and many other connected bits 
of information/knowledge. The vertices in political net-
works, of which terrorist networks have emerged as one 
of the most salient, are typically people, organizations, or 

groups while the edges show relationships, connections, 
or flows between the vertices. SNA provides both a vis-
ual and a mathematical analysis of these interrelation-
ships. Recent studies of networks in political science 
range from such diverse topics as international conflict 
[1], terrorism [2] and policy networks [3] to disciplinary 
introspection about job placement in political science [4]. 

To understand network structure and the entities being 
studied, we often start with an evaluation of their loca-
tion relative to all other actors in the network. For net-
works, the most readily examined measure of location 
means how close is the object to the center, or centrality. 
The finding of some important vertices with high central-
ities in order to characterize the properties of the net-
works has significant uses in many fields. These include 
synchronization transition, the spread of epidemics, and 
the transmission of information. For example, in diffu-
sive systems the vertices with large degree play a crucial 
role, which are decisive in resolving the traffic jam at a 
bottleneck [5]. 

The ability to measure centrality in social networks *Corresponding author. 
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has been a particularly useful development. These ideas 
have materialized in many well known centrality meas-
ures such as degree centrality, along with closeness, be-
tweenness, eigenvector, subgraph centrality, Katz pres-
tige and Bonacich centrality, etc. These measures are 
certainly not the only measures of centrality, and it is 
clear that these measures capture different aspects of the 
positioning of the nodes [6]. Given how varied networks 
can be, it is not surprising that there are many different 
ways of viewing position, centrality or power in a net-
work. But note that these standard methods also have 
their own weakness. For example, as have been stated, 
“The simplicity of degree method is an advantage and 
also is an disadvantage: only the local structure around a 
vertex is calculated and it does not take into considera-
tion the global structure of the network; for example, 
although a vertex might be connected to many others, it 
might not be in a position to reach others quickly to ac-
cess resources, such as information or knowledge [7]”; 
“Betweenness method considers the global network 
structure and also can be applied to networks with dis-
connected components, but it is not without limitations; 
for example, vertices in a network that generally do not 
lie on a shortest path between any two other vertices will 
receive the same score of zero [7]”. Katz prestige and 
Bonacich centrality both depend on the choice of pa-
rameters heavily. Besides, these existing measures de-
scribe either the local environment around a vertex (e.g., 
degree centrality) or the global position of a vertex in the 
network (e.g., closeness, betweenness and subgraph cen-
trality). For example, from its definition, “subgraph cen-
trality” tends to find the center (s) of an entire network 
when in fact we are really interested in finding the center 
for each community within the network. If the network 
consists of more than two communities with dramatically 
different sizes, the nodes in the smaller community 
would exhibit lower “subgraph centrality” ranks than the 
ones in larger community, so that the leader in smaller 
community will not rank highly overall. Thus, an inter-
mediate (between local and global) characterization of 
the vertex centrality has been claimed as a necessity for 
the study of, for example, the food web in [8,9] if species 
to community relations are to be understood. An inter-
mediate centrality approach is also suggested to be the 
most appropriate if the relative importance of vertex is to 
be quantified in social networks. 

In this paper, based in part on the basic idea of spectral 
graph theory, we present a novel centrality method that 
takes into account the Laplacian energy of the graph, a 
quantity introduced in [10] which reflects the graph's 
internal connectivity. In particular, the Laplacian central-
ity of a vertex is defined as the relative drop of Laplacian 
energy in the network caused by the deactivation of this 
vertex from the network. Theorem 1 makes precise the  

way in which the Laplacian centrality of a vertex can be 
used to reveal its importance in a network. This result 
says that the Laplacian centrality of a vertex not only 
takes the local environment around it into account but 
also the larger environment around its neighbors, making 
it an intermediate between the global and local charac-
terizations of the position of a vertex in a network. We 
investigate the validity and robustness of this new meas-
ure by illustrating this method on three social network 
data sets of strong theoretical and substantial policy in-
terest. Examining two terrorists networks (those involv-
ing the Bali Nightclub bombing in 2002 [11] and the 
9/11 hijackers network [12]) and all the 84 networks in 
the Add Health in-school friendship nomination data 
from James Moody, we compare the results of our 
Laplacian centrality measure to other standard centrality 
measures and show its reliability. 

This paper is organized as follows. We first give some 
notations and terminology in Section 2. In Section 3, we 
introduce the new measure—Laplacian centrality, whose 
simple calculation is presented in Section 4 based on 
some structural studies of graph theory. Analytical and 
numerical results on two different networks will be 
shown in Section 5, where the rankings of vertices for 
different centrality measures are presented. By compar-
ing with outputs of other methods, the effectiveness of 
Laplacian centrality method is supported by both known 
facts (intelligence information) and statistical analysis 
(consensus comparison), see both Section 5 and Section 
6. The computational complexity of various centrality 
methods are further compared and discussed in Section 7, 
which will show that Laplacian method has the lower 
time complexity making it quite advantageous for large 
scale networks. Conclusions will be reported in Section 
8. 

2. Graph Theory Notation and Terminology 

In most contexts, a social network can be effectively 
represented by a graph where the vertices are the indi-
viduals, and the edges represent the social links (connec-
tion). In this paper, we consider the symmetric case 
where social networks are represented by undirected 
graphs. 

Let  be an undirected graph, consisting of a set of 
 vertices 

G
n    1 2= , , , nV G v v v  and a set of  
edges. The number of edges that are incident to a vertex 
is called the degree of the vertex. Let  

m

   ,=
i j n n

A G a  

be the adjacency matrix of the graph , where the ele-
ment  equals 1 if there is an edge between vertices 

 and , and 0 if there is not. 

G

,i ja
ji
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3. Laplacian Centrality  

In the following, we will first introduce the definition of 
Laplacian matrix and Laplacian energy for a graph, then 
define the Laplacian centrality for a vertex. 

Let G be a simple graph (without graph loops or mul-
tiple edges) of  vertices, and  n

   

1

2
1 2

0 0

0 0
= , , , =

. . . .

0 0

n

n

d

d
D G diag d d d

d

 
 
 
 
 
 








 

be the diagonal matrix with the vertex degrees  
 of its vertices 1 2 . Define 

 as the Laplacian matrix of the 
graph  (note that the adjacency matrix 

1 2, , , nd d d

  =L G D G
G

, , , nv v v
    A G

 A G  is 
defined in Section 2). 

The following is a short list of some properties about 
the Laplacian matrix  [13].  L G

Properties 
1)  is symmetric, singular and positive semi- 

definite. 
 L G

2) All eigenvalues i  are real and nonnegative. 
3) The smallest eigenvalue = 0n . 
4) The multiplicity of zero eigenvalues equals the 

number of connected components of . G
Definition 1 If G is a graph of  vertices, and 

1 2

n
, , , n    are the eigenvalues of its Laplacian matrix. 

The Laplacian energy of  is defined as the following 
invariant:  

G

  2

=1

= 
n

L i
i

E G  . 

Lemma 1 [10] For any graph G  on  vertices 
with vertex degrees , we have  

n

1 2, , , nd d d

   2

=1

= 
n

L i i
i

E G d d . 

Lemma 2 [10] If H is an arbitrary subgraph of a 
graph G, then .     L LE H E G

We will see from the above lemmas Laplacian energy 
reflects the internal connectivity of a network. Thus, the 
relative drop of Laplacian energy in the network caused 
by the deactivation of this vertex from the network can 
be easily regarded as a “signal” to show the importance 
of the removing vertex in the whole network. 

Definition 2 If  is a graph on  vertices 

1 2 , let 
G n

{ , , , } nv v v H  be the graph obtained by remov-
ing vertex  from . The Laplacian centrality iv G L

iC  
of vertex  is defined as  iv

    = =L
i Li

C E E G E H  L  

Obviously, by Lemma 2,  must be 
nonnegative. 

   L LE G E H

4. Calculation of Laplacian Centrality, a  
Graph Theory Result 

4.1. Graph Theoretical Descriptions 

Theorem 1 If  is a graph of  vertices, then the 
Laplacian centrality with respect to  is  

G n
v

     
 

 2= = 2L
v G Gv

v N vi

C E d v d v d v


    G i , 

where  N v  is the set of neighbors of  in G  and v
 iGd v  is the degree of  in .  iv G

 
Proof. Assume that the vertex set of  is 

1 2 , and there are  edges in . It is well 
known that . Then  

G
, , , nv v v m

m
G

n n

 =1
= 2

n

G ii
d v

        2 2

=1 1

= = 2L G i G i G i
i i

E G d v d v m d v


   . 

Without loss of generality, assume  1= H G v . 
Note that there are  1n  vertices  and  2 , , nv v

 1 Gm d v  edges in H .  
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i

Let  1N v  be the neighborhood of vertex  in G , 
the following is obvious:  

1v

     
 
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and  
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Thus, the drop of Laplacian energy with respect to  
is  

1v
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From Theorem 1, we notice the following facts: 
First, the Laplacian centrality agrees with the standard 

measures on assignment of extremes. For example, it 
gives the maximum value to the central vertex of a star, 
and equal value to the vertices of a cycle or a complete 
graph. 

Second, it is well known that the degree centrality of 
 only considers the information contained in the num-

ber of vertices which can be reachable from  directly. 
The Laplacian centrality of a vertex involves the infor-
mation of vertices that can be reachable to  within two 
steps and as a result the Laplacian centrality of a vertex 
takes not only the local environment around it into ac-
count but also the larger immediate environment around 
its neighbors. It is thus an intermediate measure between 
global and local characterizations of the position of a 
vertex within networks. Because of this we should an-
ticipate that it will reveal differences in network structure 
that emerge out of significant local influence upon areas 
of the graph. Intuitively, this means that we should ex-
pect the Laplacian centrality to yield a more useful vertex 
characterization when the overall graph structure has 
subgroups that contribute disproportionately to the over-
all goals of the network. Hence we should see an increase 
in the relative importance of actors whose removal from 
the network would do the most damage to the graph 
structure. In the case of monitoring terrorist groups, La- 
placian centrality may offer significant operational coun- 
terintelligence benefits due to its strong association with 
vertex inactivation. These expectations have been veri- 
fied by the experimental results in Section 5. 

v
v

v

4.2. Comparison with Local and Global  
Centrality Methods 

In this section, we will give two simple examples to 
show the differences between Laplacian methods with 
the popular existing centrality measures respectively. 
Here, degree method and subgraph method are chose to 
represent local and global standard method respectively. 

Please see Figure 1 for the first example. Based on 
degree centrality,  has higher ranking than v  be-
cause the degree of  is 4 while the degree of  is 3.  

u
u v

 

Figure 1. Example 1 for comparison of degree centrality 
and Laplacian centrality method. 
 
But based on Laplacian method,  would have higher 
ranking than  because  

v
u

     
 

 2 2 3G G G iu
v N ui

E d u d u d v


     6  

     
 

 2 2 4G G G iv
v N vi

E d v d v d v


     2  

Please see Figure 2 for the second example. Centrality 
method based on global characterization of network 
tends to find the center(s) of whole network. But at the 
most time what we are really interested is to find the 
center for each community in the network. If the network 
is consist of more than two communities and with dra-
matically different sizes, the nodes in smaller community 
would get lower ranks than the ones in larger community, 
so that the leader in smaller community will not come up 
with high rank. We specify this fact by the example in 
Figure 2. The network is consisting of two communities 
with centers 60 and 10 respectively. From the following 
table, we will see that based on Laplacian method, we 
always can find the two communities’ centers ( # 10 and 

60), but with subgraph centrality method, all nodes in 
the left bigger community all get higher ranks than nodes 
in right smaller community, which will regard node  
11 as the second center of the network wrongly. 

#

#

 

node# Laplacian method subgraph method 

60 1st 1st 

10 2nd 51st 

11 3rd 2nd 

 
Here we only present particular examples which show 

that sometimes local or global centrality methods can not 
give the reliable results. Thus in practice, we need inter-
mediate method often. 

5. Applications and Experimental Results 

To demonstrate the effectiveness of Laplacian centrality, 
we will test it on two terrorist networks: the Jemaah 
Islamiyah Network collected by Stuart Koschade [11],  
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Figure 2. Example 2 for comparison of subgraph centrality and Laplacian centrality method. 
 
and the 9/11 hijacker network assembled by Valdis 
Krebs [12], and all the 84 networks in the Add Health 
in-school friendship nomination data. We compare the 
Laplacian results with the most classical methods in-
cluding degree, closeness, eigenvector and betweenness 
centrality methods except Katz prestige and Bonacich 
centrality methods, because the latter two all depend on 
the parameters users choice heavily, which means dif-
ferent choice of parameter would affect the results sig-
nificantly. 

5.1. Data set 1: Jemaah Islamiyah Graph—Bali  
2002 Terrorist Attack 

The Jemaah Islamiyah network is comprised of 17 mem-
bers of the group that participated in the nightclub bomb- 
ing on December 2002, Bali, Indonesia. The network is a 
good example of a tight network with two clear clusters 
(cliques) and a significant actor with strong measures of 
betweenness and closeness. This terrorist attack was also 
studied intensively in [14]. 

5.1.1. Output Analysis Based on Known Evidence  
The information provided by the four standard centrality 
measures and our Laplacian centrality measure as applied 
to the 17 members of the terrorist group directly involved 
in the operation are provided in Table 1, where the cen-
trality scores are normalized (dividing by the highest 
score of each method). We also list the rank for each 
terrorist. Note that frequently actors will exhibit the same 
scores for a number of measures. In the case when ties 

occur, we usually assign them the same rank. For exam-
ple, Sarijo, Imron, Dulmatin, Azahari, Patek and Ghoni 
all get the same Laplacian score 0.5778, thus we will 
rank all of them No. 3 since there are only two scores 
1.0000 (Samudra) and 0.6222 (Idris) greater than 0.5778. 

The terrorist Samudra, in fact, provides the only link 
between the bomb makers and Team Lima, the group 
setting off the bombs (see Figure 3), and not surprisingly 
scores rather high based on Laplacian and all other four 
standard centrality methods. Idris, in his role as logistics 
commander, yielded a high centrality score also, al-
though it is not as significant as that of Samudra. He is 
ranked as the second most central actor in the network 
based on Laplacian, degree, closeness and betweenness 
centrality methods, but is ranked 8 th on eigenvector cen-
trality. And we also find that the members in the bomb 
construction team (for example, Sarijo, Imron, Dulmatin, 
etc.) also get high scores based on Laplacian centrality, 
which support Koschade’s conclusion that “the members 
of the Palau Manjangan residence (bomb construction 
team) seemingly the center of the operation [11]”. We 
also find that Mubarok is given the lowest rank on 
Laplacian method, which is consistent with the conclu-
sion in [11] that “the lowest centrality scores were re-
served for the contingency members who were kept to 
the periphery except when called upon for assistance. 
Mubarok had the lowest scores as he was kept very iso-
lated and did not play any significant part in this stage of 
the operation.” Lastly, the two actual suicide bombers, 
Feri and Arnasan, have their highest combined rank us- 
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ing Laplacian centrality. To see the different rankings among the five centrality   
Table 1. The scores and ranks based on five centrality methods for the 17 actors in Jemaah Islamiyah’s network 

Scores Ranks 
Names 

Laplacian Degree Betweenness Closeness Eigenvector Laplacian Degree Betweenness Closeness Eigenvector Consensus

Samudra 1.0000 1.0000 1.0000 1.0000 1.0000 1 1 1 1 1 1 

Idris 0.6222 0.6667 0.1008 0.7727 0.8917 2 2 2 2 8 2 

Imron 0.5778 0.6000 0.0381 0.7391 0.8946 3 3 3 3 2 2 

Sarijo 0.5778 0.6000 0.0273 0.7391 0.8946 3 3 4 3 2 2 

Dulmatin 0.5778 0.6000 0.0273 0.7391 0.8946 3 3 4 3 2 2 

Azahari 0.5778 0.6000 0.0273 0.7391 0.8946 3 3 4 3 2 2 

Patek 0.5778 0.6000 0.0273 0.7391 0.8946 3 3 4 3 2 2 

Ghoni 0.5778 0.6000 0.0273 0.7391 0.8946 3 3 4 3 2 2 

Muklas 0.5689 0.6000 0.0273 0.7391 0.8661 9 3 4 3 9 9 

Junaedi 0.2222 0.3333 0.0000 0.6071 0.2108 11 11 11 10 13 10 

Hidayat 0.2222 0.3333 0.0000 0.6071 0.2108 11 11 11 10 13 10 

Octavia 0.2222 0.3333 0.0000 0.6071 0.2108 11 11 11 10 13 10 

Rauf 0.2222 0.3333 0.0000 0.6071 0.2108 11 11 11 10 13 10 

Arnasan 0.2222 0.3333 0.0000 0.6071 0.2108 11 11 11 10 13 10 

Feri 0.3333 0.4000 0.0000 0.5152 0.6125 10 10 11 17 10 15 

Amrozi 0.2089 0.2667 0.0055 0.5862 0.3447 16 16 10 15 11 16 

Mubarok 0.1556 0.2000 0.0000 0.5667 0.2536 17 17 11 16 12 17 

      Laplacian Degree Betweenness Closeness Eigenvector  

     diviation 36 72 139 48 156  

 

 

Figure 3. Stuart Koschade’s (2006) data on Jemaah Islamiyah’s attack on the Bali nightclub in 2002. 
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measurements visually, we plot the scores for each me- 
thod in Figure 4. Ranks obtained by all centrality mea- 
sures generally agree with each other for this data set. 
Some noticeable minor disagreements are the ranks of 
terrorists Muklas and Feri. However, the ranks by Lapla-
cian centrality are consistent with the majority of other 
measurements. 

5.2. Data Set 2: Valdis Krebs’ (2002) Data on the  
9/11 Hijackers 

Another widely discussed example of network analysis 
of terrorist activity is Krebs’ now classic analysis of the 
9/11 hijackers [12]. Through public data, the network 
centered around the 19 hijackers of these events were 
examined by Krebs [12]. We use the larger network (Fi- 
gure 4 in [12]) which contains numerous additional indi- 
viduals involved in the support network behind the 19 
hijackers who actually conducted the suicide mission. 
These co-conspirators were conduits for money, commu- 
nications routes, and provided needed skills and know- 
ledge. Figure 5 shows the hijackers and their network 
neighborhood—their direct and indirect associates. 

The ranking of actors based on four standard centrality 
measures and Laplacian centrality measure are provided 
in Table 2, where we only list the centrality scores for 
these 19 hijackers. The values are normalized (dividing 
by the highest score of each method). We also rank these 
19 hijackers according to their scores and when ties hap-
pen we use the same criterion as used in the Jemaah 
Islamiyah network. 

5.2.1. Output Analysis Based on Known Evidence 
(Team Leaders of Hijacking Groups). 
There were four commercial airplanes hijacked in this 

 

 

Figure 4. Plots of normalized scores for 17 actors in Bali 
Operation under five centrality measurements. 

terror plot. The following is the list of all hijackers on 
these airplanes. 

American Airlines (AA11): Mohamed Atta (pilot), 
Abdulaziz al-Omari, Satam al-Suqami, Wail al-Shehri, 
Waleed al-Shehri.  

American Airlines (AA77): Hani Hanjour (pilot), 
Nawaf al-Hazmi, Salem al-Hazmi, Khalid al-Mihdhar, 
Majed Moqed.  

United Airlines (UA175): Marwan al-Shehhi (pilot), 
Fayez Ahmed, Hamza al-Ghamdi, Ahmed al-Ghamdi, 
Mohand al-Shehri.  

United Airlines (UA93): Ziad Jarrah (pilot), Ahmed 
al-Haznawi, Saeed al-Ghamdi, Ahmed al-Nami.  

We can see from Table 2, Mohamed Atta (AA11) is 
unanimously identified as the most important actor by all 
measures. This result is consistent with the findings of 
The 9/11 Commission Report [15] and verified by state-
ments of Osama bin Laden. 

However, beyond that, we observe a significant dif-
ference between the Laplacian measure and the other 
traditional measures (degree, betweenness, closeness and 
eigenvector centrality). While Mohamed Atta (AA11), 
Marwan Al-Shehhi (UA175), and Hani Hanjour (AA77) 
are also the top three in the traditional centrality scores, 
the increased prominence of Ziad Jarrah (UA93) in 
Laplacian centrality is striking and noteworthy. Based on 
Laplacian centrality, the four most important centers 
comprise all four pilots of the different flights. However, 
Ziad Jarrah (UA93) scores as either the 5th (degree cen-
trality), 6th (betweenness), or 9th (closeness) most im-
portant actor in traditional measures. Eigenvector cen-
trality also places Ziad Jarrah in the top 4, but does so at 
considerable cost to the assessment of Nawaf Alhazmi. 
Alhazmi is in the top 5 of the other four centrality meas-
ures, and is second in betweenness, indicating his impor-
tance as a communications conduit. Eigenvector central-
ity moves him to 11th place, perhaps too great a reduc-
tion for an individual who also trained as a pilot, and met 
several times with Atta in the planning of the attack. The 
Laplacian results are somewhat more intuitively appeal-
ing. 

The normalized values of the five measures provided 
in Figure 6 shows more variation in various measures, 
relative to the Laplacian measure. In fact, certain indi-
viduals, such as, Ziad Jarrah (UA93) and Nawaf Al-
Hazmi (AA77) shift substantially from index to index. 
Unlike the Bali data, these are noticeable shifts in the 
relative importance of various members of the terrorist 
network. 

5.3. The Add Health in-School Friendship  
Nomination Data 

The third data set we use here is the Add Health in- 
school friendship nomination data, which are constructed  
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Figure 5. Valdis Krebs’ (2002) data on the 9/11 hijackers. Hijackers in different flights can be distinguished by their different 
node shapes. Square: hijackers in Flight AA11; Up triangle: hijackers in Flight AA77; Box: hijackers in Flight UA93; Cycle 
in box: hijackers in Flight UA175. Larger size nodes are the pilots on each flight. 
 

 

Figure 6. Normalized ranking for 19 actors in 9/11 under 
five centrality measurements. 
 
from the In-School questionnaire. Each student was 
given a paper-and-pencil questionnaire and a copy of a 
roster listing every student in the school and one “sis-  

ter” school if it has. The question was, “List your closest 
(male/female) friends. List your best (male/female) 
friend first, then your next best friend, and so on. 
(Girls/Boys) may include (boys/girls) who are friends 
and (boy/girl) friends.” Students listed the names and 
corresponding numbers across a grid. Because nomina-
tions to friends in the sister school were allowed, the 
networks are given at the “school-pair” level. The whole 
data set contains 84 valued networks covering 75,871 
nodes (students) in a total of 129 unique schools. 

From above information, we construct the corre-
sponding undirected networks by taking each student as a 
node, adding an edge between two nodes if there are 
nominated relationship between them. We test all five 
centrality methods including Laplacian method on all of 
these 84 networks1. To save re we just present   space, he      -  
1
Most of the networks are composed with a dominated connected com-

ponent and several isolated vertices which have no edges with others, 
thus during the practical process, we actually test on the biggest con-
nected component for each network so that we can get the two popular 
methods—betweenness and closeness which only work on connected 
graphs included to compare. 
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Table 2. The centrality scores based on five methods for the 19 hijackers in 9/11 network; the ranks and the consensus rank. 

Scores Ranks  

Names 
Laplacian Degree Betweenness Closeness Eigenvector Laplacian Degree Betweenness Closeness Eigenvector

Consensus 
rank 

Mohamed Atta 1.0000 1.0000 1.0000 1.0000 1.0000 1 1 1 1 1 1 

Marwan- 
Al-Shehhi 

0.7628 0.8182 0.1495 0.7939 0.9684 2 2 4 2 2 2 

Hani Hanjour 0.4817 0.5909 0.2147 0.7591 0.6044 3 3 3 3 4 3 

Ziad Jarrah 0.3716 0.4545 0.0289 0.7222 0.6262 4 5 9 5 3 4 

Nawaf Alhazmi 0.3472 0.5000 0.2617 0.7536 0.3495 5 4 2 4 11 4 

Abdul Aziz 
Al-Omari 

0.3399 0.4091 0.0387 0.7222 0.5752 6 6 7 5 5 6 

Satam Suqami 0.2738 0.3636 0.0857 0.6980 0.4660 7 7 5 7 7 7 

Fayez Ahmed 0.2714 0.3636 0.0438 0.6933 0.4879 9 7 6 8 6 8 

Salem Alhazmi 0.2738 0.3636 0.0217 0.6228 0.4296 7 7 11 11 9 9 

Wail Alshehri 0.2249 0.2727 0.0042 0.6842 0.4466 10 11 15 9 8 10 

Hamza Alghamdi 0.1883 0.3182 0.0376 0.6154 0.2379 11 10 8 12 12 10 

Waleed Alshehri 0.1809 0.2727 0.0013 0.5714 0.3762 12 11 16 14 10 12 

Ahmed Al 
Haznawi 

0.1345 0.1818 0.0260 0.6797 0.2282 15 16 10 10 13 13 

Khalid 
Al-Mihdhar 

0.1540 0.2727 0.0095 0.5652 0.1966 13 11 14 15 15 14 

Ahmed Alghamdi 0.1369 0.2273 0.0118 0.5778 0.2257 14 15 13 13 14 15 

Saeed Alhazmi 0.1296 0.2727 0.0198 0.5652 0.1238 16 11 12 15 17 16 

Majed Moqed 0.1174 0.1818 0.0000 0.5591 0.1820 17 16 18 17 16 17 

Ahmed Alnami 0.0733 0.1364 0.0000 0.5503 0.0825 18 18 18 18 18 18 

Mohand Alshehri 0.0440 0.0909 0.0009 0.5306 0.0825 19 19 17 19 18 19 

      Laplacian Degree Betweenness Closeness Eigenvector  

     Diviation 13 52 125 30 73  

 

 

Figure 7. Net1 in the Add Health in-school friendship nomination data. 
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Table 3. The centrality scores based on five methods for top 15 vertices in Net 1; their ranks and consensus rank in all 69 
vertices. 

Scores Ranks Node 
number Laplacian Degree Betweenness Closeness Eigenvector Laplacian Degree Betweenness Closeness Eigenvector Consensus

#34 1 1 0.8902 0.9869 1 1 1 2 2 1 1 

#51 0.9306 0.9286 1 1 0.8879 2 2 1 1 3 2 

#66 0.7269 0.7857 0.4303 0.9379 0.8048 5 4 7 4 4 3 

#61 0.7546 0.7857 0.3080 0.9379 0.9034 3 4 19 4 2 4 

#33 0.7546 0.8571 0.7181 0.8118 0.5134 3 3 3 17 11 5 

#29 0.5787 0.7143 0.3812 0.8728 0.6311 9 7 10 6 7 6 

#31 0.6204 0.6429 0.3219 0.9497 0.7546 7 10 18 3 6 7 

#54 0.5278 0.6429 0.4113 0.8629 0.5562 13 10 8 9 10 8 

#43 0.5185 0.6429 0.4357 0.8436 0.3713 14 10 6 14 13 9 

#60 0.6759 0.7857 0.3557 0.8297 0.3157 6 4 13 16 20 10 

#16 0.4815 0.6429 0.1666 0.8032 0.4308 19 10 24 18 12 11 

#35 0.4630 0.5714 0.4587 0.8678 0.2510 20 19 5 8 32 12 

#8 0.6157 0.7143 0.2147 0.7947 0.2948 8 7 21 23 26 13 

#26 0.3935 0.5000 0.3599 0.8629 0.3558 25 25 12 9 16 14 

#36 0.5509 0.7143 0.3395 0.7989 0.2422 10 7 15 21 35 15 

      Laplacian Degree Betweenness Closeness Eigenvector  

     Diviation 3314 4071 7182 5267 5854  

 
the results for the first network Net1, which contains 71 
nodes totally (a big component with 69 vertices and two 
isolated vertices), detailed see Figure 7. Table 3 shows 
all the centrality scores and ranks for 15 of these 71 ver- 
tices. 

Since we are lacking of the background information of 
this school, it is hard for us to discuss these centrality 
results from known evidence. Thus in next section, we 
will use “deviation from consensus rank” for each cen-
trality method to evaluate its performance. The outper-
formance of Laplacian method is illustrated in Table 
3—the smallest deviation. For example, degree method 
can not distinguish the importance between node  
and  since they have the same number of immediate 
neighbors, but they are distinguished by Laplacian me- 
thod because Laplacian method considers the bigger en-
vironment (neighbors with 2 steps) around them. 

#66
#61

6. Consensus Analysis and Degree of  
Deviation 

Consensus analysis of outputs is a widely used method in 
bioinformatics for finding “consensus DNA or RNA (sub) 
sequence(s)” [16,17]. A similar consensus method is 

adapted here to evaluate the performence of various 
methods and, therefore, to verify the validity of Lapla-
cian centrality method. Outputs from several standard 
methods are taken in consideration, and would be further 
compared with the consensus result. A method is re-
garded as more robust and has greater confidence if its 
output is closer (smaller deviation, or better matching) to 
the consensus result. Here, to save space, we demonstrate 
the consensus analysis only for the 9/11 hijackers. 

6.1. Consensus Rank 

Different from DNA sequences whose terms are nucleo-
tides  , , ,A C G T 2. The ranking of hijackers are nu-
merically scored (natural numbers). Hence, the subjects 
for consensus are rather different. In this research project, 
we adapt the similar ideas and principles of consensus 
applied in bioinformation in the ranking study of social 
networks. The consensus ranks are calculated as follows. 
At first, for each terrorist, we calculate the mean of its 
five ranks from various methods. For example, Marwan 
Al-Shehhi (UA175) gets ranks   from five 2,2,4,2,2
2
Abbreviations of nucleotides: =A adenine , , =C cytosine

=G guanine , . =T thymine
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centrality methods respectively, thus its mean of rank is 
2.4 (a fractional number); secondly, we sort the mean 
values of these 19 hijackers from smallest to largest, the 
output of order is defined as the consensus rank of these 
19 hijackers. Note that when ties happen (i.e., more than 
one hijackers have the same mean value) we follows the 
same criterion as used in Jemaah Islamiyah network and 
9/11 network. We list the consensus rank of these 19 
hijackers at the last column of Table 2. 

6.2. Deviation of Each Method from Consensus  
Result 

To further analyze, we use the following “deviation” 
score to numerically evaluate the distance from the out-
put based on each centrality method to the consensus 
rank:  

     
19 2

=1

=  C

i

deviation C rank i consensus i   

where  is the rank of -th terrorist based on 
centrality measurement  (  {Laplacian, degree, 
closeness, betweenness, eigenvector centrality}), and 

 is the consensus rank of -th terrorist. 

 Crank i

 ensus i

i
C C

cons i
Clearly, the smaller the deviation, the better is the 

output. A method with the smallest deviation is regarded 
as the one with “the best fit”. The deviations for all cen-
trality methods are presented at the last two rows of Ta-
ble 2, which shows that Laplacian method has the small-
est deviation. That is, Laplacian centrality method has 
the best fit to the consensus ranking results, which is a 
further evidence of its effectiveness and reliability to 
identify major players in social network. 

We apply the same strategy on the Jemaah Islamiyah 
data set, and find that Laplacian method also has the 
smallest deviation, see Table 1. 

We also apply the same strategy on all the 84 networks 
in the Add Health in-school friendship nomination data. 
We find that Laplacian method’s deviations for all these 
84 networks are always the minimum, which imply 
Laplacian method is the most fit centrality method for all 
these 84 networks. This is another strong evidence that 
shows the Laplacian method’s advantages. 

Remark The validity and robustness of Laplacian 
centrality measure have been illustrated on two different 
terrorist social network data sets and 84 networks in 
James Moody’s Add Health in-school friendship nomi- 
nation data, and is compared with other standard central- 
ity measures. Note that this method also could be applied 
on large networks (e.g. number of nodes ) with 
high effectiveness (and low time-consuming) because 
Laplacian centrality measure has low computational 
complexity, and we will see in the following Section 7. 

> 1000

7. Computational Complexity 
In this section, we discuss the computational complexity 

of Laplacian centrality method. By glancing at the defi-
nition of Laplacian centrality (Definition 2), one might 
initially guess that the computational complexity would 
be relatively high since it involves the calculation of ei-
genvalues. However, by applying an algebraic graph 
theory result (Theorem 1), we are able to design a very 
fast algorithm. Theorem 1 provides a structural result that 
graphically describes the Laplacian centrality. 

For the sake of comparison, we first present the com-
plexity of all standard methods. Let  be a graph with 

 vertices and  edges. The data structure of the in-
put graph is the adjacency list of , which presents the 
adjacency relation of all edges of the input graph . 

G
n m

G
G

Closeness and Betweeness Centralities. The most basic 
step in these two algorithms is the search for the shortest 
paths between every pair of vertices. Computing the 
shortest paths between any two vertices is the necessary 
step. Its fastest algorithm is Floyd-Warshall algorithm 
whose time complexity is  [18]. Hence, the total 
time complexity for either closeness method or between- 
ness method is at least 

 3O n

 3O n . 
Eigenvector Centrality. Given a graph, there are sev-

eral approaches for estimating the eigenvector. One of 
the most popular approaches involves the inverses of 
matrices. Computational complexity is at least  3O n  
for the computation of inverses [19]. 

Laplacian centrality. The degrees of all vertices and 
the corresponding neighborhood are estimated by scan-
ning the adjacency list. That is, the time complexity for 
this step is at most  O m . Then, by Theorem 1, Lapla-
cian centralities for each one vertex  needs v   2d v  
additive operations and 2 multiplication operations, thus 
the computations of centrality scores for all vertices can 
be finished in  4n2 O m  units of time. Thus, the 
computational complexity of Laplacian method is 
 O m . 
Degree Centralities. Though degree measuring is 

rather intuitively heuristic and its processing is pretty 
straightforward, the time complexity remains  O m , not 
smaller than that of Laplacian centrality. 

To summary, we present the following table showing 
the time complexity of each method. We would see that 
Laplacian centrality offers substantial advantages to the 
other measures when examining large scale networks. 
We admit that degree method run faster than Laplacian 
method, but it only supplies us very local information for 
each vertex, which is less reliable. 

 
 time complexity 

laplacian  O m  

eigenvalue  3O n  

betweenness  3O n  

closeness  3O n  

degree  O n  
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8. Concluding Remarks 

In this final section, we survey some properties of the 
new method: its balanced global/local measurement quai- 
lties, its accuracy and effectiveness, efficiency, and its 
future applications. The review is conducted from several 
very different angles: graph structure, verification of 
known facts from experimental testing, and the consen- 
sus for comparison. 

From the graph theoretical point of view, graph cen-
trality measurements can be roughly classified as two 
types: local or global. Degree centrality is a typical ex-
ample of local measurement since it only considers the 
information of the number of vertices which are reach-
able from  directly, while betweeness, closeness and 
eigenvector, are more global. Laplacian centrality reveals 
more connection information beyond its immediate sur-
rounding neighborhood, thus serves as an intermediate 
between global and local characterizations. 

v

Centrality measurement based on shortest path calcu-
lations (such as, betweeness, closeness, etc.) are powerful 
tools for the detection of bottlenecks in networks—the 
cut-vertices of connected graphs. Consequently, these 
types of vertices are scored more favorably if global con- 
nectivity is relatively low. In these lower connectivity 
examples, Laplacian centrality will provide a more ba- 
lanced measurement, which takes both bottleneck infor- 
mation and local density information into account. As we 
discussed above, from a graph theoretical point of view 
different methods reveal different measurements of im- 
portance due to their different structural emphasis. 

Test results from some benchmark data sets also sup-
port the conclusion that Laplacian centrality is a balanced 
global/local measurement. It is able to identify not only 
the cut point of the network of the connection, but also 
the leaders or key personnel in each cluster, such as the 
team pilot of each 911 hijacking group and the suicide 
bombers of bomb delivery group in the Bali nightclub 
attack. 

Applying the new method along with other popularly 
used methods to two terrorist networks and all 84 friend- 
ship networks yields strong evidence that the Laplacian 
method provides a better performance as a network ana- 
lysis tool. This is supported by two different approaches: 
confirmation of analyses based on known intelligence 
information, and consensus comparison, where the study 
shows that the Laplacian method has the smallest devia 
tion from the consensus result, providing additional 
evaluation of the reliability of Laplacian centrality. 

In situations where scarce resources must be commit- 
ted to counterterrorism programs, diversion of monitor-    
ing and surveillance from one actor to another may be a 
critical decision. A relatively effective and reliable me- 
thod is needed for such analysis and decision making. 
Based on our graph theoretical analysis, testing of bench- 

mark data, and statistical comparisons, this newly de- 
signed method is a potentially significant candidate for a 
reliable tool to be used in the identification of major 
players in future terrorist attacks. 

                           

We have illustrated the similarities and dissimilarities 
with respect to the standard measures adopted in socio- 
metry by considering some important examples of po- 
litical networks. As we know, for any particular research 
project we will have to identify which centrality measure 
is most meaningful or useful. It remains to be seen, in the 
light of further empirical work, if and in which cases the 
new measure is clearly more appropriate than the others. 
Yet at this preliminary exposition, Laplacian centrality 
provides results that seem potentially compelling in cer-
tain situations where the overall degradation of the net-
work based on vertex deletion may yield superior results. 
Network analysis in support of counterterrorism might 
well be an area where Laplacian centrality rises to such 
importance. 
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