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Abstract 
Treatment of health problems that accompany aging often includes pharmaco- 
therapy. It is thus common for older adults—and, increasingly, younger 
adults—to be on multiple medications, either prescription or over-the-counter 
(OTC). With the consumption of multiple medications, drug-drug interactions 
(DDIs) are a concern. The site of drug-drug interactions is often at the level of 
drug metabolism. If a drug inhibits (or enhances) the metabolism of another, 
the blood level (therapeutic effect) can be decreased below the required level, or 
adverse effects can increase. Because most currently used drugs are metabolized 
via cytochrome P450-catalyzed pathways, drug discovers seek drugs that are 
metabolized by alternate pathways. Medicinal chemists have come upon a 
strategy—the incorporation of oxetane rings in the drug structure—that in-
creases the likelihood that a drug will not be metabolized via CYP450. The 
same modification gives other desirable physical properties to the molecule. 
Although there are no guarantees that there will be fewer DDIs or an absence of 
other unexpected problems, the strategy could pave the way for new drugs that 
are safer and easier to use with concomitant medications. 
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1. Introduction 

In the past century, populations in many parts of the world are aging [1]. And a 
significant rise in life expectancy in almost all regions of the world has contri-
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buted to an increasingly older population. Since the aging process predisposes a 
person to increased vulnerability and susceptibility to external threats and in-
ternal physiological decline in organ function and defensive processes against 
disease, concurrent with the increasing population is an increase in the needs for 
healthcare and related services [2] [3] (Figure 1). 

The physiological changes that occur with aging affect the functioning of the 
heart and blood vessels, gastrointestinal tract, liver, kidneys, central nervous 
system, and others [4] [5] [6] [7]. With the advances in basic research and trans-
lation to drug discovery, a large fraction of healthcare includes pharmacothera-
py. Therefore, medication use increases substantially with aging in conjunction 
with the healthcare needs and, because there is often more than one health 
problem, polypharmacy is commonly the result [2] [3] [8] [9] [10]. While not 
inherently a contraindication, polypharmacy can inadvertently lead to serious 
adverse consequences [11] [12] [13]. The occurrence of such an event is termed 
a “drug-drug interaction” (DDI). One of the major physiological mechanisms 
leading to a DDI is an interaction at the level of drug metabolism. The CYP450 
system is more affected by the aging process than are other drug metabolizing 
systems. Therefore, a strategy that could limit the occurrence of a DDI at the 
level of CYP450 drug metabolism could have a significant benefit. 

2. Drug Metabolism via CYP450 

The CYP450 monooxygenase system is a family of hemeprotein isozymes that 
catalyze the biotransformation (metabolism) of many current drugs (Figure 2)  

 

 
Figure 1. (Left) Increase in world population and (right) prevalence of chronic health problems. 
Source: United Nations, World Population Prospects: Available at: http://esa.un.org/unpd/wpp. 

 

 
Figure 2. Approximate estimate of the percentage of current drugs that are metabolized 
via pathways of the CYP isozymes. Based on [15] with permission. 
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[14] [15] [16]. The liver is the major site of drug metabolism in humans, func-
tioning both to detoxify (alter the chemical structure) and to facilitate excretion of 
foreign chemicals (xenobiotics) such as drugs by enzymatically converting lipo-
philic (lipid-soluble) compounds to less lipophilic (hydrophilic, water-soluble) 
compounds, which are more favorably excreted through the kidneys. Drug me-
tabolism is achieved through phase I type reactions (chemical reactions such as 
oxidation, reduction, and hydrolysis), phase II reactions (mostly conjugations), 
or both (the most frequent situation for most drugs) [17]. Oxidation is the most 
common of the phase I reactions, and these are catalyzed by members of the 
CYP450 system. CYP450 was discovered in 1954 as a novel protein in hepato-
cytes during research on steroid hormone metabolism [18]. It’s function and 
significance as a catalyst in steroid hormone synthesis and drug metabolism was 
determined almost a decade later (1963), and it was confirmed to be a key en-
zyme involved in drug and steroid hydroxylation reactions [19]. 

3. Oxetanes: The Basics 

Oxetane is a four-member ring organic compound consisting of three carbon 
atoms and one oxygen atom with formula C3H6O and molecular weight 58.08 
Dalton (Figure 3). A drug (or any organic compound) that contains this partic-
ular heterocycle is called an “oxetane”. The reason that the oxetane ring is of in-
terest to drug discovery as a strategy to reduce DDIs is that compared to a mo-
lecule without the ring, the incorporation of an oxetane ring can impart signifi-
cant differences in the structural and physiochemical properties of molecules, 
and thus the drug-favoring characteristics of a compound, for example its water 
or lipid solubility, pKa, receptor or enzyme conformational preference, and of 
particular relevance to the present topic—metabolic stability [20] [21]. 

The oxetane ring can thus be thought of as a functional group, and it can be 
used as a substitute or as preferred surrogate for other functionalities that are 
commonly used in drug discovery (Figure 4). Some uses have included [22]  

 

 
Figure 3. Representations of Oxetane (1,3-Propylene oxide, 1,3-Epoxypropane, Oxacyc-
lobutane, Trimethylene oxide. Source: Wikimepedia and Wikimedia Commons. 

 

 
Figure 4. Oxetanes as surrogates for commonly encountered functional groups [22]. 
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introduction of steric bulk to fill receptor pockets (for better complementary fit 
to increase intrinsic activity or block active sites, shield nearby functional groups 
from chemical or metabolic susceptibility without introducing an undesired in-
crease in lipophilicity [23]-[29]. They have successfully been used to improve the 
physiochemical properties and provide more favorable pharmacokinetic profiles 
in several drug discovery programs [30]-[37]. The magnitude of the changes de-
pends on the structural context of course. As an example, substitution with an 
oxetane can increase the aqueous solubility by only about 4-fold, or more than an 
astounding 4000-fold [22]. Substitution usually increases the metabolic stability. 

4. Oxetanes: Designing Away from DDIs 

Toselli et al. have recently reported on the use of oxetane rings as design ele-
ments to alter the metabolic pathways of drugs [30]. They “map” the enzymes 
that contribute to a drug’s metabolism to determine exaggerated dependence on 
one specific pathway (specifically a specific CYP450 pathway), since this in-
creases the risk of DDIs with co-administered drugs. They previously reported 
that oxetane rings can be hydrolyzed (opened to yield diols) by the human mi-
crosomal enzyme epoxide hydrolase (mEH) (EC 3.2.2.9) [38]. This was quite 
surprising, since it represents an unusual non-oxidative metabolic route, and it 
was the first example of a non-epoxide substrate for this phase I type drug-meta- 
bolizing enzyme [39] [40]. Findings of additional examples of oxetane substrates 
of mEH prompted renaming of the enzyme to “microsomal oxirane/oxetane hy-
drolase” [41]. 

A critical finding was that the rate of hydrolysis of an oxetane by mEH is af-
fected by structural elements in the vicinity of the oxetane [41]. This offers the 
potential that the rate of metabolism could be built-in or fine-tuned by using 
oxetane-containing building blocks as part of the drug design discovery process 
as tools to shuttle metabolism through non-CYP450 pathways, thus decreasing 
the likelihood of a DDI with co-administered other drugs (Figure 5). Indeed,  

 

 
Figure 5. A representative example of a molecule containing an oxetane ring metabolized to a diol in a reac-
tion catalyzed by mEH (microsomal epoxide hydrolase). Note the opening of the oxetane ring. Source: Ref 
[30], with permission. 
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Figure 6. Shuttling of drug metabolism away from CYP450 and towards another enzy-
matic pathway such as AO (aldehyde oxidase) could be quite beneficial, is not devoid of 
potential problems. 

 
Toselli et al. demonstrated for a set of structurally diverse oxetanes that oxetanes 
can be used as design elements for directing drug metabolism toward mEH, and 
thus away from CYP450 pathways [30]. 

Toselli et al. expressed a note of caution that the shuttling of drug metabolism 
down the mEH pathway 1) did not guarantee avoidance of a DDI, and 2) did not 
introduce its own set of potential problems [30]. Some problems might be an-
ticipated, such as undesirable effects on pharmacokinetics [42] [43] [44] [45], 
but other problems might arise simply due to the less mature understanding of 
this metabolic pathway compared to those of the very well-known CYP450’s 
(Figure 6). 

5. Conclusion 

The fact that the majority of currently prescribed drugs, and several OTC prod-
ucts, are metabolized through the same pathways involving CYP450 raises the 
concern of potential drug-drug interactions leading to adverse effects that would 
be avoided if the drugs were metabolized by non-overlapping mechanism. Oxe-
tanes offer a strategy to design-in this capability early in drug discovery. Al-
though not a guarantee, they are one example of a broader attempt to decrease 
DDIs early in the drug discovery process. 
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