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ABSTRACT 

Factorized backprojection is a processing algorithm for reconstructing images from data collected by synthetic aperture 
radar (SAR) systems. Factorized backprojection requires less computation than conventional time-domain backprojec- 
tion with minimal loss in accuracy for straight-line motion. However, its implementation is not as straightforward as 
direct backprojection. This paper provides a new, easily parallelizable formulation of factorized backprojection de- 
signed for stripmap SAR data that includes a method of implementing an azimuth window as part of the factorized 
backprojection algorithm. We compare the performance of windowed factorized backprojection to direct backprojection 
for simulated and actual SAR data.   
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1. Introduction 

Synthetic aperture radar (SAR) can generate high-reso- 
lution images from low-resolution data [1,2]. In stripmap 
SAR, a single antenna moving along a line is used to 
synthesize a linear array antenna, thus providing higher 
azimuth resolution than a single antenna position. Sev- 
eral algorithms have been proposed for image recon- 
struction of SAR data in both the time domain and fre- 
quency domain [3]. A particular time-domain algorithm 
known as backprojection is able to reconstruct well-fo- 
cused images, even with non-ideal motion. Unfortunately, 
the computational complexity of backprojection is 

, which can quickly become computationally ex- 
pensive. 
 3O N 



Because of this computational cost, factorized back- 
projection was developed. This algorithm divides the 
process of backprojection into recursive steps to achieve 
complexity of . Factorized backprojection 
was first introduced by Rofheart and McCorkle [4] in the 
context of the quadtree, a data structure borrowed from 
computer science. The algorithm is designed so that the 
resolution improves by a factor of four each step.  

 2 logO N N

Since then, multiple variations on factorized backpro- 
jection have been developed [2,5-11]. In particular, Ul- 
ander et al. [2] proposed a method called fast factorized 
backprojection, which uses the polar representation of an 
image to greatly reduce the number of operations. The 
factorized backprojection approaches assume constraints 
on the flight path, trading reduction computation for ac- 

curacy. 
In this paper, we present a new formulation of factor- 

ized backprojection on a linear grid that does not use the 
polar representation and allows for easy parallelization of 
the algorithm. The method includes an azimuth window 
to reduce sidelobes and aliasing at a tradeoff in some loss 
in azimuth resolution. We compare performance of the 
windowed factorized backprojection algorithm with fac- 
torized and conventional time-domain backprojection. 

The paper is organized as follows. Section 2 briefly 
reviews the time-domain backprojection. Section 3 pro- 
vides an alternative derivation of factorized backprojec- 
tion. Section 4 provides an error analysis of factorized- 
backprojection. Section 5 introduces an azimuth window 
to the factorized backprojection algorithm. The results 
comparing the various algorithms are shown in Section 6. 

2. Backprojection 

Backprojection is a time-domain algorithm that generates 
an image from SAR data. This process coherently inte- 
grates the radar data over each antenna position to form 
the image. Using the start-stop approximation, given a 
pixel at location p, the backprojected image  A p  is 
given by [5,12] 

       , exp 4π , dA p R d x p j d x p




  x   (1) 

where  A p  is the complex pixel value,   is the 
wavelength of the transmit frequency,  is the d x , p
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distance between the pixel p and the along-track position 
x, and  is the baseband range-compressed 
echo data interpolated to the distance . In prac- 
tice, the echo data is digitized and a range window is 
applied. If we replace x with the discrete-time variable n 
representing the  pulse, then this equation can be 
represented as  

  ,R d x p

thn

 


 ,d x p

     , exp 4π ,d n p j d n p
n

A p R 



    (2) 

where ,d n p



 is the distance between the antenna 
phase center of the  pulse and the center of pixel p 
and 

thn
 ,R d n p  is the range-compressed SAR data in- 

terpolated to slant range  ,d n p . 
Although backprojection is straightforward to imple- 

ment and can handle a variety of flight tracks, it can be 
computationally expensive. To obtain an image with M × 
N pixels from L equally spaced antenna pulse positions, a 
total of L × M × N square root calculations and transcen- 
dental computations must be performed. This can be- 
come costly as L, M, and N become large. 

3. Factorized Backprojection Algorithm 

An alternative to direct backprojection is factorized back- 
projection. In factorized backprojection, the image re- 
construction is divided into a series of steps in which the 
resolution of the image becomes finer as the length of a 
synthetic subaperture increases. The geometry of the 
SAR array allows the interpolated radar data associated 
with the subapertures of the previous step to be used in 
subsequent steps, reducing the required computation at a 
tradeoff of some loss of accuracy.  

Although the formulation of factorized backprojection 
presented here uses recursive principles similar to the 
previous algorithms, there are some notable differences. 
First, this particular implementation is designed only for 
stripmap SAR. Like many previous implementations it 
uses the the start-stop approximation and assumes that 
the flight track is straight [2]. (For an explanation of the 
algorithm without the start-stop approximation, see [13]. 
The application of factorized backprojection to non-in- 
ear tracks is considered in [11,14]). Second, rather than 
divide the image into square subimages or use polar co- 
ordinates, the image is split into columns which are 
separately processed. In this paper, a column is defined 
as a one pixel wide region of the image in the range di- 
rection (see Figure 1). By splitting the image into col- 
umns, both the explanation and the implementation of the 
algorithm can be simplified. Additionally, the algorithm 
can be easily parallelized since each column can be 
formed independent of the others. 

We now describe this factorized backprojection algo- 
rithm in detail. Suppose there are L collected pulses with 
which we wish to image an area comprised of M × N  

 

Figure 1. Left: Notional antenna phase center positions. 
Each position corresponds to the antenna location for a 
transmit/receive pulse. Right: Imaging grid with a single 
column highlighted.  
 
pixels. Then, the number of stages is min{log2L, log2M}, 
in addition to a preliminary stage. For this explanation, 
we assume L = M = N = 4 and that the pulses and pixels 
are equally spaced. In practice, however, L, M, and N do 
not need to be equal, nor do the pulses and pixels need to 
be equally spaced. We note that a pixel must lie in the 
beamwidth of the real aperture to be fully reconstructed. 
For pixels on the edge of an image, reconstruction re- 
quires antenna positions that extend beyond the imaging 
grid.  

Initially, each subaperture corresponds to the actual 
antenna positions for each collected pulse, but in later 
steps it corresponds to the combination of two or more 
adjacent antenna positions. We divide the image into 
subimages, or sections of columns. Initially, a subimage 
consists of a single large area covering the entire column, 
but by the final stage, each of the multiple subimages is a 
single pixel of the column. (To reduce error, a subimage 
may initially consist of a portion of a column rather than 
the entire column, but this increases the total number of 
computations despite decreasing the number of steps). 
Because the same algorithm is applied for each column 
independent of the other columns, we concentrate on a 
single column in this explanation.  

Since the central positions of both subimages and 
pulses change for each step of the factorization, we in- 
troduce some notation to aid in the explanation. Let  s

in  
index the center of the  pulse on the thi ths  step. Let 

 s
kp  index the center of the  subimage on the thk ths  

step in the along track direction. The distance from the 
 subaperture center to the  subimage is denoted thi

d n

thk
   ,s s
i kp 

   and the interpolated range-compressed 
complex SAR data set associ - 
subimage pair is denoted   . In the pre- 
liminary step, the data set is the range-compressed SAR 
data interpolated to slant range, but in subsequent steps 
the data set is formed from combinations of elements 

ated
R d n

 with th baper


is su


ture
    ,s s
i kp
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from the parent data set. 
In the preliminary step of the algorithm, the distance 

from each subaperture center (pulse) to a subimage cen- 
ter is calculated. Since our example involves four pulses 
and one initial subimage, this step requires four distance 
calculations. In Figure 1, which shows the preliminary 
step of the algorithm, the central pixel is denoted , 
and each pulse is denoted as , . Once 
each distance  has been calculated, the radar  

 0
0p

 0
in



0, ,3i  
   0 0

0,in p
 

    0 0,R d n p




echo data  is found from the range- 

compressed SAR data. 

0i

For the first factorization step, the number of subaper- 
tures is decreased by a factor of two by combining the 
parent subapertures into longer child subapertures. Be- 
cause the resulting subapertures are longer than the par- 
ent subapertures, the corresponding beamwidth is nar- 
rower. In addition, the subimage is divided in half so that 
there are two pixels per column rather than one (see Fig- 
ure 1). 

The distance from each subaperture center  to 
each subimage center  is calculated, where  
has coordinates  i i i

 1
in

n 1
kp

, ,

 1
i

x y z  and  has coordinates 


 1
kp

 , ,k k kx y z . Then, the distance from each parent subaper- 
ture center  0

jn  to each subimage center  is calcu- 
lated or approximated. Given a parent subaperture 

 1
kp

 0
jn  

with coordinates  , ,j j jx y z , the distance from  0
jn  to 

the  subimage center is given by  thk

         2 20 1, .j k j k j k j kd n p x x y y z z        
2

 

 (3) 

If the flight track is parallel to the image column and 
the imaging area is flat, then the distance can be ap- 
proximated using a Taylor series approximation:  

       0 1 1 1, ,j k i kd n p d n p r               (4) 

where  

    
   

2

1 1

2

2 ,

i j j k j i

i k

y y y y y y
r

d n p

   
 

 
 

      (5) 

(see Figure 1). Note that for our column-based algorithm 
with a flat surface, j ix x  and j i

Because the child subapertures are longer than the 
original subapertures, there is no previously interpolated 
radar data corresponding exactly to these new subaper- 
tur truct data sets  

  corresponding to these longer subaper- 
tures by combining the data sets from parent subaper- 
tures and multiplying by a phase factor to compensate for 
the difference in distances:  

z z . 

es. However, we can cons

    ,s s
i kR d n p



    
     1

,

, exp 4π
j i

s s
i k

s s

where  

j k j
n n

R d n p

R d n p j r



  

    

,

     (6) 

       1 , ,s s s s
j j k j kr d n p d n p                (7) 

or if the prior distances are calculated with a Taylor se- 
ries approximation,  

    
   

2
2

.
2 ,

i j j k j i

j s s
i k

y y y y y y
r

d n p

   
 

 
 

     (8) 

Rather than directly calculating , to 
save computation we approximate it from values com- 
puted in the previous step, i.e.,  

    1 ,s s
j kR d n p 

 

         1 1
2,s s s s

j k j kR d n p R d n p 
  

    
1,  
       (9) 

If        1 1
2, ,s s s s

j k j kd n p d n p 
 

 1

 
      , there is no error in 

the approximation. However, if the distances are not 
equal, the approximation may not correspond to the same 
range bin as the correct data value. This adversely im- 
pacts the image focusing since the incorrect phase may 
be computed in Equation (6). We discuss these errors 
more in Section 4. 

For the remaining iterations, the process of lengthen- 
ing subapertures and decreasing subimage size continues 
until a subimage is a single pixel and there is only one 
subaperture covering the full synthetic aperture with 
center  (see Figures 2(d) and (e)). The reconstructed 
pixel  at the final subaperture level is given by  

cn

kp

       , exp 4π , .    (10) k c k c kA p R d n p j d n p

R

4. Errors in the Factorized Backprojection 
Algorithm 

Two types of errors are associated with factorized back- 
projection in the scenario considered: those caused by 
errors in the creation of data sets from the range interpo- 
lated data, and those caused by using incorrect distances 
for phase calculations due to the factorization. Note that 
in a realistic scenario, deviations of the platform from its 
ideal path introduce variations in the desired phase for 
image formation. 

ecall that in the creation of the data set  
    ,s s
i kR d n p 

 
 

, we make the approximation  

       1 1
2, ,s s s s

j k j kR d n p R d n p 
  

    
1 . 
      (11) 

That is, we assume that the radar data associated with a 
given subaperture and subimage is the same as the radar 
data associated with the subaperture and the parent 
subimage. Since data is considered constant over a range 
bin, this assumption is true so long as both subimages lie 
within the same range bin. However, if both subimages 
do not lie in the same range bin, then the data corre- 
sponding to the child subimage is from the wrong range     
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(a)                                    (b)                                   (c) 

     
(d)                                  (e) 

Figure 2. Illustration of distance calculations for factorized backprojection algorithm (see text). (a) Distance from current 
subaperture centers to current subimage centers for preliminary step; (b) Distance from current subaperture centers to cur- 
rent subimage centers for first step; (c) Distance from parent subaperture centers to current subimage centers for first step; 
(d) Distance from current subaperture centers to current subimage centers for second step; (e) Distance from parent 
subaper- ture centers to current subimage centers for second step. 
 

Let a pixel k  have coordinates p  , ,k k kbin, causing errors. We can avoid these errors by requir- 
ing that the range migration be limited to a range bin. 
Although an image can be reconstructed with some error 
when the range-cell migration spans multiple range bins, 
we do not address this case here. 

The other type of error in factorized backprojection is 
the phase error caused by not directly calculating  

 exp 4π ,i kj d n p   for each pulse i  and pixel k  
and instead using an approximation formed over a series 
of steps. The effective phase term for a given pulse 
and pixel  is of the form 

n p

in  
 kp  i kp

x y z
, ,

 and let 
a pulse i  have coordinates i i in x y z , where the azi- 
muth direction is in . Let y IL  be the length of the im- 
aging grid,  be the number of pixels in the imaging 
grid, A  be the length of the antenna array, and  be 
the number of pulses. Let 0  be the minimum distance 
from the SAR array to the column. Let 2PS P

P
L N

log
R

 , 

2N loS g N , and . Then, a parent   ,P NS SmiS n

exp π ,j d n 4  
where  

       

 

1
1 ( )

22 2 2
1

2

, , . ,

,

ss S s S s

S

S
s s s s

i k ii k k
s

S
ki

d n p d n p d n p

d n p

 


     
     

 
 

          
    

 


 (12) 
For convenience we refer to  ,i kd n p  as the factor- 

ized distance as the distance used by the factorized back- 
projection to discriminate it from the actual distance. 
Ideally, the actual distance  ,i kpd n  equals the factor- 
ized distance. However, in practice, this is not generally 
true. We can obtain an upper bound on the error by set- 
ting a single pixel and pulse as reference points and then 
defining the coordinates of the parent subimages and 
child subapertures in terms of these reference points. 

subimage center  s

2S sPk
p   has coordinates   
  

 
2

, ,S sP

s
k k kx y z 

  

 
 
 

, where  

     1

21

12 2
1 .

12

S sP

S s S sP P

ks s I
sk k

LP
y y

P



  

    
   

      
  


   (13) 

Similarly, a child subaperture center  
2S

s

i
n 
 

 has coor- 

dinates  
2

, ,s
i si ix y z 

  

 
 
 

, where  

     
121

1 22 2
1 .

12 N

sis s A
s s S si i

LN
y y

N

    
     

      

  


   (14) 

Let    
2S sP

s s
k kk

y y 
  

    and    
2

s s
i isi

y y 
  

   . Using  

these relationships, the error   between the actual dis- 
tance and the factorized distance from a pulse  and a 
pixel  can be written as  

in

kp
 

           

             

1

1
12 22 2 2

1

2 2 22 12 2 2 2
0 0 0 0

1

, , , ,S s S s

S
s s s s S

i k ks s Sk ki i i
s

S
s s s s S

i k i i k k i i k k i i k
s

d n p d n p d n p d n p

R y y R y y R y y R y y

   


         
              





                  
         

  
                     

 



 .
 


  

(15) 
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We can approximate   by  , where   is the Taylor series approximation given by  

 

            

              

2

0
0

2 2
1

0 0 0
1 0 0 0

2 2 22 1

10

1

2

1 1 1

2 2 2

1
.

2

i k

S
s s s s S

i i k k i i k k i i k
s

S
s s s s S

i k i i k k i i k k i i k
s

R y y
R

R y y R y y R y y
R R R

y y y y y y y y
R











  

 
                 

 
                     







2

    (16) 

By canceling and rearranging terms, this equation can be further simplified as  
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We note that  
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Thus,  

     1

1
20

1
2 2

2 12

S
s SI

i is
s

LP

R P
 




         
 .S

k





   (19) 

Using the triangle inequality, we can further bound 
Equation (17) by  
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we can further simplify the bound in Equation (20) as  
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Note the similarity of this error bound to that given by 
[2]. From this equation, we see that the distance error can 
be reduced by decreasing the length of the image to be 
reconstructed. Similarly, by initially dividing a column 
into several subimages rather than performing factorized 

backprojection for the entire column, the error is reduced 
because each subimage is shorter, reducing IL . How- 
ever, this requires more computation. Table 1 shows the 
distance error for simulated data for a given pixel and 
varying numbers of initial subimages for a 64 by 64 grid 
of pixels. As the number of initial subimages increases, 
the error is reduced. Note that for the initial subimages, 
the phase error is zero because each distance is calculated 
correctly in the algorithm. 

Recall that   is the difference between the actual 
distance and factorized distance for a given pulse and 
pixel. A commonly assumed value for the acceptable 
phase error is π 8  [1], though the precise value is not 
critical for our analysis. Using this value, there is negli- 
gible error in the image if  

4π π 8                  (22) 

which implies  

32.                  (23) 

For the simulation described in Section 6 with average 
and maximum error ishown in Table 1, the wavelength 
of the transmit frequency is 0.0292 m, so λ/32 = 9.1250 × 
10−4. In Table 1, the bound on the distance error is less 
than this when more than one initial subimage is used.  

5. Windowed Factorized Backprojection 

In SAR image processing, an azimuth window is often 
applied to minimize azimuth aliasing and suppress 
sidelobes at a cost of some loss in azimuth resolution. In 
this section, we show that an azimuth window can also 
be incorporated into our factorized backprojection with 
litt e additional computation.  l 
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Table 1. Error between actual and factorized distances for each pixel within a column and each pulse in the antenna array 
for the parameters in Table 2. 

Number of subimages 1 2 4 8 16 32 

Maximum error 2.54E−3 8.14E−4 3.05E−4 1.02E−4 2.54E−5 0 

Average error 3.84E−4 1.67E−4 6.90E−5 2.51E−5 6.27E−6 0 

 
For direct backprojection, if an azimuth window is de-

sired for some pixel k , one approach is to apply a 
weighting function to the backprojection equation: 

p

         , , exp 4π ,
i

k i k i k i
n

kA p W n p R d n p j d n p
(24) 

where  is a weighting function expressed in 
terms of the pulse number i  and specified pixel k . 
In this paper we consider weighting functions of the form  

 ,i kW n p 
n p

    2
, expi k iy kyW n p n p a          (25) 

where iy  is the y-coordinate of i , ky  is the y-co- 
ordinate of k , a is some constant, and the azimuth di- 
rection is in y. The output of the weighting function for a 
given pixel p is a Gaussian curve, thus creating a window 
for the given pixel. We call this the direct window. 

n n p
p

In factorized backprojection, implementing an azimuth 
window is more complex because the algorithm is di- 
vided into a series of steps. Since there is no single equa- 
tion that depends on both an individual pulse i  and an 
individual pixel , there is no place where the weight-
ing term  used in direct backprojection can be 
logically inserted. However, an alternative approach is to 
include intermediate weighting functions in the forma- 
tion of the data sets for each step to create windowed  

n
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kp

. Then, in the final step  

of windowed factorized backprojection, the equation for 
a pixel  takes the form  

        , exp 4π ,k c k c kA p R d n p j d n p .    (26) 

  If ,c kR d n p  is written in terms of its parent data 
sets, then  
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where  

       eff, , ,i k i k i kR d n p R d n p W n p      (28) 

where ,W n p

n p



eff i k  is the effective weighting function 
formed in the steps of the algorithm corresponding to a 
pulse i  and a pixel k . We call the output of this 
weighting function the factorized window. Due to the 
factorization, the factorized window is not identical to 
the direct window. However, by the proper choice of 
intermediate weighting functions, the factorized window 
can be similar to the direct window.  

We now discuss an intermediate weighting function 
that is easy to implement and which creates a factorized 
window that is similar to the direct window. Consider an 
intermediate subaperture center s

i  with parent subaper- 
ture center j

n
 1sn   with coordinates  ,jx jy  and an 

intermediate subimage center 
n n

 s
k  with coordinates p

 ,kx kyp p
 

. We define an intermediate weighting function  

 1 ,s
j kW n p  to weight the corresponding data set as  
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where  

  , expj k jy kyW n p n p a  

with a determined as a function of the beamwidth. Given 
a pulse i  and a pixel k , the resulting effective 
weighting function corresponding to  and  is  

n p         (30) 
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Figure 3 plots the factorized window and direct win- 

dow for given pixels located in various locations of an 
imaging grid. Note that the shape of the factorized win- 
dow is similar to the shape of the direct window for each 

pixel. However, while the direct window has the same 
shape regardless of the pixel, the factorized window 
changes shape slightly for different pixels. This discrep- 
ancy is expected due to the creation of the window over a   
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Figure 3. Effective factorized and actual weighting functions for various pixels in a column of 64 pixels. Upper left: pixel 1; 
upper right: pixel 14; lower left: pixel 32; lower right: pixel 45. 
 
series of steps. 

6. Performance Evaluation 

In this section we display images formed by factorized 
and windowed factorized backprojection and compare 
them to images formed with direct backprojection. We 
consider both simulated and actual data. Note that be- 
cause factorized backprojection is not exact, we expect 
some performance degradation compared to backprojec- 
tion, particularly for non-ideal motion. Also note that we 
did not attempt to optimize the impulse response function, 
though techniques to accomplish this are given in [15]. 

6.1. Results for an Ideal Track 

We first assume that the flight track is ideal, that is, 
straight and level, with uniform spacing. Figure 4 shows 
the impulse response (IPR) of a point target created with 

noise-free simulated data acquired from an L-band pulsed 
SAR (parameters given in Table 2) which was recon- 
structed with direct backprojection. Figure 5 shows the 
IPR of the same point target reconstructed with factor-
ized backprojection. Note that both images have notable 
azimuth sidelobes. 

When a window is added to the direct backprojection 
image, the image quality improves, although the resolu- 
tion is slightly degraded as evidenced by the wider target 
main lobe (see Figure 6). When the window is applied to 
the factorized backprojection image, the image improves, 
although with similar resolution loss. Figure 7 shows the 
windowed factorized backprojection image where each 
pixel has been normalized by the area of the effective 
window on the pixel. Note that the width of the main 
lobe in the azimuth direction for both windowed images 
is slightly wider, resulting in slightly coarser resolution. 
However, the sidelobes have been reduced considerably  
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Figure 4. Point target IPR from simulated SAR data collected on an ideal track with parameters given in Table 2 using direct 
backprojection. Upper left: power image (linear scale); upper right: contour plot; lower left: range slice through peak; lower 
right: azimuth slice through peak.  
 

 

Figure 5. Point target IPR from simulated SAR data collected on an ideal track with parameters given in Table 2 using 
factorized backprojection. See caption for Figure 4.  
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Figure 6. Point target IPR from simulated SAR data collected on an ideal track with parameters given in Table 2 using direct 
backprojection with a Gaussian window. See caption for Figure 4.  
 

 

Figure 7. Point target IPR from simulated SAR data collected on an ideal track with parameters given in Table 2 using 
factorized backprojection with a factorized window. See caption for Figure 4.  

Copyright © 2013 SciRes.                                                                                  POS 



A New Factorized Backprojection Algorithm for Stripmap Synthetic Aperture Radar 51

 

Figure 8. Point target IPR from simulated SAR data collected on a non-ideal track with parameters given in Table 2 using 
direct backprojection. See caption for Figure 4. 
 

 

Figure 9. Point target IPR from simulated SAR data collected on a non-ideal track described in the text with parameters 
given in Table 2 using direct backprojection with a Gaussian window. See caption for Figure 4. 
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Figure 10. Point target IPR from simulated SAR data collected on a non-ideal track described in the text with parameters 
given in Table 2 using factorized backprojection. See caption for Figure 4. 
 

 

Figure 11. Point target IPR from simulated SAR data collected on a non-ideal track described in the text with parameters 
given in Table 2 using factorized backprojection with a factorized window. See caption for Figure 4. 
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(a) 

 
(b) 

Figure 12. Images generated from real SAR data of uniform scene with a trihedral corner reflector. Note there is real (and 
hence non-ideal) unknown motion of the SAR. Parameters given in Table 3. (a) IPR response of corner reflector in direct 
backprojection image; (b) IPR response of corner reflector in factorized backprojection image. 
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(a) 

 
(b) 

Figure 13. Images generated from real SAR data of uniform scene with a trihedral corner reflector. Note there is real (and 
hence non-ideal) unknown motion of the SAR. Parameters given in Table 3. (a) IPR response of corner reflector in windowed 

irect backprojection image; (b) IPR response of corner reflector in windowed factorized backprojection image. d 
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in Figures 5-7. 

6.2. Results on a Non-Ideal Track 

If the flight track is non-ideal, then factorized backpro- 
jection becomes less accurate because the range bins 
corresponding to a child subaperture may differ from the 
range bins corresponding to a parent subaperture (see [2] 
for a more complete analysis). To illustrate this, we si- 
mulated a non-ideal flight track with a sinusoidal move- 
ment at an amplitude of 1 m (which spans more than one 
range bin). In Figures 8-11, the IPR is shown when the 
flight track is non-ideal for an image reconstructed with 
direct, windowed direct, factorized, and windowed fac- 
torized backprojection, respectively. As expected, the 
performance of the factorized backprojection is degraded 
compared to full backprojection for a non-ideal track. 
However, including the window improves the image. 
Further research is needed to quantify the level of im- 
provement provided by the window for factorized back- 
projection on a non-ideal track.  

6.3. Results with Real Data 

Figures 12 and 13 shows various images generated from 
real SAR data of a uniform scene with a trihedral corner 
reflector (parameters given in Table 3). There are 4096 
aperture positions and an image grid of 1024 × 1024 pix- 
els, with each pixel 0.5 m by 0.3 m. Figure 12(a) shows 
the results of direct backprojection, and Figure 13(a) 
shows the results with windowed direct backprojection. 
Figure 12(b) shows the same image reconstructed using  
 
Table 2. Summary of simulation processing parameters for 
Figures 4-11. 

Chirp Bandwidth (MHz) 500 

Center Frequency (GHz) 1.75 

Azimuth Beamwidth 30˚ 

Pulse Repetition Frequency (Hz) 1500 

Sample Rate (kHz) 500 

 
Table 3. Summary of processing parameters for Figure 12. 

Chirp Bandwidth (MHz) 210 

Center Frequency (GHz) 1.605 

Azimuth Beamwidth 15˚ 

Chirp Length (μs) 5 

Sample Rate (kHz) 500 

Range to Target (km) 2.20 

Antenna Height (km) 1.48 

factorized backprojection. Note that the corner reflector 
appears more smeared in the factorized backprojection 
image than in the direct backprojection image, mostly 
due to non-ideal motion. Figure 13(b) shows the image 
reconstructed with windowed factorized backprojection. 
Note the improvement of the IPR response when a win- 
dow is added to factorized backprojection.  

7. Conclusions 

In this paper, a new formulation of factorized backpro- 
jection is introduced. A new algorithm to incorporate an 
azimuth window is described, termed windowed factor- 
ized backprojection. Unlike previous formulations of 
factorized backprojection, this algorithm divides an im- 
age into columns parallel to the flight track rather than 
into quadtrees. This feature of the algorithm aids in the 
parallelization of the algorithm and enables the easy ad- 
dition of a factorized azimuth window by introducing 
intermediate windows in each step. Errors are introduced 
into the image due to a combination of range errors and 
range-cell migration but can be minimized by dividing an 
image into subimages of shorter length and backproject- 
ing each independently. 

The performance of windowed factorized backprojec- 
tion is verified with simulated and real SAR data. The 
performance of windowed factorized backprojection on 
non-ideal flight tracks is briefly examined, and it is 
shown that windowed factorized backprojection can han- 
dle some non-ideal tracks. As expected, compared to 
direct backprojection, the performance is not as good but 
requires less computation. No attempt was made to opti- 
mize the windowing, but rather a basic window was in- 
troduced which was independent of the data. However, 
such optimization could further improve the algorithm.  
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Appendix 

SAR Parameters 

This section contains tables with the processing parame-
ters for both the simulated and real SAR data used in 
Section 6. The parameters for simulated data are shown 
in Table 2, and the parameters for real data are shown in 
Table 3. 
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