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ABSTRACT 

The aim of this study is designing an optimal controller with linear quadratic regulator (LQR) method for a small un- 
manned air vehicle (UAV). To better evaluate the effect of disturbances on the obtained measurements, a Kalman filter 
is also used in the system. For this purpose a small UAV that is normally used as a radio controlled plane is chosen. The 
linearized equations for a wings level flight condition and the state space matrices are obtained. An optimal controller 
using LQR method to control the altitude level is then designed. The effect of the disturbances on the measurements are 
taken into account and the effectiveness of the Kalman filter in obtaining the correct measurements and achieving the 
desired control level are shown using the controller designed for the system. The small UAV is commanded to the de- 
sired altitude using the LQR controller through the control inputs elevator deflection and thrust rate. The LQR effec- 
tiveness matrices are chosen to find the gains necessary to build an effective altitude controller. Firstly the controller is 
tested under the situation where disturbances are absent. Then a Kalman filter is designed and the system under distur- 
bances is tested with the designed controller and the filter. The results reveal the effectiveness of the Kalman filter and 
the LQR controller.  
 
Keywords: Unmanned Air Vehicle; LQR Controller; Kalman Filter; Stability Analysis 

1. Introduction 

Unmanned air vehicles (UAVs) have become a popular 
research subject in the last years. These vehicles can be 
used for many different missions including rescue, data 
gathering and military missions.  

To design a control system for an UAV defining the 
dynamic model and finding the aerodynamic coefficients 
are the first steps. The non-linear model can then be lin- 
earized to design a linear controller for the UAV [1]. The 
characteristic values of different motions which show how 
the aircraft normally behaves must also be investigated at 
this stage. Finally the controller and filter can be designed 
considering the required specifications.  

The optimal control technique linear quadratic regula- 
tor (LQR) is chosen to design a controller for the longi- 
tudinal motion of a small fixed-wing type UAV. Kalman 
filter technique is then applied to see how the controller is 
affected by disturbances. The effectiveness of the con- 
troller with and without the Kalman filter is also shown 
through simulations. Linear quadratic control is an opti- 
mal control technique that is used for controlling the air- 
craft. This control technique aims to decrease the energy 
that is used to control the aircraft. This technique can be 
applied together with a filtering technique (Kalman filter 

etc.) in cases where some of the states are not available for 
measurement or when the measurements are noisy. 

Studies that include LQR control design for different 
types of aircraft are present [2]. In [3], a linear, quadratic 
regulator method is used to control the trajectory and 
mission paths of the autonomous helicopter. Nonlinear 
motion dynamics is linearized at certain operating points 
and linear model is obtained by Taylor’s series expansion. 
By using LQR methodology, the attitude of the autono- 
mous Puma helicopter is controlled. The study [4] shows 
that the LQR controller is quite effective in the vertical 
flight mode for all possible yaw angles. In [5] the design 
procedure for a gain-scheduled LQR controller for an 
autonomous airship is presented. Two types of control 
sub-systems (lateral, longitudinal) have been designed 
from the nonlinear 6DOF airship model to fulfill different 
goals (yaw as well as speed and position control). In ref- 
erences [2-5], LQR controller is not applied together with 
a filtering technique. 

In some studies filtering techniques are used to analyze 
the effects of LQR design and increase the effectiveness 
of the controller. The paper [6] depicts the application of 
linear quadratic optimal control to the longitudinal flight 
motion of an UAV which has elevon control only. The 
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LQR controller followed by a Kalman filter based esti- 
mator for unmeasurable states. The LQR controller is then 
combined with the Kalman estimator using the separation 
principle to investigate the feasibility of altitude control. 
The simulation results show improvements compared 
with classical design counterparts in the sense that the 
combined approach offers more design flexibility and is 
able to tolerate the noisy environments.  

Some advanced techniques including robust and adap- 
tive control techniques are also used in UAV control. For 
example in one study by Johnson and Calise, Hinfinity 
technique is used to design a velocity and altitude con- 
troller that follows a determined model [7]. However in 
this study these advanced techniques are only investigated 
to design a better controller and are not used.  

In this study an altitude controller is designed for a 
small UAV using the optimal LQR control method with 
Kalman estimator. Finally the effectiveness of the con- 
troller with the gains found by LQR method is investi- 
gated under the effect of disturbances and with the Kal- 
man filter.  

2. Mathematical Model of the UAV 

In this study the longitudinal motion of the small UAV is 
investigated. We can find the longitudinal equations of 
motion for the UAV by linearizing the equations for 
wings-level flight.  

The longitudinal state model is given below: 
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where    sin cost u w   , e  and t  are the 
elevator and throttle control inputs, u is the forward ve- 
locity, w is the vertical velocity, q is the pitch rate, θ is 
the pitch angle and h is the altitude, uX , wX , qX , uZ , 

wZ , qZ , uM , wM , qM  and eX , tX , eZ , eM  
are the dimensional stability derivatives.  

The mathematical model (1) can be presented in the 
matrix form: 

x Ax Bu  .                (2) 

where  Tx u w q h  is the state vector of the 
longitudinal motion of UAV, 
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B  

is the control distribution matrix and  Tu e t   is 
the vector of control input.  

3. Stability Analysis 

Characteristic equations are investigated firstly to ana- 
lyze the stability of the UAV. The longitudinal equations 
can be calculated using the transfer functions. The char- 
acteristic equation for the longitudinal motion is as fol- 
lows:  

  2 215.043 78.0719 0.587 1.1174 0s s s s      (3) 

Longitudinal motion can be represented by two dif- 
ferent modes, namely short period and phugoid mode. 
Phugoid mode has the characteristic of longer period 
times and lower damping factors and can be easily con- 
trolled. Phugoid mode can be described as the change in 
kinetic and potential energy in which attack angle 
changes are significantly smaller than the changes in 
velocity and pitch angle. Short period mode occurs in a 
smaller time period where the change in pitch and attack 
angles are significant and it also has high damping factor. 
The longitudinal roots show a stable motion. Some of the 
characteristic values for these longitudinal motions are 
given in Table 1.   

4. LQR Application for the UAV 

In this study, LQR is adopted as an optimal control 
technique for the UAV. Considering a system with state 
space model (2), the optimal control vector is as follows: 

 u t Kx t                   (4) 

In order to determine the optimal control inputs, while 
optimizing the state variables at the same time, the fol- 
lowing cost function (also called quadratic performance 
index) has to be minimized [8], 

 T T

0

1
d

2
J x Qx u Ru t            (5) 
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Table 1. Characteristic values of the longitudinal motion. 

Mode 
Angular  

frequency 
Damping 

factor 
Period 

Half amplitude 
time 

Short period 8.8538 rad/s 0.8513 1.3553 s 0.0917 rad/s

Phugoid 1.0566 rad/s 0.0815 5.9664 s 2.3509 rad/s

 
where Q is a semi-positive definite symmetric matrix and 
R is a positive definite symmetric matrix. Q and R weight 
matrices are chosen to control each state effectively us- 
ing little control effort according to the performance in- 
dex (5). 

The gain matrix of the optimal control vector can be 
computed by the following equation: 

  11 T T 1 TK T T B P R B P
            (6) 

Therefore, optimal control equation becomes: 

     1 Tu t Kx t R B Px t            (7) 

If one positive definite P matrix can be calculated by 
the following Ricatti equation then the system is said to 
stable: 

T 1 T 0A P PA PBR B P Q            (8) 

Under some special conditions the LQR controller can 
be designed using the Riccati Equation (8) without 
changing the state and control matrices to find the opti- 
mal gain matrix [8].  

The optimal filter can also be considered in cases 
where some unknown states are present [9].  

For this system without adding an integrator we can 
use the previously determined A and B matrices together 
with the control and state weight matrices Q and R to 
find the optimal gain matrix K that will let us find the 
control input .   u kx t 

LQR height controller simulation results are shown in 
Figures 1-3. The altitude change input (20 m) is used in  
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Figure 1. LQR controller result in altitude (Q1 is used). 
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Figure 2. LQR controller result in forward velocity (Q1 is 
used). 
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Figure 3. LQR controller result in forward velocity (Q is 
used). 
 

the simulations. Also the effect of using different weight 
matrices is shown using different Q matrices.  

The effectiveness matrices used in LQR controller are 
given below: 
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It is understood that LQR controller works well for 
longitudinal UAV control system. By changing Q we 
may change the results of the state variables according to 
the requirements. With Q1 as can be seen in Figure 2 
little change in forward velocity can be achieved.  

5. Kalman Filter for UAV State Estimation 

In this study an LQR controller is designed without 
taking the effect of the disturbances on the measurements. 
The system equations are discretized using the Euler 
approach. Firstly the LQR altitude controller without the 
effect of disturbances is tested then the response of the 
system with the controller under the disturbances is 
tested with and without Kalman filter. The effectiveness 
of the Kalman filter is shown using the results.  

Kalman filter uses state equations (state space matrices) 
and initial values to calculate the residue and gain values 
and to estimate the real signal value. The steps of the 
Kalman filter can be explained using linear discretized 
state and measurement equations:  

       1X k AX k Bu k Gw    k        (9) 

     y k HX k k              (10) 

In the state equation   x k  is the state vector of the 
system, A is the system transition matrix,  is the 
input vector, B is the control distribution matrix, 

 u k
 w k  

is the random Gaussian noise vector (system noise) with 
zero mean and known covariance structure, G is the tran- 
sition matrix of the system noise. In the measurement 
equation  y k  is the measurement vector, H is the 
measurement matrix,  is the measurement noise 
vector with zero mean and known covariance structure. 
There is no correlation between the system noise 

 v k

 w k  
and the measurement noise  v k . The covariance ma- 
trices for the  and  vectors are given by:  w k  v k

       TE w k w j Q k kj     

       TE v k v j R k kj     

Here E is the expected value operator,  kj  is the 
Kronecker symbol. 

The optimum linear Kalman filter that estimates the 
state vector of the system (9) is expressed with the fol- 
lowing recursive equations system:  

Equation of the extrapolation value, 
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(11) 

The innovation sequence,
 

     1ek Z k HX k k              (12) 

Equation of the estimation value, 

      1e e X k k X k k K k k         (13) 

Gain matrix of the optimum linear Kalman filter, 
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The covariance matrix of the filtering error is, 

      1P k k I K k H P k k         (15) 

The covariance matrix of the extrapolation error is, 
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where dX  is the desired vector, I is the identity matrix. 
Kalman filter tries to estimate the real signal from the 

signal with disturbance which has Gaussian distribution 
using the described steps and decreasing the value be- 
tween two signals [9,10]. 

6. Simulations of LQR Controller with  
Kalman Estimator 

The model of longitudinal motion (2) can be discretized 
using Euler approach and determining time period dt. 
Thus the new discretized A and B matrices to be used in 
the filtering approach can be found by 1 dA A t I    
and 1 dB B t  . 

The discretized UAV model can be given as follows:  

 
 
 
 
 
 

 
   

1

0.997 0.013 0.02 0.097 0

0.018 0.961 0.098 0.017 0

0.007 0.035 0.886 0 0

0 0 0 1 0

0.0017 0.01 0 0.175 1

0.007 0.07

0.04 0

0.48 0

0 0

0 0

e

t

X k

u k

w k

q k

k

h k

k
Gw k

k








   
      
  
 
  
      

 
 
   
   
   
 
  




 (17) 

     y k HX k v k                 (18) 

In our case disturbance with Gaussian white noise 
characteristics generated by Matlab commands is applied 
to the real values found using our UAV model. Kalman 
filtering technique is then applied and its effectiveness is 
shown. In the real scenario the disturbances in measure- 
ments and process is usual and have an effect on the con- 
troller. Thus using a filtering technique is important. 

The values of the states can be calculated using Equa- 
tion (17) that includes the control rule. The disturbances 
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on the states of course must be determined firstly and 
applied to the system. Finally Kalman filter can be ap- 
plied to the system with the disturbances to develop an 
effective controller. To do this a Matlab code is written. 
The results are given in Figures 4-7. The Kalman filter 
that works as an optimal observer is estimating the new 
values of the states correctly and decreasing the error. 

As seen from Figures 4-7, in case of disturbances, us- 
ing a Kalman filter to estimate the values of the states 
clearly increase the effectiveness of the LQR controller. 

7. Conclusion 

In this study an altitude control system is designed for a 
small UAV using the optimal control method LQR. This 
method which is effective in controlling the longitudinal 
motion of the UAV is based on the acceptance that all  
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Figure 4. Change in altitude with LQR controller and Kal- 
man filter. 
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Figure 5. Change in altitude with LQR controller and Kal-
man filter (zoomed view). 
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Figure 6. Error differences in altitude with disturbances 
(with KF). 
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Figure 7. Error differences in altitude with disturbances 
(without KF). 
 
states can be measured truly however in real cases it is 
not generally possible. To make the controller more ef- 
fective Kalman filter approach is used in the study. A 
Kalman filter is designed and added to the system and 
the response of the controller with and without distur- 
bances and the Kalman filter is tested. The simulations 
show that in case of disturbances using a Kalman filter to 
estimate the values of the states clearly increase the ef- 
fectiveness of the LQR controller. In conclusion it is 
found that an LQR controller with Kalman filter is effec- 
tive in controlling the longitudinal motion of the UAV 
and can be used for such applications. 
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