
Open Access Library Journal
2024, Volume 11, e11498

ISSN Online: 2333-9721
ISSN Print: 2333-9705

DOI: 10.4236/oalib.1111498 May 31, 2024 1 Open Access Library Journal

Development of a Simulated Artificial Neural
Network Model for Stock Prediction

Njideka Nkemdilim Mbeledogu, Roseline Uzoamaka Paul

Department of Computer Science, Nnamdi Azikiwe University, Awka, Nigeria

Abstract
Artificial Neural Network (ANN) provides the learning ability for solving
complex problems in similitude to the human brain. The research gives a de-
tailed descriptive design of a simulated ANN. It expounded the architectural
attributes (the network structure) showing the number and topology of the
neurons with their interconnectivity and the neuro-dynamic attributes by em-
ploying the Levenberg Marquardt back propagation for the training and Gra-
dient descent for the learning (adjusting the individual weight of the connec-
tion links). The Simulink in MATLAB was used to simulate the model and im-
plemented with the stock data. The optimum performance for the number of
hidden neurons was tested for 1000 epochs and the (4-50-5-1) structure had the
least MSE training time of 1.4%. The performance of the model was evaluated
using RMSE and it returned an error rate of approximately 0.0004. This shows
the capability of the simulated ANN model in prediction.

Subject Areas
Artificial Intelligence

Keywords
Artificial Neural Network, Levenberg Marquardt Back Propagation, Gradient
Descent

1. Introduction

Artificial Intelligence (AI) is the art and science of developing intelligent ma-
chines. These intelligent machines can be developed using hard computing or
soft computing methods. Though both of them aim to achieve general intelli-
gence as their goal, their approaches to adaptation to many situations are differ-
ent. Hard computing huge set of conventional methods such as stochastic and

How to cite this paper: Mbeledogu, N.N.
and Paul, R.U. (2024) Development of a
Simulated Artificial Neural Network Model
for Stock Prediction. Open Access Library
Journal, 11: e11498.
https://doi.org/10.4236/oalib.1111498

Received: March 28, 2024
Accepted: May 28, 2024
Published: May 31, 2024

Copyright © 2024 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1111498
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1111498
http://creativecommons.org/licenses/by/4.0/

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 2 Open Access Library Journal

statistical methods uses crisp binary-based computation that needs an exact in-
put sample but Soft Computing methods (Artificial Neural Network, Fuzzy Log-
ic, Genetic Algorithm and Probabilistic Reasoning) are founded on the impor-
tance given to issues like learning, cognition, precision, certainty, recognition,
rigor, approximate reasoning and functional approximation and randomized
search to solve non-linear and mathematically un-modeled system problem,
thus, deals with ambiguous and noisy data [1].

Artificial Neural Network (ANN) provides the learning ability for solving
complex problems in similitude to the human brain [2]. It is a massively parallel
distributed processor that has a natural capability for storing experiential know-
ledge [3]. It could also be said to be basically mathematical models of informa-
tion processing that provide a method of representing relationships that is quite
different from that of turing machines or computers with stored programs [4].

Due to its benefits, researchers have delved into ANN for prediction. Some of
the works are:

[5] predicted students’ performance with ANN using demographic traits such
as age, gender etc. The study aimed at selecting students with high prediction of
success for admission using previous academic records. The research did not
expound on the necessary features of the ANN applied. These features include
the high level model of the ANN design which involves the type of machine
learning architecture deployed, the architectural attributes (number and topolo-
gy of network) and the neuro-dynamic attributes (functionality) to show the
training and the learning algorithm.

[6] conducted a comprehensive literature survey on using ANN for building
energy prediction. The researchers showed the progressive rate of the research
trend on ANNs in building energy prediction in the last five years by introduc-
ing in detail twelve ANN architectures applied and discussing the challenges
encountered for future investigation.

[7] worked on stock price prediction using an artificial neural network integrated
moving average. The research focused on improving the quality of the experimental
data using an integrated moving average for the ANN to train on. Both the struc-
ture and the functionality of the ANN were not properly analyzed in detail.

Based on these, the aim of this research is to give a well detail descriptive de-
sign of a simulated ANN showing the architectural attributes and the neu-
ro-dynamic attributes that will guide researchers in properly developing their
desired ANN model.

2. Literature Review

The human brain (biological neural network) consists of a complex set of inter-
connected neurons, and their interaction produces characteristics associated with
intelligence. The development of ANN is based on the information processing that
occurs in the simplest unit of the brain called neuron [8]. A biological neuron
has three main components: the soma (cell body), the axon and dendrites. The

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 3 Open Access Library Journal

dendrites accept impulses as inputs from other neuron for the soma to process
(learning) through the help of synapses that enables the transmission of these
impulses from the dendrites to the cell body. The axon then transfers the
processed signals or impulses to the other neurons. The firing rate of the neuron
(activation) happens when the impulses are strong enough to reach the thre-
shold.

Model of a Neuron

A typical neuron model has three basic elements (Figure 1). They are:
1) A set of synapses or connecting links, each is delineated by a strength

(weight) of its own. A signal inputn at the input of synapse n connected to a
neuron k is multiplied by the synaptic weight wkn. If the weight is positive then
the associated synapse is excitatory else, it is inhibitory.

2) A linear combiner that sums the input signals, their respective weighted
synapses and a bias 1b = .

3) An activation function for limiting the amplitude of the output of a neuron
with normalized interval range of the output of a neuron as [0, 1] or [−1, 1].

()1 i ki
n
iY f x w b
=

= +∑ (1)

The learning process of the neuron is achieved by adjusting the weights of the
interconnections according to some applied learning algorithms. The manner in
which the neurons of a neural network are arranged is esoterically linked with
the learning algorithm used to train the network. Basically, there are two learn-
ing paradigms [9]. They are Supervised learning and Unsupervised learning.

When the network is provided with a correct answer (output) for every input
pattern and the weights are determined to allow the network to produce answers
as close as possible to the known correct answers, it is referred to as Supervised
Learning [10]. Examples are Single Layer Perceptron, Multiple Layer Perceptron
(MLP) and Radial basis neural network (RBNN). In contrast to this, when the

Figure 1. Model of a neuron.

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 4 Open Access Library Journal

system surveys the underlying structure in the data by organizing the patterns
into categories from their correlations, it applies an unsupervised mechanism.
An example is the Self Organizing Map (SOM) such as Kohonen SOM.

These learning paradigms gave rise to different types of neural network archi-
tectures. Some of the ANN architectures are Multi-layer Perceptron (MLP),
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and
Generative Adversarial Networks (GAN).

The basic attributes of ANNs can be classified into Architectural attributes
and neuro-dynamic attributes [11]. The architectural attributes define the net-
work structure, that is, number and topology of neurons and their interconnec-
tivity. The neuro-dynamic attributes define the functionality of the ANN.

3. Materials and Methods
3.1. Data Collection

The daily price lists from http://www.cashcraft.com/ for 2012 was collected as
the research experimental stock data for Julius Berger (Construction Company)
and GlaxoSmith Kline in 2016 as shown on Table 1 and Table 2. Four indepen-
dent stock data (High, Low, Close and Open Price) were used as the input data
(technical factors).

Table 1. Sample of Julius Berger experimental stock data.

Days Date Open Price High Price Low Price Close Price

1 3/1/2012 31.6 31.6 31.6 31.6

2 4/1/2012 31.6 31.6 31.6 31.6

3 5/1/2012 31.61 31.6 31.6 31.6

4 6/1/2012 31.6 31.6 31.6 31.6

5 17/1/2012 33.18 33.18 33.18 31.6

6 18/1/12 33.18 33.18 33.18 33.18

7 19/1/12 32.05 32.05 32.05 33.18

8 20/1/12 32.05 32.05 32.05 32.05

9 24/1/12 30.7 30.7 30.7 32.05

10 25/1/12 30.7 30.7 30.7 30.7

11 26/1/12 31 31 31 30.7

12 27/1/12 31.5 31.5 31.5 31

13 30/1/12 31.5 31.5 31.5 31.5

14 31/1/12 40 40 31.5 31.5

15 1/2/2012 31.5 31.5 31.5 31.5

16 2/2/2012 30.01 30.01 30 31.5

17 3/2/2012 30 30 29.11 30

18 7/2/2012 29.11 29.11 29.11 29.11

19 8/2/2012 29.2 29.2 28 29.11

20 9/2/2012 27 27 27 28

https://doi.org/10.4236/oalib.1111498
http://www.cashcraft.com/

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 5 Open Access Library Journal

Table 2. Sample of GlaxoSmithKline Consumer Plc stock data.

Days Date Open Price High Price Low Price Close Price

1 3/1/2012 23 23 23 23

2 4/1/2012 23 23 23 23

3 5/1/2012 23 23 23 23

4 6/1/2012 22.85 23 22.85 23

5 10/1/2012 21.85 21.85 21.85 23

6 11/1/2012 21.85 21.85 21.85 21.85

7 12/1/2012 22.9 22.9 22.9 21.85

8 16/1/12 23 23 23 22.9

9 17/1/12 23 23 23 23

10 18/1/12 23 23 23 23

11 19/1/12 23 23 23 23

12 24/1/12 23 23 23 23

3.2. Simulation

The Simulink in MATLAB was used to simulate the model. MATLAB serves as a
vehicle for modeling dynamic systems while the Simulink provides a graphical
user interface (GUI) that is used in building block diagrams, performing simula-
tions, as well as analyzing results [12].

3.3. ANN Modeling

The ANN maps the input and the associated parameters as shown in Figure 2.
In order for the network to deal with more complex non-linear problems,

hidden non-linear layers were added to form a multilayer perceptron. A Mul-
ti-layer perceptron model (MLP) architecture was used because it can be trained
to approximate most functions arbitrarily well.

Four layered MLP was randomly selected. The MLP comprised of four layers
– input layer, two hidden layers and the output layer as shown in Figure 3.

The MLP model is a feed forward neural network model trained with back
propagation algorithm. The MLP is structured in a feed forward topology whe-
reby each unit gets its input from the previous one. Network trained with back
propagation algorithm are networks with feedback connections that is global in
nature.

The basic parameters needed for the design of an MLP ANN Model were pre-
sented in Table 3.

3.4. Transfer Function (Activation Function)

Log-sigmoid and Purelin activation functions were deployed within the layers
because they can be trained to approximate most functions arbitrarily well [13].
The financial time series under consideration is highly non-linear and requires a

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 6 Open Access Library Journal

Figure 2. Mapping of the input parameters into the neural predictor.

Figure 3. ANN block showing the multi-layers.

Table 3. Basic parameters in designing MLP model.

Type of input data
- Technical factors

Training
- Learning rate
- Momentum term
- Training tolerance
- Epoch size
- Goal
- Learning rate limit
- Number of times to randomize weights
- Size of training, testing and validation sets

Topology
- Number of input neurons
- Number of hidden Layers
- Number of hidden neurons in each layer
- Number of output neurons
- Transfer function for each neuron
- Error function

sufficiently non-linear function to represent all the properties of the series. The
logistic function of log-sigmoid depicted in Figure 4 was chosen for the hidden
layers because it converges faster to a solution, therefore reduces the cost of
computation for the hidden layer with multiple nodes. This transfer function

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 7 Open Access Library Journal

Figure 4. Log-sigmoid transfer function.

takes the input (which may have any value between plus and minus infinity) and
squashes the output into the range 0 to 1.

()a logsig n= (2)

Purelin activation function [14] shown in Figure 5 is also known as Linear
transfer function. It does not change the summation results but transfers them
after the summation process, hence, the outputs have no limit.

()a Purelin n= (3)

3.5. Time Delay Layer (TDL)

TDL is an important aspect of the interlinking of layers. A time-delay layer was
incorporated into the input layer of a static multi-layer forecasting system in
which the dynamics appear only as shown in Figure 6. The response of the
neural network in time t is based on the inputs in times () () ()1 , 2 , ,t t t n− − − .
A mapping performed by the TDL produces a ()y k output at time k as:

() () () ()(); 1 , ,y K f u k u k u k m= − − (4)

where ()u k is the stock input at time k and m is the maximum adapted
time-delay.

3.6. Neuro-Dynamic Attributes

Training and learning functions are mathematical procedures used to automati-
cally adjust the network’s weights and biases. The training function dictates a
global algorithm that affects all the weights and biases of a given network while
the learning function can be applied to individual weights and biases within a
network [15].

The system deployed a supervised paradigm by adopting Levenberg Mar-
quardt (LM) back propagation for training and Gradient Descent (GD) for
learning.

LM back propagation algorithm was implemented using the trainlm function.
It was used because it works extremely well in practice, considered to be the
most efficient algorithm and has a high speed in convergence [16]. It is a variation

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 8 Open Access Library Journal

Figure 5. Purelin transfer function.

Figure 6. Internal structure of a layer showing the time delay, weights, activation func-
tion and bias.

of Newton’s method that was designed for minimizing functions that are sum of
squares of other non-linear functions. This is very well suited to neural network
training where the performance index is the mean squared error [13]. GD back
propagation was because of its popularity.

3.6.1. Training Algorithm
LM back propagation algorithm is given:

Step 1: The independent sample stock data are the inputs to the neural net-
work. Propagate the input forward through the network by selecting random
weights and biases:

()1 1 1 1m m m m ma f W a b+ + + += + for 0,1, , 1m M= −
 (5)

Step 2: Calculate the errors

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 9 Open Access Library Journal

M
q q qe t a= − (6)

where qe is the error, qt is the target value and M
qa is the output.

Step 3: Compute the sum of squared errors over all inputs, ()F x :

() () ()T

1 q q q q
Q
qF x t a t a
=

= − −∑ (7)

T
1 q qq

Q e e
=

= ∑

()2
,1 1

ms
j qq j

Q e
= =

= ∑ ∑

()2
1 ii

N v
=

= ∑ (8)

where ,j qe is the jth element of the error for the qth input/target pair and v is
the error vector.

[]T
1 2 Nv v v v=  (9)

1,1 2,1 1,2,1 ,m ms s Q
e e e e e =  

 (10)

Step 4: Compute the jacobian matrix J(x):

()

1,1 1,1
1 1
1,1 1

,1 ,1
1 1
1,1 1

m ms s

e e
w b

J x
e e

w b

 ∂ ∂
 
∂ ∂ 

 =  
 ∂ ∂
 
∂ ∂  



  



 (11)

Step 5: Calculate the sensitivity with the recurrence relations
Initialize the back propagation with

()m m m
q qS F n− = − (12)

Step 6: Propagate each column of the matrix m
qS −

()()T1 1m m m m m
q q qS F n W S− + − += (13)

Step 7: Augment the individual matrices into marquardt sensitivities:

1
m m m

QS S S− − −=  (14)

Note: For each input presented to the network, the sensitivity vectors are
propagated back. This is because the derivatives of each individual error is com-
puted and not the derivative of the sum of squares of the errors. For every input
applied to the network there will be mS errors (one for each element of the
network output). For each error, there will be one row of the Jacobian matrix.

Step 8: Compute the elements of the Jacobian matrix:

[] , , , , 1
, , ,,

, , , ,

m m
k q k q i q i qm m mh

i h i h j qm m m mh l
l i j i q i j i j

e e n nvJ s s a
x w n w w

− − −∂ ∂ ∂ ∂∂
= = = × = × = ×
∂ ∂ ∂ ∂ ∂

 (15)

[] ,, , ,
, ,,

,

i q

m m
nk q k q i qm mh

i h i hm m m mh l
l i i q i i

e e nvJ s s
x b n b b

− −
∂∂ ∂ ∂∂

= = = × = × =
∂ ∂ ∂ ∂ ∂

 (16)

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 10 Open Access Library Journal

if lx is a bias.
Step 9: Solve to obtain kx∆

() () () ()
1T T

k k k k k kx J x J x I J x v xµ
−

 ∆ = − +  (17)

Step 10: Re-compute the sum of squares errors use k kx x+ ∆ . If this new sum
of squares is smaller than computed in step 1, then divide μ by v, let

1k k kx x x+ = + ∆ (18)

And go back to step 1. If the sum of squares is not reduced, then multiply μ by
v.

And go back to step 9.
The algorithm is assumed to have converged when the norm of the gradient is

() () ()T2F x J x v x∇ = (19)

less than some predetermined value, or when the sum of squares has been re-
duced to some error goal.

3.6.2. Learning Algorithm
Gradient descent (GD) learning algorithm with learning rate and momentum
coefficient was used for the learning. It was implemented using the Learngdm
Function.

GD algorithm [17] is given as:
Step 1: Having the network:

(), 1net j ij i ji
la w o θ
=

= +∑ (20)

where jo is the output of the jth unit, io is output of the ith unit, ijw is the
weight of the link from unit i to unit j, ,net ja is the net input activation function
for the jth unit, jθ is the bias for the jth unit and jc is the gain of the activation
function.

Step 2: The gain update expression for a gradient descent (GD) method is
calculated by differentiating the following error term E with respect to the cor-
responding gain parameter.

The network error is defined as

()()21 ,
2 k k j kE t o o c= −∑ (21)

Step 3: Calculate
k

E
c
∂
∂

 for the output unit and
j

E
c
∂
∂

 for the hidden units.

The respective gain values would then be updated with the following equa-
tions:

k
k

Ec
c

η
 ∂

∆ = − ∂ 
 (22)

j
j

Ec
c

η
 ∂

∆ = −  ∂ 
 (23)

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 11 Open Access Library Journal

() ()()1k k k k jk j k
k

E t o o o w o
c

θ∂
= − − − +

∂ ∑ (24)

Therefore, the gain update expression for links connecting to output nodes is:

() () ()()1 1k k k k k jk j kc n t o o o w oη θ∆ + = − − +∑ (25)

()() ()()1 1k jk k k k k j j ij i jk j
j

E c w o o t o o o w o
c

θ∂  = − − − − + ∂ ∑ ∑ (26)

Therefore, the gain update expression for the links connecting hidden nodes
is:

() ()() ()()1 1 1j k jk k k k k j j ij i jk jc n c w o o t o o o w oη θ ∆ + = − − − − + ∑ ∑ (27)

Step 4: Similarly, the weight and bias expressions are calculated as follows:
The weights update expression for the links connecting to output nodes:

 () () () ()1 1jk k k k k k j jkw n t o o o c o w nη α∆ + = − − + ∆ (28)

where the LR, η and MC, α are randomly generated.
Step 5: Similarly, the bias update expressions for the output nodes would be:

() () () ()1 1k k k k k k jkn t o o o c w nθ η α∆ + = − − + ∆ (29)

The weight update expression for the links connecting to hidden nodes is:

() ()() () ()1 1 1jk k jk k k k k j j j i ikkw n c w o o t o c o o o w nη α ∆ + = − − − + ∆ ∑ (30)

Step 6: Similarly, the bias update expressions for the hidden nodes would be:

() ()() () ()1 1 1j k jk k k k k j j j ikkn c w o o t o c o o w nθ η α ∆ + = − − − + ∆ ∑ (31)

3.6.3. Training Parameters
The training parameters used in the ANN block are shown in Table 4. For each
of the parameter, an initial value was selected and constantly adjusted until the
desired performance was achieved. Two approaches were considered for con-
vergence. They were the learning rate and the momentum coefficient.

1) Learning Rate (LR): This is one of the most effective means to accelerate the
convergence of Back Propagation (BP) learning. The value is usually set to be

Table 4. Training parameters.

Parameter Value Description

net.trainParam.epochs 1000 Maximum number of epochs (cycles)

net.trainParam.goal 1e−5 Performance goal in terms of mean square error

net.trainParam.Ir 0.05 Learning rate

net.trainParam.mc 0.5 Momentum Coefficient

net.trainParam.max_fail 100 Maximum validation value

net.trainParam.mem_reduc 2 Memory requirement specification

net.trainParam.min_grad 1e−50 Minimum Performance Gradient

net.trainParam.time 1000 Maximum training time

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 12 Open Access Library Journal

constant which means that the selected value is employed for all weights in the
whole learning process. Taking into consideration that the algorithm will take
longer time to converge or may never converge if the LR is too small and may
oscillate if it is too high, a value was initially randomly selected and adjusted un-
til the desired performance was obtained.

2) Momemtum Coefficient (MC): Without MC, the network can slide through
shallow local minima. The value of the gain parameter, jc , directly influences
the slope of the activation function. For large gain values, (1c >), the activation
function approaches a “step function” whereas for small gain values (0 1c< ≤),
the output values change from zero to unity over a large range of the weighted
sum of the input values and the sigmoid function approximates a linear func-
tion.

3.6.4. Training
The stock data series were first partitioned into three disjoint sets: the training
set, the validation set, and the test set. 60% of the stock data was used for train-
ing, 20% for validation and 20% for testing. These stock data were stored in the
MATLAB workspace with variable name.

The training and validation data sets were used during training. The training
set is the data set used to adjust the weights on the neural network while the va-
lidation set is the data set used to minimize over-fitting. Any increase in accura-
cy over the training data set actually yields an increase in accuracy over a data set
that has not been shown to the network before, or at least the network hasn’t
trained on it. If the accuracy over the training data set increases, but the accuracy
over the validation data set stays the same or decreases, then one is over-fitting
the neural network and should stop training. Also, training is stopped at the
moment the validation error starts to rise.

Training Conditions
Training stops when any of the conditions below occurs:

● The maximum number of epochs (repetitions) is reached.
● The maximum amount of time is exceeded.
● Performance is minimized to the goal.
● The performance gradient falls below min_grad.
● Momentum (mu) exceeds mu_max.
● Validation performance has increased more than max_fail times since the

last time it decreased.

3.7. Architectural Attributes

This defines the network structure, that is, number and topology of neurons and
their interconnectivity.

1) Choice of Number of Neurons for Each Layer
The numbers of layers for the structure were randomly selected with the aim

of determining the one with the least Mean Square Error (MSE) structure with
most emphasis laid on the hidden layers. The input layer had a static number of

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 13 Open Access Library Journal

neurons to be four (4) because of the 4 independent input data (Open price, Low
price, High price and Close price). The output layer is also restricted to one
neuron because only one Closing price is expected as the predicted value.

For the hidden layers, two layered hidden structures with different number of
neurons (various network structures) were considered randomly and tested for
different epochs of training time up till 1000 epochs. Figure 7 shows the graphi-
cal representation of training for optimal performance for 30 epochs. Optimum
performance experimentation was carried out with the aim of determining the
number of hidden neurons in the hidden layers with the least MSE (Table 5).

2) The Mean Square Error (MSE)
This is an average of the squares of the difference between the actual observa-

tions and those predicted. It is a measure of how close a fitted line is to data
points. It is calculated [18] as:

()2
, ,1

1MSE obs i model ii
n X X

n =
= −∑ (32)

where ,obs iX is observed values and ,model iX is modeled values at time.
a-b-c-d structure on Table 5 represents the number of neurons in the input

layer-hidden layer1-hidden layer2-output layer. The MLP structure with 4-50-5-1

Figure 7. Graphical representation of training for optimal performance.

Table 5. Optimum performance for number of hidden neurons at 1000 epochs.

1000Epochs

Number Neurons % Training Time MSE

4-10-5-1 1.9 9.92647e−006

4-20-5-1 3.2 9.861e−006

4-30-5-1 2.1 9.9529e−006

4-40-5-1 5.5 9.78957e−006

4-50-5-1 1.4 7.66117e−006

4-60-5-1 4.9 9.86415e−006

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 14 Open Access Library Journal

returned both least mean square error and training time, thus, became the op-
timal structure for prediction.

Figure 8 and Figure 9 show the first hidden layer having 50 neurons with log
sigmoid activation function, and the second hidden layer having 5 neurons with
log sigmoid function and the last layer which is the output process having one
neuron with Purelin function respectively.

The internal structure of the connections between the hidden layer 2 and the
last layer is shown in Figure 9. A Multiplexer was employed. A multiplexer (also
called a data selector or mux) is a hardware device that accepts multiple inputs
and allows only one to go through as an output [19].

Once a model is selected based on the validation set, the test set data is applied
on the network model and the error for this set is determined.

Figure 8. Simulink block diagram showing the weight structure of the first hidden layer having 50 neurons
connecting to the input matrix of the second hidden layer.

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 15 Open Access Library Journal

3.8. Testing the Network

The network was tested for estimating the network’s ability to generalize. The
testing data set was used in order to confirm the actual predictive power of the
network.

4. Results and Discussions

Functional tests and comparisons as presented on Table 6 and Table 7 were

Figure 9. Simulink block diagram showing the weight structure of second hidden layer
with 5 neurons.

Table 6. Comparison between actual stock price and
ANN predictions for Julius Berger.

Actual Close Price ANN Predictions

31.06 31.06012

31.06 31.06012

31.06 31.06012

31.06 31.06012

31.06 31.06027

32.61 32.61015

34.24 34.24013

34 34.00015

34 34.00015

34 33.99997

33.01 33.01014

30.61 30.61006

30.61 30.61006

30.61 30.61006

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 16 Open Access Library Journal

Table 7. Comparison actual stock price and ANN
Predictions for GlaxoSmith Kline Plc.

Actual Close Price ANN Predictions

21.85 22.99999

21.85 21.85

22.9 21.84999

23 22.9

23 23

23 23

23 23

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

22.7 22.70001

Figure 10. Combo plot of stock prediction for Julius Berger.

Figure 11. Combo plot of stock prediction for GlaxoSmith Kline Plc.

https://doi.org/10.4236/oalib.1111498

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 17 Open Access Library Journal

done to establish its ability to forecast stock price accurately. It can be observed
that the ANN predictions were within the neighborhood of prediction and very
close with the actual close price. Figure 10 and Figure 11 show the combo
graphical representations of ANN predictions for Julius Berger and GlaxoSmith
Kline Plc respectively.

Performance Evaluation

The predictive performance analysis of the model was calculated using Root
Mean Square Error (RMSE) as shown in Equation (33). RMSE is also a notable
predictive performance metric and can be calculated as

()2
, ,1RMSE obs i modeli

n
iX X

n
=

−
=
∑ (33)

where ,obs iX is observed values and ,model iX is modeled values at time.
The predictive performance of the simulated ANN model returned very small

error size of 0.0004. This signifies the accuracy of its prediction.

5. Conclusion

ANN provides experimental paradigm for parallel distributed processing and
simulated models of it can be used to solve statistical analysis, data modeling and
complex real life problems.

Conflicts of Interest

The authors declare no conflicts of interest.

References
[1] Huang, Y., Lan, Y., Thomson, S., Fang, A., Hoffmann, W. and Lacey, R. (2010) De-

velopment of Soft Computing and Applications in Agricultural and Biological En-
gineering. Computers and Electronics in Agriculture, 71, 107-127.
https://doi.org/10.1016/j.compag.2010.01.001

[2] Haag, S., Cummings, M. and Dawkins, J. (1998) Management Information System
for the Information Age. Mc-Graw-Hill, USA, 526.

[3] Haykin, S. (1998) Neural Networks: A Comprehensive Foundation, Macmillan Col-
lege Publishing Company, Inc., London, USA, 1-41.

[4] Fausett, L. (1996) Fundamentals of Neural Network: Architectures, Algorithms and
Applications, Prentice Hall, Upper Saddle River, New Jersey, 1-14.

[5] Kehinde, A.J., Adeniyi, A.E., Ogundokun, R.O., Gupta, H. and Misra, S. (2022) Pre-
diction of Students’ Performance with Artificial Neural Network Using Demor-
graphic Traits. In: Singh, P.K., Singh, Y., Chhabra, J.K., Ill𝑒́𝑒s, Z. and Verma, C.,
Eds., Recent Innovation in Computing. Lecture Notes in Electrical Engineering,
Springer, Singapore, 613-624. https://doi.org/10.1007/978-981-16-8892-8_46

[6] Lu, C.J., Li, S.H. and Lu, Z.J. (2022) Building Energy Prediction Using Artificial
Neural Network: A Literature Survey. Energy and Building, 262, Article 111718.
https://doi.org/10.1016/j.enbuild.2021.111718

[7] Suryani, I. and Buani, D.C.P. (2020) Stock Price Prediction Using Artificial Neural

https://doi.org/10.4236/oalib.1111498
https://doi.org/10.1016/j.compag.2010.01.001
https://doi.org/10.1007/978-981-16-8892-8_46
https://doi.org/10.1016/j.enbuild.2021.111718

N. N. Mbeledogu, R. U. Paul

DOI: 10.4236/oalib.1111498 18 Open Access Library Journal

Network Integrated Moving Average. Journal of Physics: Conference Series, 1641,
Article 012028. https://doi.org/10.1088/1742-6596/1641/1/012028

[8] Abhijit, S.P. and Macy, R. (2000) Pattern Recognition with Neural Networks in
C++. CRC Press, Boca Raton, Florida, 1-43.

[9] Krose, B. and Van Der Smagt, P. (1996) An Introduction to Neural Networks. 8th
Edition, University of Armsterdan, Amsterdam.
http://prolland.free.fr/works/ai/docs/neuro-intro.pdf

[10] Samarasinghe, S. (2006) Neural Networks for Applied Sciences and Engineering
from Fundamentals to Complex Pattern Recognition, Auerbach Publications, Tay-
lor and Francis Company, New York. https://doi.org/10.1201/9781420013061

[11] Kartalopoulous, S.V. (1996) Understanding Neural Networks and Fuzzy Logic: Ba-
sic Concepts and Applications, IEEE Press, Piscataway Township.

[12] Hill, J.M. (2001) Introduction to Simulink.
https://www.slideserve.com/wilona/introduction-to-simulink

[13] Hagan, M.T., Demth, H.B. and Beale, M. (1996) Neural Network Design. PWS Pub-
lishing Company.

[14] Mathworks (2024) Purelin Linear Transfer Function.
https://www.mathworks.com/help/deeplearning/ref/purelin.html

[15] Mathworks (2014) MATLAB Programming Fundamentals.
https://pdfroom.com/books/matlab-programming-fundamentals/zydD8wQQd14

[16] Azhar, K.A. and Kunid, W. (2007) Daily Groundwater Level Fluctuation Forecast-
ing Using Soft Computing Technique. Journal of Nature and Science, 5.

[17] Rehman, M.Z. and Nawi, N.M. (2011) Improving the Accuracy of Gradient Descent
back Propagation Algorithm (GDAM) on Classification Problems. International
Journal on New Computer Architectures and Their Applications, 1, 838-847.

[18] Vernier (2011). What Are Mean Squared Error and Root Mean Squared Error?
http://www.vernier.com/til/1014/

[19] Jadoon, R. (2010) Multiplexer and De-Multiplexer.
https://jadoon956.wordpress.com/wp-content/uploads/2010/10/multiplexer-demult
iplexer.pdf

https://doi.org/10.4236/oalib.1111498
https://doi.org/10.1088/1742-6596/1641/1/012028
http://prolland.free.fr/works/ai/docs/neuro-intro.pdf
https://doi.org/10.1201/9781420013061
https://www.slideserve.com/wilona/introduction-to-simulink
https://www.mathworks.com/help/deeplearning/ref/purelin.html
https://pdfroom.com/books/matlab-programming-fundamentals/zydD8wQQd14
http://www.vernier.com/til/1014/
https://jadoon956.wordpress.com/wp-content/uploads/2010/10/multiplexer-demultiplexer.pdf
https://jadoon956.wordpress.com/wp-content/uploads/2010/10/multiplexer-demultiplexer.pdf

	Development of a Simulated Artificial Neural Network Model for Stock Prediction
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Literature Review
	Model of a Neuron

	3. Materials and Methods
	3.1. Data Collection
	3.2. Simulation
	3.3. ANN Modeling
	3.4. Transfer Function (Activation Function)
	3.5. Time Delay Layer (TDL)
	3.6. Neuro-Dynamic Attributes
	3.6.1. Training Algorithm
	3.6.2. Learning Algorithm
	3.6.3. Training Parameters
	3.6.4. Training

	3.7. Architectural Attributes
	3.8. Testing the Network

	4. Results and Discussions
	Performance Evaluation

	5. Conclusion
	Conflicts of Interest
	References

