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Abstract 
Artificial Neural Network (ANN) provides the learning ability for solving 
complex problems in similitude to the human brain. The research gives a de-
tailed descriptive design of a simulated ANN. It expounded the architectural 
attributes (the network structure) showing the number and topology of the 
neurons with their interconnectivity and the neuro-dynamic attributes by em-
ploying the Levenberg Marquardt back propagation for the training and Gra-
dient descent for the learning (adjusting the individual weight of the connec-
tion links). The Simulink in MATLAB was used to simulate the model and im-
plemented with the stock data. The optimum performance for the number of 
hidden neurons was tested for 1000 epochs and the (4-50-5-1) structure had the 
least MSE training time of 1.4%. The performance of the model was evaluated 
using RMSE and it returned an error rate of approximately 0.0004. This shows 
the capability of the simulated ANN model in prediction. 
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1. Introduction 

Artificial Intelligence (AI) is the art and science of developing intelligent ma-
chines. These intelligent machines can be developed using hard computing or 
soft computing methods. Though both of them aim to achieve general intelli-
gence as their goal, their approaches to adaptation to many situations are differ-
ent. Hard computing huge set of conventional methods such as stochastic and 
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statistical methods uses crisp binary-based computation that needs an exact in-
put sample but Soft Computing methods (Artificial Neural Network, Fuzzy Log-
ic, Genetic Algorithm and Probabilistic Reasoning ) are founded on the impor-
tance given to issues like learning, cognition, precision, certainty, recognition, 
rigor, approximate reasoning and functional approximation and randomized 
search to solve non-linear and mathematically un-modeled system problem, 
thus, deals with ambiguous and noisy data [1].  

Artificial Neural Network (ANN) provides the learning ability for solving 
complex problems in similitude to the human brain [2]. It is a massively parallel 
distributed processor that has a natural capability for storing experiential know-
ledge [3]. It could also be said to be basically mathematical models of informa-
tion processing that provide a method of representing relationships that is quite 
different from that of turing machines or computers with stored programs [4].  

Due to its benefits, researchers have delved into ANN for prediction. Some of 
the works are:  

[5] predicted students’ performance with ANN using demographic traits such 
as age, gender etc. The study aimed at selecting students with high prediction of 
success for admission using previous academic records. The research did not 
expound on the necessary features of the ANN applied. These features include 
the high level model of the ANN design which involves the type of machine 
learning architecture deployed, the architectural attributes (number and topolo-
gy of network) and the neuro-dynamic attributes (functionality) to show the 
training and the learning algorithm. 

[6] conducted a comprehensive literature survey on using ANN for building 
energy prediction. The researchers showed the progressive rate of the research 
trend on ANNs in building energy prediction in the last five years by introduc-
ing in detail twelve ANN architectures applied and discussing the challenges 
encountered for future investigation.  

[7] worked on stock price prediction using an artificial neural network integrated 
moving average. The research focused on improving the quality of the experimental 
data using an integrated moving average for the ANN to train on. Both the struc-
ture and the functionality of the ANN were not properly analyzed in detail.  

Based on these, the aim of this research is to give a well detail descriptive de-
sign of a simulated ANN showing the architectural attributes and the neu-
ro-dynamic attributes that will guide researchers in properly developing their 
desired ANN model.  

2. Literature Review 

The human brain (biological neural network) consists of a complex set of inter-
connected neurons, and their interaction produces characteristics associated with 
intelligence. The development of ANN is based on the information processing that 
occurs in the simplest unit of the brain called neuron [8]. A biological neuron 
has three main components: the soma (cell body), the axon and dendrites. The 

https://doi.org/10.4236/oalib.1111498


N. N. Mbeledogu, R. U. Paul 
 

 

DOI: 10.4236/oalib.1111498 3 Open Access Library Journal 
 

dendrites accept impulses as inputs from other neuron for the soma to process 
(learning) through the help of synapses that enables the transmission of these 
impulses from the dendrites to the cell body. The axon then transfers the 
processed signals or impulses to the other neurons. The firing rate of the neuron 
(activation) happens when the impulses are strong enough to reach the thre-
shold.  

Model of a Neuron 

A typical neuron model has three basic elements (Figure 1). They are: 
1) A set of synapses or connecting links, each is delineated by a strength 

(weight) of its own. A signal inputn at the input of synapse n connected to a 
neuron k is multiplied by the synaptic weight wkn. If the weight is positive then 
the associated synapse is excitatory else, it is inhibitory. 

2) A linear combiner that sums the input signals, their respective weighted 
synapses and a bias 1b = . 

3) An activation function for limiting the amplitude of the output of a neuron 
with normalized interval range of the output of a neuron as [0, 1] or [−1, 1]. 

( )1 i ki
n
iY f x w b
=

= +∑                           (1) 

The learning process of the neuron is achieved by adjusting the weights of the 
interconnections according to some applied learning algorithms. The manner in 
which the neurons of a neural network are arranged is esoterically linked with 
the learning algorithm used to train the network. Basically, there are two learn-
ing paradigms [9]. They are Supervised learning and Unsupervised learning.  

When the network is provided with a correct answer (output) for every input 
pattern and the weights are determined to allow the network to produce answers 
as close as possible to the known correct answers, it is referred to as Supervised 
Learning [10]. Examples are Single Layer Perceptron, Multiple Layer Perceptron 
(MLP) and Radial basis neural network (RBNN). In contrast to this, when the  
 

 
Figure 1. Model of a neuron.  
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system surveys the underlying structure in the data by organizing the patterns 
into categories from their correlations, it applies an unsupervised mechanism. 
An example is the Self Organizing Map (SOM) such as Kohonen SOM. 

These learning paradigms gave rise to different types of neural network archi-
tectures. Some of the ANN architectures are Multi-layer Perceptron (MLP), 
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and 
Generative Adversarial Networks (GAN). 

The basic attributes of ANNs can be classified into Architectural attributes 
and neuro-dynamic attributes [11]. The architectural attributes define the net-
work structure, that is, number and topology of neurons and their interconnec-
tivity. The neuro-dynamic attributes define the functionality of the ANN. 

3. Materials and Methods 
3.1. Data Collection 

The daily price lists from http://www.cashcraft.com/ for 2012 was collected as 
the research experimental stock data for Julius Berger (Construction Company) 
and GlaxoSmith Kline in 2016 as shown on Table 1 and Table 2. Four indepen-
dent stock data (High, Low, Close and Open Price) were used as the input data 
(technical factors). 
 
Table 1. Sample of Julius Berger experimental stock data. 

Days Date Open Price High Price Low Price Close Price 

1 3/1/2012 31.6 31.6 31.6 31.6 

2 4/1/2012 31.6 31.6 31.6 31.6 

3 5/1/2012 31.61 31.6 31.6 31.6 

4 6/1/2012 31.6 31.6 31.6 31.6 

5 17/1/2012 33.18 33.18 33.18 31.6 

6 18/1/12 33.18 33.18 33.18 33.18 

7 19/1/12 32.05 32.05 32.05 33.18 

8 20/1/12 32.05 32.05 32.05 32.05 

9 24/1/12 30.7 30.7 30.7 32.05 

10 25/1/12 30.7 30.7 30.7 30.7 

11 26/1/12 31 31 31 30.7 

12 27/1/12 31.5 31.5 31.5 31 

13 30/1/12 31.5 31.5 31.5 31.5 

14 31/1/12 40 40 31.5 31.5 

15 1/2/2012 31.5 31.5 31.5 31.5 

16 2/2/2012 30.01 30.01 30 31.5 

17 3/2/2012 30 30 29.11 30 

18 7/2/2012 29.11 29.11 29.11 29.11 

19 8/2/2012 29.2 29.2 28 29.11 

20 9/2/2012 27 27 27 28 
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Table 2. Sample of GlaxoSmithKline Consumer Plc stock data. 

Days Date Open Price High Price Low Price Close Price 

1 3/1/2012 23 23 23 23 

2 4/1/2012 23 23 23 23 

3 5/1/2012 23 23 23 23 

4 6/1/2012 22.85 23 22.85 23 

5 10/1/2012 21.85 21.85 21.85 23 

6 11/1/2012 21.85 21.85 21.85 21.85 

7 12/1/2012 22.9 22.9 22.9 21.85 

8 16/1/12 23 23 23 22.9 

9 17/1/12 23 23 23 23 

10 18/1/12 23 23 23 23 

11 19/1/12 23 23 23 23 

12 24/1/12 23 23 23 23 

3.2. Simulation 

The Simulink in MATLAB was used to simulate the model. MATLAB serves as a 
vehicle for modeling dynamic systems while the Simulink provides a graphical 
user interface (GUI) that is used in building block diagrams, performing simula-
tions, as well as analyzing results [12]. 

3.3. ANN Modeling  

The ANN maps the input and the associated parameters as shown in Figure 2.  
In order for the network to deal with more complex non-linear problems, 

hidden non-linear layers were added to form a multilayer perceptron. A Mul-
ti-layer perceptron model (MLP) architecture was used because it can be trained 
to approximate most functions arbitrarily well.  

Four layered MLP was randomly selected. The MLP comprised of four layers 
– input layer, two hidden layers and the output layer as shown in Figure 3. 

The MLP model is a feed forward neural network model trained with back 
propagation algorithm. The MLP is structured in a feed forward topology whe-
reby each unit gets its input from the previous one. Network trained with back 
propagation algorithm are networks with feedback connections that is global in 
nature.  

The basic parameters needed for the design of an MLP ANN Model were pre-
sented in Table 3.  

3.4. Transfer Function (Activation Function) 

Log-sigmoid and Purelin activation functions were deployed within the layers 
because they can be trained to approximate most functions arbitrarily well [13]. 
The financial time series under consideration is highly non-linear and requires a  
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Figure 2. Mapping of the input parameters into the neural predictor. 

 

 
Figure 3. ANN block showing the multi-layers.  
 

Table 3. Basic parameters in designing MLP model. 

Type of input data 
- Technical factors 

Training 
- Learning rate 
- Momentum term 
- Training tolerance 
- Epoch size 
- Goal 
- Learning rate limit 
- Number of times to randomize weights 
- Size of training, testing and validation sets 

Topology 
- Number of input neurons 
- Number of hidden Layers 
- Number of hidden neurons in each layer 
- Number of output neurons 
- Transfer function for each neuron 
- Error function 

 
sufficiently non-linear function to represent all the properties of the series. The 
logistic function of log-sigmoid depicted in Figure 4 was chosen for the hidden 
layers because it converges faster to a solution, therefore reduces the cost of 
computation for the hidden layer with multiple nodes. This transfer function  
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Figure 4. Log-sigmoid transfer function.  

 
takes the input (which may have any value between plus and minus infinity) and 
squashes the output into the range 0 to 1.    

( )a logsig n=                            (2)   

Purelin activation function [14] shown in Figure 5 is also known as Linear 
transfer function. It does not change the summation results but transfers them 
after the summation process, hence, the outputs have no limit. 

( )a Purelin n=                           (3) 

3.5. Time Delay Layer (TDL) 

TDL is an important aspect of the interlinking of layers. A time-delay layer was 
incorporated into the input layer of a static multi-layer forecasting system in 
which the dynamics appear only as shown in Figure 6. The response of the 
neural network in time t is based on the inputs in times ( ) ( ) ( )1 , 2 , ,t t t n− − − . 
A mapping performed by the TDL produces a ( )y k  output at time k as: 

( ) ( ) ( ) ( )( ); 1 , ,y K f u k u k u k m= − −                 (4) 

where ( )u k  is the stock input at time k and m is the maximum adapted 
time-delay. 

3.6. Neuro-Dynamic Attributes 

Training and learning functions are mathematical procedures used to automati-
cally adjust the network’s weights and biases. The training function dictates a 
global algorithm that affects all the weights and biases of a given network while 
the learning function can be applied to individual weights and biases within a 
network [15]. 

The system deployed a supervised paradigm by adopting Levenberg Mar-
quardt (LM) back propagation for training and Gradient Descent (GD) for 
learning.  

LM back propagation algorithm was implemented using the trainlm function. 
It was used because it works extremely well in practice, considered to be the 
most efficient algorithm and has a high speed in convergence [16]. It is a variation  
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Figure 5. Purelin transfer function.  

 

 
Figure 6. Internal structure of a layer showing the time delay, weights, activation func-
tion and bias. 
 
of Newton’s method that was designed for minimizing functions that are sum of 
squares of other non-linear functions. This is very well suited to neural network 
training where the performance index is the mean squared error [13]. GD back 
propagation was because of its popularity. 

3.6.1. Training Algorithm 
LM back propagation algorithm is given: 

Step 1: The independent sample stock data are the inputs to the neural net-
work. Propagate the input forward through the network by selecting random 
weights and biases: 

( )1 1 1 1m m m m ma f W a b+ + + += +  for 0,1, , 1m M= −
              (5) 

Step 2: Calculate the errors  
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M
q q qe t a= −                              (6) 

where qe  is the error, qt  is the target value and M
qa  is the output. 

Step 3: Compute the sum of squared errors over all inputs, ( )F x : 

( ) ( ) ( )T

1 q q q q
Q
qF x t a t a
=

= − −∑                      (7) 

T
1 q qq

Q e e
=

= ∑  

( )2
,1 1

ms
j qq j

Q e
= =

= ∑ ∑  

( )2
1 ii

N v
=

= ∑                                 (8) 

where ,j qe  is the jth element of the error for the qth input/target pair and v is 
the error vector. 

[ ]T
1 2 Nv v v v=                                  (9) 

1,1 2,1 1,2,1 ,m ms s Q
e e e e e =  

 
                    (10) 

Step 4: Compute the jacobian matrix J(x): 

( )

1,1 1,1
1 1
1,1 1

,1 ,1
1 1
1,1 1

m ms s

e e
w b

J x
e e

w b

 ∂ ∂
 
∂ ∂ 

 =  
 ∂ ∂
 
∂ ∂  



  



                    (11) 

Step 5: Calculate the sensitivity with the recurrence relations 
Initialize the back propagation with 

( )m m m
q qS F n− = −                          (12) 

Step 6: Propagate each column of the matrix m
qS −  

( )( )T1 1m m m m m
q q qS F n W S− + − +=                    (13) 

Step 7: Augment the individual matrices into marquardt sensitivities: 

1
m m m

QS S S− − −=                         (14) 

Note: For each input presented to the network, the sensitivity vectors are 
propagated back. This is because the derivatives of each individual error is com-
puted and not the derivative of the sum of squares of the errors. For every input 
applied to the network there will be mS  errors (one for each element of the 
network output). For each error, there will be one row of the Jacobian matrix. 

Step 8: Compute the elements of the Jacobian matrix: 

[ ] , , , , 1
, , ,,

, , , ,

m m
k q k q i q i qm m mh

i h i h j qm m m mh l
l i j i q i j i j

e e n nvJ s s a
x w n w w

− − −∂ ∂ ∂ ∂∂
= = = × = × = ×
∂ ∂ ∂ ∂ ∂

      (15)   

[ ] ,, , ,
, ,,

,

i q

m m
nk q k q i qm mh

i h i hm m m mh l
l i i q i i

e e nvJ s s
x b n b b

− −
∂∂ ∂ ∂∂

= = = × = × =
∂ ∂ ∂ ∂ ∂

         (16) 
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if lx  is a bias. 
Step 9: Solve to obtain kx∆  

( ) ( ) ( ) ( )
1T T

k k k k k kx J x J x I J x v xµ
−

 ∆ = − +              (17) 

Step 10: Re-compute the sum of squares errors use k kx x+ ∆ . If this new sum 
of squares is smaller than computed in step 1, then divide μ by v, let 

1k k kx x x+ = + ∆                          (18) 

And go back to step 1. If the sum of squares is not reduced, then multiply μ by 
v. 

And go back to step 9. 
The algorithm is assumed to have converged when the norm of the gradient is 

( ) ( ) ( )T2F x J x v x∇ =                       (19) 

less than some predetermined value, or when the sum of squares has been re-
duced to some error goal. 

3.6.2. Learning Algorithm 
Gradient descent (GD) learning algorithm with learning rate and momentum 
coefficient was used for the learning. It was implemented using the Learngdm 
Function. 

GD algorithm [17] is given as: 
Step 1: Having the network: 

( ), 1net j ij i ji
la w o θ
=

= +∑                      (20) 

where jo  is the output of the jth unit, io  is output of the ith unit, ijw  is the 
weight of the link from unit i to unit j, ,net ja  is the net input activation function 
for the jth unit, jθ  is the bias for the jth unit and jc  is the gain of the activation 
function.  

Step 2: The gain update expression for a gradient descent (GD) method is 
calculated by differentiating the following error term E with respect to the cor-
responding gain parameter.  

The network error is defined as     

( )( )21 ,
2 k k j kE t o o c= −∑                    (21) 

Step 3: Calculate 
k

E
c
∂
∂

 for the output unit and 
j

E
c
∂
∂

 for the hidden units.  

The respective gain values would then be updated with the following equa-
tions: 

k
k

Ec
c

η
 ∂

∆ = − ∂ 
                       (22) 

j
j

Ec
c

η
 ∂

∆ = −  ∂ 
                       (23) 
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( ) ( )( )1k k k k jk j k
k

E t o o o w o
c

θ∂
= − − − +

∂ ∑               (24) 

Therefore, the gain update expression for links connecting to output nodes is: 

( ) ( ) ( )( )1 1k k k k k jk j kc n t o o o w oη θ∆ + = − − +∑           (25) 

( )( ) ( )( )1 1k jk k k k k j j ij i jk j
j

E c w o o t o o o w o
c

θ∂  = − − − − + ∂ ∑ ∑     (26) 

Therefore, the gain update expression for the links connecting hidden nodes 
is: 

( ) ( )( ) ( )( )1 1 1j k jk k k k k j j ij i jk jc n c w o o t o o o w oη θ ∆ + = − − − − + ∑ ∑  (27) 

Step 4: Similarly, the weight and bias expressions are calculated as follows:  
The weights update expression for the links connecting to output nodes: 

  ( ) ( ) ( ) ( )1 1jk k k k k k j jkw n t o o o c o w nη α∆ + = − − + ∆         (28) 

where the LR, η and MC, α are randomly generated.  
Step 5: Similarly, the bias update expressions for the output nodes would be: 

( ) ( ) ( ) ( )1 1k k k k k k jkn t o o o c w nθ η α∆ + = − − + ∆           (29) 

The weight update expression for the links connecting to hidden nodes is: 

( ) ( )( ) ( ) ( )1 1 1jk k jk k k k k j j j i ikkw n c w o o t o c o o o w nη α ∆ + = − − − + ∆ ∑  (30) 

Step 6: Similarly, the bias update expressions for the hidden nodes would be: 

( ) ( )( ) ( ) ( )1 1 1j k jk k k k k j j j ikkn c w o o t o c o o w nθ η α ∆ + = − − − + ∆ ∑   (31) 

3.6.3. Training Parameters 
The training parameters used in the ANN block are shown in Table 4. For each 
of the parameter, an initial value was selected and constantly adjusted until the 
desired performance was achieved. Two approaches were considered for con-
vergence. They were the learning rate and the momentum coefficient.  

1) Learning Rate (LR): This is one of the most effective means to accelerate the 
convergence of Back Propagation (BP) learning. The value is usually set to be  
 
Table 4. Training parameters.  

Parameter Value Description 

net.trainParam.epochs 1000 Maximum number of epochs (cycles) 

net.trainParam.goal 1e−5 Performance goal in terms of mean square error 

net.trainParam.Ir 0.05 Learning rate 

net.trainParam.mc 0.5 Momentum Coefficient 

net.trainParam.max_fail 100 Maximum validation value 

net.trainParam.mem_reduc 2 Memory requirement specification 

net.trainParam.min_grad 1e−50 Minimum Performance Gradient 

net.trainParam.time 1000 Maximum training time 
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constant which means that the selected value is employed for all weights in the 
whole learning process. Taking into consideration that the algorithm will take 
longer time to converge or may never converge if the LR is too small and may 
oscillate if it is too high, a value was initially randomly selected and adjusted un-
til the desired performance was obtained.  

2) Momemtum Coefficient (MC): Without MC, the network can slide through 
shallow local minima. The value of the gain parameter, jc , directly influences 
the slope of the activation function. For large gain values, ( 1c > ), the activation 
function approaches a “step function” whereas for small gain values ( 0 1c< ≤ ), 
the output values change from zero to unity over a large range of the weighted 
sum of the input values and the sigmoid function approximates a linear func-
tion. 

3.6.4. Training 
The stock data series were first partitioned into three disjoint sets: the training 
set, the validation set, and the test set. 60% of the stock data was used for train-
ing, 20% for validation and 20% for testing. These stock data were stored in the 
MATLAB workspace with variable name. 

The training and validation data sets were used during training. The training 
set is the data set used to adjust the weights on the neural network while the va-
lidation set is the data set used to minimize over-fitting. Any increase in accura-
cy over the training data set actually yields an increase in accuracy over a data set 
that has not been shown to the network before, or at least the network hasn’t 
trained on it. If the accuracy over the training data set increases, but the accuracy 
over the validation data set stays the same or decreases, then one is over-fitting 
the neural network and should stop training. Also, training is stopped at the 
moment the validation error starts to rise.  

Training Conditions 
Training stops when any of the conditions below occurs: 

● The maximum number of epochs (repetitions) is reached. 
● The maximum amount of time is exceeded. 
● Performance is minimized to the goal. 
● The performance gradient falls below min_grad. 
● Momentum (mu) exceeds mu_max. 
● Validation performance has increased more than max_fail times since the 

last time it decreased. 

3.7. Architectural Attributes  

This defines the network structure, that is, number and topology of neurons and 
their interconnectivity. 

1) Choice of Number of Neurons for Each Layer 
The numbers of layers for the structure were randomly selected with the aim 

of determining the one with the least Mean Square Error (MSE) structure with 
most emphasis laid on the hidden layers. The input layer had a static number of 
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neurons to be four (4) because of the 4 independent input data (Open price, Low 
price, High price and Close price). The output layer is also restricted to one 
neuron because only one Closing price is expected as the predicted value.  

For the hidden layers, two layered hidden structures with different number of 
neurons (various network structures) were considered randomly and tested for 
different epochs of training time up till 1000 epochs. Figure 7 shows the graphi-
cal representation of training for optimal performance for 30 epochs. Optimum 
performance experimentation was carried out with the aim of determining the 
number of hidden neurons in the hidden layers with the least MSE (Table 5).  

2) The Mean Square Error (MSE) 
This is an average of the squares of the difference between the actual observa-

tions and those predicted. It is a measure of how close a fitted line is to data 
points. It is calculated [18] as: 

( )2
, ,1

1MSE obs i model ii
n X X

n =
= −∑                   (32) 

where ,obs iX  is observed values and ,model iX  is modeled values at time. 
a-b-c-d structure on Table 5 represents the number of neurons in the input 

layer-hidden layer1-hidden layer2-output layer. The MLP structure with 4-50-5-1  
 

 
Figure 7. Graphical representation of training for optimal performance. 
 
Table 5. Optimum performance for number of hidden neurons at 1000 epochs. 

1000Epochs 

Number Neurons % Training Time MSE 

4-10-5-1 1.9 9.92647e−006 

4-20-5-1 3.2 9.861e−006 

4-30-5-1 2.1 9.9529e−006 

4-40-5-1 5.5 9.78957e−006 

4-50-5-1 1.4 7.66117e−006 

4-60-5-1 4.9 9.86415e−006 
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returned both least mean square error and training time, thus, became the op-
timal structure for prediction. 

Figure 8 and Figure 9 show the first hidden layer having 50 neurons with log 
sigmoid activation function, and the second hidden layer having 5 neurons with 
log sigmoid function and the last layer which is the output process having one 
neuron with Purelin function respectively. 

The internal structure of the connections between the hidden layer 2 and the 
last layer is shown in Figure 9. A Multiplexer was employed. A multiplexer (also 
called a data selector or mux) is a hardware device that accepts multiple inputs 
and allows only one to go through as an output [19]. 

Once a model is selected based on the validation set, the test set data is applied 
on the network model and the error for this set is determined. 

 

 
Figure 8. Simulink block diagram showing the weight structure of the first hidden layer having 50 neurons 
connecting to the input matrix of the second hidden layer. 
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3.8. Testing the Network  

The network was tested for estimating the network’s ability to generalize. The 
testing data set was used in order to confirm the actual predictive power of the 
network. 

4. Results and Discussions 

Functional tests and comparisons as presented on Table 6 and Table 7 were  
 

 
Figure 9. Simulink block diagram showing the weight structure of second hidden layer 
with 5 neurons.  

 
Table 6. Comparison between actual stock price and 
ANN predictions for Julius Berger.  

Actual Close Price ANN Predictions 

31.06 31.06012 

31.06 31.06012 

31.06 31.06012 

31.06 31.06012 

31.06 31.06027 

32.61 32.61015 

34.24 34.24013 

34 34.00015 

34 34.00015 

34 33.99997 

33.01 33.01014 

30.61 30.61006 

30.61 30.61006 

30.61 30.61006 
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Table 7. Comparison actual stock price and ANN 
Predictions for GlaxoSmith Kline Plc. 

Actual Close Price ANN Predictions 

21.85 22.99999 

21.85 21.85 

22.9 21.84999 

23 22.9 

23 23 

23 23 

23 23 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

22.7 22.70001 

 

 
Figure 10. Combo plot of stock prediction for Julius Berger. 
 

 
Figure 11. Combo plot of stock prediction for GlaxoSmith Kline Plc. 
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done to establish its ability to forecast stock price accurately. It can be observed 
that the ANN predictions were within the neighborhood of prediction and very 
close with the actual close price. Figure 10 and Figure 11 show the combo 
graphical representations of ANN predictions for Julius Berger and GlaxoSmith 
Kline Plc respectively.  

Performance Evaluation 

The predictive performance analysis of the model was calculated using Root 
Mean Square Error (RMSE) as shown in Equation (33). RMSE is also a notable 
predictive performance metric and can be calculated as 

( )2
, ,1RMSE obs i modeli

n
iX X

n
=

−
=
∑                  (33) 

where ,obs iX  is observed values and ,model iX  is modeled values at time. 
The predictive performance of the simulated ANN model returned very small 

error size of 0.0004. This signifies the accuracy of its prediction. 

5. Conclusion 

ANN provides experimental paradigm for parallel distributed processing and 
simulated models of it can be used to solve statistical analysis, data modeling and 
complex real life problems.  
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