
Open Access Library Journal 
2024, Volume 11, e11491 

ISSN Online: 2333-9721 
ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1111491  May 31, 2024 1 Open Access Library Journal 
 

 
 
 

Defence against Command Injection Attacks in 
a Distributed Network Environment 

Oluwatobi Akinmerese1, Samuel Fasanya2, Daniel Aderotoye3, Ngozichukwuka Adingupu1, 
Evelyn Ezeoke1, Rukayat Muritala4, Oyindamola Lawal4, Blessing Akingbade4,  
Chiamaka Ifekandu5 

1Department of Cybersecurity, Augustine University, Lagos, Nigeria 
2Department of Information Security, Osun State University, Osun, Nigeria 
3Centre for Space Research and Applications, Federal University of Technology, Akure, Nigeria 
4Department of Library and Information Science, Tai Solarin University of Education, Ogun, Nigeria 
5Department of Computer Science, Augustine University, Lagos, Nigeria 

 
 
 

Abstract 
Regardless of the programming language used to create the application or the 
operating system on which it runs, command injection is common in all ap-
plications. Command injection attacks can result in a variety of consequences, 
such as compromised data confidentiality and integrity or unapproved re-
mote access to the system hosting the susceptible application. The recently 
found Shellshock flaw is a perfect example of a real, notorious command in-
jection vulnerability that demonstrates the dangers of this kind of code injec-
tion. The research community has not paid much attention to the type of 
code injection, despite the fact that command injection assaults are common 
and have a significant impact. To the best of our knowledge, no specific soft-
ware program exists that can automatically identify and take advantage of 
command injection attacks, unlike those caused by SQL injection or cross-site 
scripting [1]. This study aims to close this gap by presenting COMMIX, an 
open-source tool that automates the process of finding and taking advantage 
of web application command injection vulnerabilities (COMMand Injection 
eXploitation). To address scenarios of serial exploitation, this tool offers a 
wide range of functions. Additionally, commix has a high success rate in de-
termining whether a web application is susceptible to command injection at-
tacks. Ultimately, we have identified multiple 0-day vulnerabilities in applica-
tions during the tool review process. The work’s overall contributions include 
offering a thorough analysis and classification of command injection attacks; 
describing and evaluating our open-source tool that automates the process of 

How to cite this paper: Akinmerese, O., 
Fasanya, S., Aderotoye, D., Adingupu, N., 
Ezeoke, E., Muritala, R., Lawal, O., 
Akingbade, B. and Ifekandu, C. (2024) 
Defence against Command Injection Attacks 
in a Distributed Network Environment. 
Open Access Library Journal, 11: e11491. 
https://doi.org/10.4236/oalib.1111491 
 
Received: March 26, 2024 
Accepted: May 28, 2024 
Published: May 31, 2024 
 
Copyright © 2024 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1111491
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1111491
http://creativecommons.org/licenses/by/4.0/


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 2 Open Access Library Journal 
 

identifying; and taking advantage of command injection vulnerabilities that 
are found on a variety of web-based applications, ranging from web servers to 
home services (embedded devices). 
 

Subject Areas 
Cloud Computing 
 

Keywords 
SQL Injection, Shell Command on Unix-Based Systems, Operating System, 
Input Validation, Web Vulnerability, COMMIX 

 

1. Introduction 
1.1. Context of the Research 

The term “command injection” refers to a broad category of attack methods 
wherein specific code is injected and the vulnerable (web) application then ex-
ecutes it [2]. According to the 2013 OWASP Top Ten Web Security Risks, this 
kind of attack has been identified as a major security issue and is ranked first [3]. 
An attacker can introduce arbitrary code or commands into an application 
through a code injection vulnerability, which takes advantage of careless han-
dling of untrusted data and causes unexpected execution behaviour. Code injec-
tion attacks come in a variety of forms, such as SQL injections, LDAP injections, 
XPATH injections, and cross-site scripting assaults [1] [2] [4]. We will just ad-
dress command injection attacks in this paper [2] [4]. The objective of a com-
mand injection attack, according to OWASP, is to use a vulnerable application 
to execute arbitrary commands on the host operating system. The main cause of 
command injection attacks is inadequate input validation [2] [4]. 

Because these attacks take place when an application invokes the operating sys-
tem shell (command prompt shell on Windows, shell command on Unix-based 
systems), they are also referred to in the literature as “shell command injection” or 
“OS (OPERATING SYSTEM) command injection” [2] [4]. We will simply refer to 
these assaults as “command injection” in this third section [2]. 

1.2. Problem Definition 

A web application is a type of software that operates on a web server. The major-
ity of organizations, including small businesses and schools, employ web appli-
cations because they provide as a conduit for potential customers to contact the 
business. If these online applications are not adequately secured, information 
may be stolen, the web server may be infiltrated, system files may be corrupted, 
and an attacker may replace legitimate data with fake data. If online security is 
not correctly handled, command injection can be used to accomplish all of them 
[2] [3]. Below are some of the common problems that this research poses to help 

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 3 Open Access Library Journal 
 

solve:  
Information Theft: Web applications can be vulnerable to attacks that steal 

user data or other sensitive information. 
Web Server Infiltration: Hackers can gain unauthorized access to the web server 

that runs the web application. 
System File Corruption: Malicious actors can corrupt system files, causing the 

web application or underlying system to malfunction. 
Data Manipulation: Attackers can tamper with data stored within the web ap-

plication. 

1.3. The Study’s Aims and Objectives 

The purpose of this project is to utilize an appropriate defense for your web ap-
plication to stop attackers from injecting commands.  
These are the goals that:  

i) To determine which online applications are susceptible to command injec-
tion attacks.  

ii) To develop a secure web application that requests user input and verifies 
the accuracy of the data supplied. 

iii) Adding permitted input to a white list to prevent command injection.   

1.4. Techniques 

This project’s methodology, which consists of 5 steps, is presented here. con-
structing a website that is vulnerable or utilizing a website that is vulnerable and 
accepts user input, such as ping; configuring a preferred user and tester inter-
face; or utilizing a server-side scripting language (such as Python, PHP, etc.) that 
acts as a bridge to the terminal. Any tool can be used to test for vulnerabilities in 
a web application; however, the Commix tool is suggested for this project. Com-
ix tools are useful because they are dependable, adaptable, and a command in-
jection dictation tool for all time.  

1.5. Methods 

This document outlines the five stages of the methodology used to carry out this 
project: creating or utilizing a susceptible website that takes user input, such as 
ping; configuring a preferred user and tester interface; or utilizing a server-side 
scripting language (such as PHP, Python, etc.) that acts as a bridge to the ter-
minal Tools are used to test web applications for vulnerabilities; any tool can be 
used, however, the Commix tool is suggested for this project. Because Comix 
Tools are reliable, adaptable, and an ever-present command injection dictation 
tool, they are an important tool for work.  

1.6. Procedure 

The project was conducted in five steps, which are shown here as the approach 
used: establishing a website that is vulnerable or utilizing one that is insecure 

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 4 Open Access Library Journal 
 

and accepts human input, such as ping; configuring a desired user interface for 
testers; or employing a server-side scripting language (such as PHP, Python, 
and so on) that acts as a bridge to the terminal. A web application’s vulnerabil-
ities can be tested using a variety of tools; however, the Commix tool is sug-
gested for this project. Due to its stability, flexibility, and constant command 
injection dictation capabilities, Comix Tools are an indispensable tool for 
work.  

1.7. Approaches 

This project’s methodology, which consists of five steps, is presented here: 
creating a website that is vulnerable or utilizing a website that is vulnerable and 
accepts user input, such as ping; configuring a preferred user and tester inter-
face; or utilizing a server-side scripting language (such as Python, PHP, etc.) that 
acts as a bridge to the terminal. Any tool can be used to test vulnerabilities in a 
web application; however, the Commix tool is suggested for this project. Comix 
Tools is a useful tool since it is a command injection dictation tool that is always 
reliable, adaptable, and current.  

1.8. Importance of the Research  

The primary goal of the research is to use appropriate tools to identify command 
injection vulnerabilities in the Web program. Commix has been used for the 
project’s tools, which include exploitation and command injection tools. Many 
functionalities are supported by this tool to cover a variety of exploitation scena-
rios. Additionally, Commix has a high success rate in determining whether a web 
application is susceptible to command injection assaults. The Python-written pro-
gram operates on both Windows and Unix-based operating systems. Commix can 
be downloaded for free from the GitHub site. 

1.9. The Study’s Scope and Limitations  

This study focuses on web applications that are created and overseen by Augus-
tine University’s IT administrator and distributed to faculty and staff. 

There are limitations. Financial constraint: The implementation costs would 
be relatively significant if it were to be applied to every employee at Augustine 
University. Not enough time to put into practice.  

2. Description of the Core Project Topic Concepts  

The literature review explains what it takes to protect against command injec-
tion attacks in a distributed network environment [2] [4]. It also clarifies testing 
vulnerabilities and provides solutions for the issue. It functions essentially as a 
basis for a deeper understanding of the project.  

Procedure for testing: 
Step 1: Recognize potential attacks 
Step 2: Examine the reasons and preventative actions  

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 5 Open Access Library Journal 
 

Step 3: Begin experimenting and examining  
Step 4: Special cases  

2.1. Recognize Attack Scenarios 

Understanding and grasping the attack method is the first step in testing for 
command injection vulnerabilities [2]. There are two typical kinds: 

a) Direct command injection: Giving more commands to the susceptible ap-
plication directly is the most popular type of command injection [2]. By directly 
supplying user-supplied data as an argument to the command, the attacker first 
determined whether the program is vulnerable. If so, the malicious command is 
sent by the attacker as the expected argument. The program runs the first com-
mand, then the harmful one.  

b) Indirect command injection: in this scenario, the additional command is 
supplied to the susceptible application indirectly, either via a file or an environ-
ment variable [2].  

2.1.1. Consider Causes and Improve Method 
Input validation is the only source of command injection problems [2]. The de-
velopment community must search for all instances in which the application 
invokes a shell-like system function, such as exec or system, and refrain from 
executing them until the parameter has been properly validated and sanitized. 
Applications that construct command strings using non-sanitized data are sus-
ceptible to this type of bug. Using a black list or a white list are the two methods 
available for validating three parameters. 

2.1.2. Get Testing and Researching Started 
To begin with, you must locate every location where your application calls upon 
a system command in order to function. Then begin investigating how the pro-
gram handles the fundamental characters required for command insertion on 
each of these locations. Experts have created a number of test tools and plat-
forms that can assist developers in investigating and testing vulnerabilities. Two 
typical examples are the commix and burp suite [5]. 

An essential tool for conducting web application security testing is the Burp 
suite. Its many tools operate in unison to facilitate every step of the testing 
process, from the first mapping and analysis of the application attack surface to 
the identification and exploitation of security flaws [3].   

2.1.3. Start Your Research and Testing 
To start, in order for your application to run, you need to find every place where 
it uses a system command. Then start looking into how the software handles the 
basic characters needed to insert commands on each of these spots [6]. Many test 
platforms and tools have been developed by experts to help developers find and 
test vulnerabilities. The commix and burp suite are two common examples [7]. 

The Burp suite is a vital tool for performing security testing on online applica-

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 6 Open Access Library Journal 
 

tions [3]. Together, its numerous tools make testing easier at every stage, from 
the initial mapping and analysis of the application attack surface to the detection 
and exploitation of security vulnerabilities [3]. It was created by Portswigger 
Web Security and is Java-based [3]. 

2.1.4. Perfect Cases 
You must cover every potential entry point and scenario in order to fully test 
your application against command injection issues [2]. Keep investigating the 
various application entrance points; the test case data format will change based 
on the entry point [8]. For instance, depending on the URL encoding, the string 
file.txt “|dir c: can appear like one of the two below if you are testing through the 
URL: 

*File.txt“|dir%20c: * File.txt “|dir+c: Source 
For additional command injection entry points like input fields, URL para-

meters, POST data, web service methods, environment variables, database con-
tents, registry contents, file contents, third-party APIs, and network packets, it is 
crucial that you take different encoding and data formats into consideration [2]. 

2.2. An Explanation of the Core Project Topic Concept’s Existing  
Defense Method  

No longer is it a concern for site developers to have an effective and trustworthy 
defensive mechanism. Because OWASP, an international non-profit organiza-
tion devoted to web application security, has uncovered new modules, platforms, 
and tools over the years—some of which were stated in section 2.1.3—in the 
course of their research [3] [9].  

Owasp Primary Defence Methods 
Steer clear of directly calling OS commands: 

Avoiding directly calling OS commands is the main result. Because built-in 
library functions can only be used for the purposes for which they were de-
signed, they are a great substitute for OS commands. Use mkdir (), for instance, 
rather than system (“mkdir_name”). This is the recommended approach if the 
language you choose has libraries or APIs accessible [10]. 

a) Using parameterization and input validation together  
In the event that it is not possible to avoid calling a system command that uses 

user-supplied data, software should employ the next two layers of security to 
fend off attacks:  

First Layer: Parameterization  
Use structure mechanisms, if they are available, as they can assist in automat-

ically enforcing the division between data and commands [8]. 
Layer 2: Validation of input 
The relevance argument and the command values should both be verified; the 

command and its argument have varying levels of validation.  
• When it comes to command use4, they have to be verified against an autho-

rized command white list.  

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 7 Open Access Library Journal 
 

• The following parameters should be used to validate the arguments given for 
this command. 

• Positive or white list input validation: specifies exactly where an argument is 
allowed. 

• White list regular expression: this defines the maximum string length as well 
as a white list of acceptable characters.  

PLUS DEFENSE 
We advise implementing all of these extra defenses in addition to the funda-

mental defenses of parameterization and input validation. These are: 
The application should operate with the least amount of privilege necessary to 

do the task at hand. 
If at all possible, establish a single-task isolated environment with restricted 

privileges.  

2.3. A Comparison of the Core Project Topic’s Existing Types Ideas 

An attacker can submit various forms of input to a program using a variety of 
attack techniques known as injection attacks [2] [4]. The CPU then interprets 
the input, treating it as a query or command, and executes it, producing inaccu-
rate results [11]. The attacker could then cause your website to fail or steal your 
private information. 

The following categories of injection attacks: 
• Injection attacks using code: Application code written in the application 

language is injected by the attacker [2] [4]. This code could be used to run 
operating system commands with the user’s privileges when the web applica-
tion is executing. In advance, the attacker might take advantage of further 
privilege escalation flaws, which could result in a complete web server (See 
Table 1). 

 
Table 1. A tabular format review of all related project work. 

Year and Author Title And Source Assistance Issue Resolved 

[12] 
Identifying and averting attacks using 
code injection. Scholar Commons at 

University of South Florida 

A technique that prevents CIAOs through 
optimization (for applications where the 
program language output has an LR (K) 
grammar where each closed value cor-

responds to a syntactic category) 

Attacks using code  
injection 

[12] 

Thorough analysis of the research on 
SQL injection attacks, 2016(26–35), 

International Journal of Soft Compu-
ting 11(1), ISSN: 1816–9503. 

A systematic literature review (SLR) on 
SQL injection attacks was conducted us-

ing the kitchen hams technique. 

SQLI identification and 
mitigation 

[13] 

Injection of commands. University of 
Ottawa’s School of Information Tech-

nology and Engineering, Ontario, Can-
ada, kin 6N5 

An overview of typical injection attacks 
a list of frequent injection 

attacks 

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 8 Open Access Library Journal 
 

Continued 

[14] 

Evaluation of statistical tools for identi-
fying security holes in the source code 

of Java and C/C++ programs at the 
University of Ontario Institute of 

Technology’s Department of Electrical, 
Computer, and Software Engineering, 

Oshawa, ON, Canada. 

The source codes for C/C++ and Java are 
examined for errors and vulnerabilities. 

Assessing the instruments 
used for code analysis. 

 
The method or framework used to carry out this investigation is presented in 

this Chapter. This chapter focuses on the methodical examination of the current 
or proposed system to ascertain the information needs and procedures of the 
system, as well as the definition of hardware and software architecture compo-
nents and interfaces to meet the necessary specifications [6].  

3. Existing System Analysis  

There are currently automated solutions for web application security testing that 
audit your website by looking for vulnerabilities [3]. Generally speaking, the sys-
tem searches any webpage or web application that supports the HTTP/HTTPS 
protocol and can be accessed by a web browser. With a powerful crawler that 
can locate practically any file, the system provides a robust and distinctive solu-
tion for assessing custom and off-the-shelf web applications, including those that 
use Java Script, AJAX, and web 2.0 apps. 

3.1. Work of the System  

i) The system analyzes every link on the website, including those created dy-
namically with JavaScript and those included in site marks. xml and robot. txt 
files (if accessible). 

ii) It features sensor technology, which will obtain a list of every file present in 
the web application directories and send any files the crawler could not find to 
the crawler output. Typically, the crawler misses these files because they are ei-
ther not accessed from the web server or do not link through the website. 

iii) The scanner automatically starts a series of vulnerability checks on every 
page it finds after the crawling process. Additionally, the algorithm scans every 
page for locations where it can enter data and generate reports, developer re-
ports, and different compliance reports like ISO 270001 or PCIDSS 

3.2. The Goal of the Current System 

The automated Scan Stage is this: 
i) The vulnerability identification is displayed by the scan outcome. Every 

vulnerability warning includes details regarding the vulnerability, including 
POST, data utilized, impacted item, server HTTP response, and more ii. Details 
like source code, line number, stack trace, or impacted SQL query that caused 
the vulnerability are listed if sensor technology is being used [1].  

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 9 Open Access Library Journal 
 

Attacks include file inclusion, directory traversal, code execution, command 
injection, CRLF injection, file inclusion, input validation, and authentication [2] 
[4].  
• The following are examples of attacks: input validation, authentication, file 

inclusion, directory traversal, code execution, command injection, and CRLF 
injection [2] [4].  

Input validation, authentication, file inclusion, directory traversal, code execu-
tion, command injection, and CRLF injection are a few instances of threats [2].  

3.3. Suggested Workflow for System Design 

i) The attack module: As its name suggests, the attack vector generator mod-
ule creates a collection of command injection attacker vectors [2]. 

ii) The vulnerability detection module: this module generates a set of distinct 
attack vectors for each type of attack, which are then passed to the vulnerability de-
tection module. The command injection separator list and the types of command 
injection that will be executed (classic, dynamic code evaluation, time-based, and 
file-based) are the sources of this information [2]. 

iii) The exploitation module: COMIX instructs the exploitation module to at-
tempt automatic exploitation if the vulnerability module detection finds that the 
application is susceptible (See Figure 1). 
 

 
Figure 1. Commix steps [3]. 

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 10 Open Access Library Journal 
 

4. System Implementation and Evaluation  

Executing a design is the process of implementation. In terms of the project, im-
plementation entails coordinating Commix to be used to properly test and ex-
ploit as well as a guide on how to validate input going into the computer. It also 
involves installing a physical system and the processes involved in putting the 
design to work efficiently. 

4.1. The Tool Option 

PHP 
This language for server scripting is an effective tool for creating dynamic and 

interactive webpages. PHP is the scripting language used to create the web ap-
plication that will be used as an example to eat. 

Python 
Python is different from HTML, CSS, and Javascript in that it is a gener-

al-purpose programming language. In addition to web development, it may be 
utilized for other kinds of programming and software development [6]. This 
covers, among other things, scripting scripts, data science, software develop-
ment, and back-end development. 

A free and open-source cross-platform web server solution stack package is 
called XAMPP. 

It was created by friends of Apache and consists mostly of MariaDB, interpre-
ters for PHP and PERN scripts, and Apache HTTP servers.  

Code Visual Studio 
Microsoft created this free source code editor for Windows, Linux, and Mac 

OS X. Debugging, syntax highlighting, code rewriting, snippets, and embedded 
Git are all supported. It is capable of editing different codes written in multiple 
languages. 

Mixing Tool 
With the help of this automated, all-in-one OS command injection and ex-

ploitation tool, it is very easy to identify and take advantage of command injec-
tion vulnerabilities in specific HTTP headers or vulnerable parameters [2]. 

Commix-Test-bed 
This is a set of test web pages for commix vulnerability detection and exploita-

tion that are susceptible to command-injection vulnerabilities [2]. Clone the 
official Git repository by bit cloning  
“https://github.com/commix-project/commix-test-bed git” to get it (commix-test 
bed). 

4.2. System Demands 

These are the necessary specifications for the system. To efficiently use a given 
system, a device must have. These prerequisites consist of:  
• Hardware specifications 
• Requirements for software 

https://doi.org/10.4236/oalib.1111491
https://github.com/commix-project/commix-test-bed%20git


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 11 Open Access Library Journal 
 

4.2.1. Devices to the Hardware 
The physical parts that the device needs in order for the system to function 
properly are known as hardware requirements. The following hardware is ne-
cessary for this system to operate effectively:  
• CPU: Pentium 133MHz or higher; 
• RAM: at least 1GB; 
• 180MB of free hard disk space. 

4.2.2. Devices to the Software 
Software requirements are the applications that must be installed on the device 
in order for the system to function.  

Operating System: Commix supports Linux and macOS. It can also run on 
Windows with Cygwin or the Windows Subsystem for Linux (WSL). 

Python: Commix is written in Python and requires Python 2.6.x or 2.7.x to 
run. However, it’s recommended to use Python 2.7.x as it’s the most compatible 
version. 

Dependencies: Commix relies on various Python libraries, such as requests, 
argparse, and lxml. These dependencies can typically be installed via the Python 
Package Index (PyPI) using pip. 

Internet Connection: Commix may require an internet connection for certain 
features, such as fetching payloads or accessing remote resources during exploi-
tation. 

There are two phases to the system’s implementation. 
i) The testing phase; ii) The web application validation phase. 

4.2.3. Phase of Testing 
We chose PHP as the server-side language for this testing phase for the following 
reasons:  

i) PHP is a well-liked server-side web application programming language that 
is utilized by many content management systems (e.g. Word Press, Drupal, etc.). 

ii) Setting up a development environment is simple and cost-free. 
iii) We can evaluate the security of multiple open-source PHP projects that 

are accessible in public repositories. 
A lite-web app called “normal PHP” was created and a test-bed called “com-

mix-test bed” was utilized for the actual testing.  

4.2.4. Application Validation Stage (Web) 
Specifically, the process of filtrating—that is, removing unwanted characters 
from the input data is referred to as input validation. 

At this point, web pages and security are given more importance. It is advised 
to use appropriate input validation and sanitation to control what types of 
commands are entered into the computer and run through “echo.” 

The following crucial text hygiene and validation measures are likely to stop 
command injections: 
• No pipe, no colon.  

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 12 Open Access Library Journal 
 

• No dollar sign, no ampersand.  
• System compromise and data leaks via the internet not using alphanumeric 

characters, nested quotes, or special characters. 
Additionally, developers should be aware of any situations in which a pro-

gram calls for the execution of an OS command, such as “exec()” or “system(),” 
and refrain from doing so unless authorized beforehand.   

The parameter has either been successfully escaped or validated. Input valida-
tion should be carried out correctly by using two distinct methods:  

(a) Whitelisting; (b) Blacklisting. 
Additionally, developers should use the programming language’s APIs to es-

cape input data: 
i) Blacklisting methodology.  
ii) The whitelisting method. 
iii) Data escape.  

5. Summary 

Web-based applications are essential in helping people in the twenty-first century 
complete tasks that can occasionally be highly difficult and time-consuming. 

It is for this reason that web application security is crucial. An insecure online 
application may cause data leaks or illegal computer access. 

5.1. Recommendation 

Web developers now have a platform to learn about command injections and 
how to defend against them, thanks to this initiative. To guarantee seamless 
deployment and robust security for the school web application that is uploaded 
on a server, it is advised that the IT department engage in the practices outlined 
in this project and also involve the staff and students in his practices.  

5.2. Conclusion  

Because web applications are now the primary means of communication be-
tween clients and service providers, skilled hackers target their targets for finan-
cial or personal advantage. 

5.3. Contribution to Knowledge  

By enabling web developers to test and exploit these command injection prob-
lems, this work will improve web security because web developers should be able 
to recognize future vulnerabilities that could endanger data and OS. 

Acknowledgements 

I am greatly indebted to God Almighty for His grace and mercy that saw me 
through to the crucial attainment of achieving the aim of writing this article 
alongside all other authors. I cannot but praise His Holy Name for the unusual 
favour, spirit of understanding, and inspiration we received from Him, even 

https://doi.org/10.4236/oalib.1111491


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 13 Open Access Library Journal 
 

when we did not believe we could pursue this article title to attain this level of 
success. Blessed be His Holy Name forever and ever.  

I am particularly grateful to my article editors, Professor O. Awodele who 
would stop at nothing to insist on the best of the best. I immensely appreciate 
Professor C. Ogbonna for his fatherly advice, mentorship and contributions to 
my work which was remarkably a compass to the successful direction of the 
study. I am indebted to all my lecturers in the Department of Cybersecurity and 
other departments of the University from whose wealth of knowledge I benefited 
immensely. I am also grateful to the founding fathers of Augustine University, 
Ilara-Epe, Lagos, Nigeria, for this great institution that has sharpened my aca-
demic prowess.  

I cannot but also be grateful to my academic mentors, senior colleagues, and 
friends who were in no small measure instrumental to my success during the 
course of writing this paper. These associates include Dr. C. Okunnbor, Dr. J. 
Akinsola, Dr. O. Kalesanwo, Dr. C. Ajaegbu, Prof. A. Simpson, Dr. D. Aleburu, 
Mrs. A. Mamza, Dr. C. Ogu, Prof. M. Eze, Mr. A. Oyebode, Mr. O. Alowosile, 
Mr. O. Blaise, Dr. O. Abiodun, Dr. O. Ebiesuwa and Dr. A. Omotunde  

My undiminished gratitude goes to my parents, Pastor F. Akinmerese and 
Mrs. M. Akinmerese for bringing me forth and training me to be bold and cou-
rageous, and to go for the best education I can get. My gratitude goes to my 
brothers’ in-law, Mr. O. Ayodele and Mr. O. Olagbemiro and all my siblings 
Mrs. O. Ayodele and Mrs. F. Olagbemiro for their support all the time. My 
heartfelt appreciation goes to my wife—Mrs. E. Akinmerese who has proved 
herself a worthy pillar of support since I met her. Her steadfast perseverance, 
care, understanding and support kept me moving. Words cannot express my 
gratitude to my children E. Akinmerese, T. Akinmerese and O. Akinmerese, may 
God bless them all abundantly. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 
[1] Ali, S., Rauf, A. and Javed, H. (2019) SQLIPAI: An Authentication Mechanism 

against SQL Injection. Journal of Scientific Research in Europe, 38, 604-611.  
https://www.academia.edu/9892425/SQLIPA_An_Authentication_Mechanism_Aga
inst_SQL_Injection  

[2] Meijer, E. and Schulte, W. (2017) Unifying Tables, Objects and Documents.  
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdcd6b67a0b7ea
867bb43e5fbb36679ad936b8cc#page=149  

[3] Prokhorenko, V., Choo, K.-K.R. and Ashman H. (2016) Web Application Protec-
tion Techniques: A Taxonomy. Journal of Network and Computer Applications, 60, 
95-112. https://www.sciencedirect.com/science/article/pii/S1084804515002908  
https://doi.org/10.1016/j.jnca.2015.11.017 

[4] Scott, D. and Sharp, R. (2003) Establishing and Putting into Practice Applica-
tion-Level Web Security Policies. IEEE Transactions on Knowledge and Data Engi-

https://doi.org/10.4236/oalib.1111491
https://www.academia.edu/9892425/SQLIPA_An_Authentication_Mechanism_Against_SQL_Injection
https://www.academia.edu/9892425/SQLIPA_An_Authentication_Mechanism_Against_SQL_Injection
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdcd6b67a0b7ea867bb43e5fbb36679ad936b8cc#page=149
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdcd6b67a0b7ea867bb43e5fbb36679ad936b8cc#page=149
https://www.sciencedirect.com/science/article/pii/S1084804515002908
https://doi.org/10.1016/j.jnca.2015.11.017


O. Akinmerese et al. 
 

 

DOI: 10.4236/oalib.1111491 14 Open Access Library Journal 
 

neering, 15, 772-783. https://doi.org/10.1109/TKDE.2003.1208998 

[5] Aho, A.V. (1986) Compilers, Principles, Techniques, and Tools.  
https://archive.org/details/compilersprincip0000ahoa  

[6] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. and Evans, D. Automati-
cally Hardening Web Applications Using Precise Tainting.  
https://link.springer.com/content/pdf/10.1007/0-387-25660-1_20.pdf 

[7] Ray, D. (2013) Identifying and Averting Attacks Using Code Injection. Master’s 
Thesis, University of South Florida, Tampa.  
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=5763&context=etd 

[8] Lawal, M.A., Sultan, A.B.M. and Shakiru, A.O. (2006) Systematic Literature Review 
on SQL Injection Attack. International Journal of Soft Computing, 11, 26-35.  
https://www.researchgate.net/publication/282377809_Systematic_literature_review_
on_SQL_injection_attack  

[9] Guy-Vincent J. Injection of Commands. University of Ottawa’s School of Informa-
tion Technology and Engineering, Ontario, Canada. 
https://site.uottawa.ca/~gvj/Courses/CSI4539-OLD/lectures/CommandInjections.pdf 

[10] Qusay, H.M. and Rahman, M. Evaluation of Statistical Tools for Identifying Securi-
ty Holes in the Source Code of Java and C/C++ Programs. The University of On-
tario Institute of Technology’s Department of Electrical, Computer, and Software 
Engineering, Oshawa, ON, Canada. https://arxiv.org/pdf/1805.09040 

[11] Jourdan, G. (2009) Securing Large Applications against Command Injections. IEEE 
Aerospace and Electronic Systems Magazine, 24, 15-24.  
https://doi.org/10.1109/MAES.2009.5161718 

[12] AlBreiki, H.H. and Mahmoud, Q.H. (2014) Evaluation of Static Analysis Tools for 
Software Security. 2014 10th International Conference on Innovations in Informa-
tion Technology (IIT), Al Ain, United Arab Emirates, 09-11 November 2014.  
https://doi.org/10.1109/INNOVATIONS.2014.6987569 

[13] Su, Z. and Wasserman, G. (2006) The Essence of Command Injection Attacks in 
Web Applications. ACM SIGPLAN NOTICES, 41, 372-382.  
https://doi.org/10.1145/1111320.1111070  

[14] William, G., Orso, A. and Manolios, P. (2006) Using Positive Tainting and Syn-
tax-Aware Evaluation to Counter SQL Injection Attacks. SIGSOFT ‘06/FSE-14: 
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations 
of Software Engineering, Portland Oregon, USA, 5-11 November 2006, 175-185.  
https://doi.org/10.1145/1181775.1181797 
 

https://doi.org/10.4236/oalib.1111491
https://doi.org/10.1109/TKDE.2003.1208998
https://archive.org/details/compilersprincip0000ahoa
https://link.springer.com/content/pdf/10.1007/0-387-25660-1_20.pdf
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=5763&context=etd
https://www.researchgate.net/publication/282377809_Systematic_literature_review_on_SQL_injection_attack
https://www.researchgate.net/publication/282377809_Systematic_literature_review_on_SQL_injection_attack
https://site.uottawa.ca/%7Egvj/Courses/CSI4539-OLD/lectures/CommandInjections.pdf
https://arxiv.org/pdf/1805.09040
https://doi.org/10.1109/MAES.2009.5161718
https://doi.org/10.1109/INNOVATIONS.2014.6987569
https://doi.org/10.1145/1111320.1111070
https://doi.org/10.1145/1181775.1181797

	Defence against Command Injection Attacks in a Distributed Network Environment
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	1.1. Context of the Research
	1.2. Problem Definition
	1.3. The Study’s Aims and Objectives
	1.4. Techniques
	1.5. Methods
	1.6. Procedure
	1.7. Approaches
	1.8. Importance of the Research 
	1.9. The Study’s Scope and Limitations 

	2. Description of the Core Project Topic Concepts 
	2.1. Recognize Attack Scenarios
	2.1.1. Consider Causes and Improve Method
	2.1.2. Get Testing and Researching Started
	2.1.3. Start Your Research and Testing
	2.1.4. Perfect Cases

	2.2. An Explanation of the Core Project Topic Concept’s Existing Defense Method 
	Owasp Primary Defence Methods

	2.3. A Comparison of the Core Project Topic’s Existing Types Ideas

	3. Existing System Analysis 
	3.1. Work of the System 
	3.2. The Goal of the Current System
	3.3. Suggested Workflow for System Design

	4. System Implementation and Evaluation 
	4.1. The Tool Option
	4.2. System Demands
	4.2.1. Devices to the Hardware
	4.2.2. Devices to the Software
	4.2.3. Phase of Testing
	4.2.4. Application Validation Stage (Web)


	5. Summary
	5.1. Recommendation
	5.2. Conclusion 
	5.3. Contribution to Knowledge 

	Acknowledgements
	Conflicts of Interest
	References

