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Abstract 
We mainly investigated the effect of metallic wire grid on its optical property. At 
first, we give one simple model to deduce an expression which can describe the rela-
tionship of the optical property with the width of metallic wire grid. This expression 
could be used to calculate the reflectance of the metallic wire grid. We also give the 
corresponding computer simulation. Our simulation shows that the reflectance 
would increase when the width of metallic wire grid increase. The wider the metallic 
wire grid is, the higher the reflectance is. The reflectance would reach the maximum 
value only when the width is over the free path of electronic. 
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1. Introduction 

The metallic wire grid has also been applied to a broad range of optical systems, such as 
WGPs, transparent metal electrodes for organic solar cells and organic light-emitting 
diodes. Now, many papers were focused on the investigation of the polarized property 
of metallic wire grid [1]-[7]. But few papers reported the theoretical optical property of 
metallic wire grid because the metallic wire grid always has large extinction coefficient. 
For example, Vadym Apalkov [8] studied the interaction between an H-wave and a thin 
metal film. They had calculated reflectance coefficients of a thin metal layer in the case 
of different values of the incidence angle. Utkin A. I. [9] analyzed the dependence of 
coefficients of transmission, reflection and absorption of an electromagnetic wave on 
the thickness of skin in thin metallic films layer. Latyshev A. V. [10] analyzed the func-
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tions of transmission, reflection, and absorption coefficients with the angle of incidence 
of the electromagnetic wave, thickness of the layer. Then, these papers do not consider 
the effect of the width of metal film on these optical prompters 

The optical property of the metal strongly depends on the free path of the free elec-
tronic. In this paper, one simple model is given to investigate the effect of width of me-
tallic wire grid on both the mean free path and the corresponding conductivity. Further, 
we also gave one relationship between the width of metallic wire grid and the reflectivi-
ty. Finally, we give the theoretical simulation and discussions. 

2. Theory  

The structure model of one metallic wire grid is given in Figure 1, in which the metallic 
wire grid of cuboids with the same width and height are deposited on the glass sub-
strates.  

In order to study the effect of width on the electronic mean free path, we present one 
ball with the diameter of mean free path, in which the electronic can freely move Fig-
ure 2 is a model when 2d λ< , λ  is defined as the mean free path, d is the width 
and height of metallic wire grid, respectively. Figure 3 is another model when 

2d dλ< < . In Figure 2 and Figure 3, the overlapping region between the free path 
ball and metallic wire grid is the space where the electronic can freely move. 

For the mean free path λ of electron in material, the volume of free path ball is that  
34 π

3 2
V λ =  

 
                                (1) 

Here, λ is the mean free path in metallic media. For the model mentioned above, the 
volume of free path in metallic wire grid is, respectively,  
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Here, d is the width of wire grid. In order to the study the effect degree of the width 
of metallic wire grid on the mean free path, we define γ as one corrected factor. Thus, 
we have 

 

 
Figure 1. The structure model of metallic wire grid. 



Y. L. Wu, S. M. Feng 
 

271 

 
(1)                                            (2) 

Figure 2. The mode of free path affected by the width metallic wire grid 
( 2d λ< ). Here (1) is a front view, (2) is a lateral view. 

 

 

Figure 3. The mode of free path affected by the width of metallic wire 
grid ( 2d dλ< < ). Here (1) is front view, (2) is a lateral view. 

 

( )

( )

3 3
22

3
3

3

3 2
2

3 3

5 2 42 2 1 π
4 π 3 2

, 2
4 π
3 2

4 π 4π
3 2 2 2 3 6 , 2

4 π
3 2

d

d

V
V

d dd
d d

λλ

λ
λ

γ

λ λ λλ
λ

λ

  
     + − − −           <

   ′   = = 


      + − − +            < <
 
   

   (3) 

The substitution of (3) into (2) produces one expression to calculate the mean free 
path in wire grid, which is  
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Here, λ  is the free path in material, ( )dλ  is the corrected mean free path in wire 
grid.  

3. Calculation of Reflectance  

Putting ( )dλ  into the conductivity formula of continuous metallic film, we have 

( )
( ) ( )

1 31 1 exp exp
2 4

d dp d
d d d

λ ζσ σ
λ λ∞

       = − + − − −                   
        (5) 

here σ∞  is the conductivity of normal metal material, σ is the conductivity of corres-
ponding metallic wire grid, ζ is related to the electron pen trance in length. 

For the metal (Ag) wire grid, the parameters 0.025ζ = , 0.5373p = ,  
0.226 cmσ∞ = µΩ , 40 nmλ = , respectively. The simulation cure of (5) is given in 

Figure 4. 
Seeing from Figure 4, the conductivity increases as the width of metallic wire grid 

increases. For example, it is obvious that the conductivity at 60 nmd =  is larger than 
that at 20 nmd = . Hence, we deduce that the conductivity depends on the width of 
metallic wire grid. 

According to Maxwell’s equation, the relationship of refractive index with the con-
ductivity is  

0n n ik= +                              (6) 

Here 
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Figure 4. The relation cure of conductivity with the width of metallic wire grid. 
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here 0n  is the real part of refractive index, k is the imaginary part. According to the 
reflectivity formulation, we have 
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Equation (7) can clearly describe the relationship between the reflectance and with 
the width of metallic wire grid. It could be used to calculate the reflectance of wire grid. 
For example, When the light wavelength is equal to 632 nm and 532 nm, respectively, 
the corresponding relative dielectric constant of metal (Ag) 15, 9.8rε = − − , respectively. 
For the wire grid of Ag, the parameters is 0.025ζ = , 0.5373p = , 0.226σ∞ =  and 

40 nmλ = , respectively. Based on these parameters, we give the two cure (seeing Fig-
ure 2), which corresponds to the reflectance of metallic wire grid at the wavelength of 
532 nm and 632 nm, respectively. Because the material optical parameters of other wa-
velength have not been obtained, we could not give the corresponding cure. 

Seeing from Figure 5, the reflectance would increases when the width of metallic 
wire grid increases. For example, the reflectance is about 72% at 2 40 nmd = , and the 
reflectance of 73% at 2 70 nmd =  when the wavelength is 532 nm. For the wave-
length of 632 nm, the reflectance is about 69% at 2 40 nmd = , and the reflectance of  

 

 
Figure 5. The relationship cure of the reflectance with the width of Ag wire 

grid. Here, the part of cure at 2 56 nmd <  corresponds to 2d λ< , the 

part of cure at 56 nmd >  corresponds to 2d dλ< < . 
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71.5% at 2 70 nmd = . These results demonstrate the reflectance is different when the 
width of metallic wire grid is different. 

4. Conclusion 

This paper studied the influence of metal wire grid width on electron mean free path. 
The simple physical mode of electron mean free path affected by grid width is given. 
We give one corrected expression to calculate the conductivity of metallic wire grid. 
The theoretical simulation shows that the conductivity increases as the width of metal-
lic wire grid increases. Further, we also investigated the relationship between the width 
of metal wire grid and the reflectance, and gave one corrected expression. Our simula-
tion demonstrates that the reflectance increases as the width of metallic wire grid in-
creases, which is very valuable to investigate the optical property of wire grid. 
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