Optics and Photonics Journal, 2012, 2, 332-337

http://dx.doi.org/10.4236/0pj.2012.24041 Published Online December 2012 (http://www.SciRP.org/journal/opj)

+53 Scientific
#3% Research

Simple Method of the Formation of the Hamiltonian
Matrix for Some Schrodinger Equations Describing the
Molecules with Large Amplitude Motions

George A. Pitsevich, Alex E. Malevich
Belarusian State University, Minsk, Belarus
Email: pitsevich@bsu.by

Received September 8, 2012; revised October 7, 2012; accepted October 18, 2012

ABSTRACT

A simple approach to the formation of a Hamiltonian matrix for some Schrédinger equations describing the molecules
with large amplitude motions has been proposed. The algorithm involving one or several variables has been concretely
defined for the basis functions represented by Fourier series and orthogonal polynomials, taking Hermitian polynomials

as an example.
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1. Introduction

Algebraic approaches to solving of Schrdédinger equa-

tions have several advantages compared to other methods.

Provided the basis functions used for expansion of the
wave functions and the potential energy of a system are
adequately selected, the Schrodinger equation takes the
matrix form, in the end its solution being reduced to the
derivation of eigenfunctions and eigenvalues for the
Hamiltonian matrix. When studying the molecules whose
variables are changing with a large amplitude, the Ham-
iltonian matrix derivation is a nontrivial problem. This
work presents an algorithm to form the Hamiltonian ma-
trix for some Schrédinger equations describing mole-
cules and molecular systems with several variables of
this type. Such equations may be illustrated by the fol-
lowing:

F ‘i;’ +U(p)=E¥ (1
~ 62‘1’(s,t)_ *Y(st)

A e B s +U (st)¥(st) 2
=E¥(st)

F 62‘P(x,y,z)+62\P(x,y,z)+62‘{‘(x,y,z)
ox’ oy* oz’ 3)
+U(xy,2)¥(xY.2)=E¥(XY,2)

In all cases it is assumed that with a change in the vari-
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ables the kinematic parameters remain invariable. This
may be attained by an adequate selection of a coordinate
system strongly related to the molecule, both in the case
of symmetric [1-4] and low-symmetry [5-9] molecules.
Equation (1), in particular, describes internal vibrations
in a molecule of methanol, taking the effective vibra-
tional constant as F [10-12]. In some cases an invariable
character of the molecular kinematic parameters for large
amplitude motions may be considered as a physically
valid approximation. Specifically, Equation (3) may be
used for the description of motion of a hydrogen atom in
the process of hydrogen bonding if we neglect motion of
the oxygen atoms, the amplitude of which is in fact con-
siderably smaller than that of H motion as a mass ratio of
these atoms is 1:16. This paper presents “quick” ap-
proaches to construct the Hamiltonian matrix for some
basis functions.

2. Using of Fourier Series

Since the use of Fourier series for solving of equations of
the form given in (1) is frequently described in the lit-
erature and in some works the formation algorithm for
the Hamiltonian matrix is given in detail, we begin our
analysis from Equation (2). Let the potential energy be
given in the form:

a,b .
U(st)= > uye™™; abeN @)
kl=—a,-b
Then a wave function is derived as:
OPJ



G. A. PITSEVICH, A. E. MALEVICH

‘P(S,t) _ Z bnmei(ns+mt) (5)
Substituting (4) and (5) into (2), we obtain:
Y, (WA+n’B-E)b,™™
n,m=—o0 (6)

o0 a,b .
+ z z uklbm]el((n+k)s+(m+l)t) -0

n,m=—w k,|I=—a,-b

Next we define coefficients for the exponential
™™ In the second term the following condition
must be fulfilled:

ntk=n"=k=n'-n;

7
m+l=m=1=m-m @
Instead of (6), we have:
(nrz A+m’B— E)bn’mei(n’y-m’t)
- ab I (®)
+ z z un’—n,m’—mbnmel(nymt) =0

n,m=—o0 nN'—=n,m-m=-a,-b
Then we construct the finite matrix with the dimen-
sions (2C+1)2 ><(2C+1)2; ce N . This means that n and
m are varying within the limits from —c to C per unity.
From (8) we derive:

(nr2A+ mz B— E) bn’m’ei(n'Ser't)
©)

C ab

HDIDY

n,m=-cn'-n,m'-m=-a,—b

b ei(n’s+m’t) =0

I"In’—n,m’—m nm
Now we take (9) as a matrix equation of the form
Hij(“bj " =E; ﬂbj ", where "bj " —column vector that, ac-
cording to (5), gives the wave function corresponding to
the energy Ej. It is clear that a pair of the indices
(n’,m’) numbers rows of the Hamiltonian matrix and a
pair of the indices (n,m)—its columns. Next, to derive
the Hamiltonian matrix from (9), first we have to fix an
order of the coefficients b, in the column vector of the
wave function defined by Equation (5). For example, if
c =1, the transposed column vector may be of the form:

A+B+ Uoo uo,—l 0 U, u,
Uy, A+uy, U u, U,

0 Uy, A+B+u, 0 11

Ulﬂ0 U]’_] 0 B+ Uoo Uy

u, U U _, Uo,i Uyg

0 Uy s U, 0 Up,i

0 0 0 U o U _,

0 0 0 U U,

0 0 0 0 U,

Next we consider the case of three variables. Let the
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"6" = <b71,71 5 b—l,O 5 b71,1 5 bO,—l 5 bo,o 5 bO,l 5 Q,—l 5 Q,o 5 b1,1 > (10)

Let us assume that in the same order from top to bot-
tom there is a change in the index pair (n’,m’) num-
bering rows of the Hamiltonian matrix. Then a matrix
element of H is numbered by two index pairs,
H . m) (nm) - Considering that usually ¢> a,b, for the
diagonal element (N=n;m=m) we can write:

H iy vy =N A+ M B+ Uy, — E )
and for nondiagional elements we can write:
H(n’,m),(n,m) = un’—n,m’—m (12)
if |n-nl<a and |mM-m<b
H .y =0 a3

if|n’—n|>aor|m’—m|>b

Numbering matrix elements of H by the ordinary
indices (i, ]) each of which is varying from 1 to
(20+1)2, we should establish for each of them a one-
to-one correspondence to a pair of numbers by the prin-
ciple: i < (0W,m); j< (nj,mj ) Specifically, in the
case given by (10) for i=3 wehave nmj=-1; m, =1;
and for j=6 we have n,=0; m, =1. Now an algo-
rithm for the formation of the matrix H takes the fol-
lowing form:

H, =n?A+m’B+u,, —E (14)
A (15)
if|r}'—nj gaand|nf—mj|sb

H; =0 if |ni'—nj|>a or |m’—mj|>-b (16)

Let us write the Hamiltonian matrix in the explicit
form with the use of (14 - 16) for c=1. Besides, we
assume that the index order is determined by the relation
of (10), and a=b=1. Then we have:

0 0 0 0
Ui 0 0 0
Ui 0 0 0
0 u-l,o u, 0
U, u,, U, u,
B-+uy, 0 U, U
0 A+B+u, Uy, 0
u_, Uo, A+Uy, Uo.—i
U, 0 Uy, A+ B+,

Schrédinger equation be of the form:
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Aaz\P(s,t,r) *Y(sit, r) Y (st.r)

os’ o’ or? (17)
+U (st,r)¥(st,r)=E¥(str)
Then we define an algorithm to form the Hamiltonian

matrix when using three-dimensional Fourier series. Let
the potential energy be given as:

a,b,c

U t _ i(hs+kt+Ir)
(str)= &, U (18)

a,b,ceN

A wave function takes the form:

S by

n,m,q=—w

\P(S,t,r)z ns+nt+qr (19)

Substituting (18) and (19) into (17), we obtain:

0

> (n2A+ m'B+q°C— E)bnmq
n,m,gq=— (20)

) ab,c

4 Z Z Unyg bnmei((n+h)s+(m+k)t+(l+q)r) -0

i(ns+mt+qr)

n,m,q=—x h,k,|=—a,-b,—c

Let us find coefficients for the exponential ¢'"*"™*9"),
The following condition must be fulfilled:
n+h=n"= h=n"-n;
m+k=m = k=m'-m; 21)
l+q=I"= q=I'"-1;
Instead of (20), we have:
(nr2A+ m>2B + q!ZC E)bnmq i(n's+mt+q'r)
< L2 i(n's+m't+q'r)
+ 2 un’—n,m’—m,l’—l bnmqe (22)
n,m,g=—c0 n'—n,m'-m,|'-I=—a,—b,-c

=0

We construct the finite matrix with the dimensions
(2d+1)’x(2d +1)’;d e N, i.e. n, m and q are varying
within the limits from —d to d per unity. From Equa-
tion (22) we get:

(n'z A+m>*B+ quC _ E)bn’qu’ei(n’s+m’t+q’r)

a,b,c

d X o
+ Z un’—n,n‘(—m,l’—lbnnqel(nymt+lr) (23)

n,m,q=—d n'=n,m-m,|I'-I=—a,—b,—c
=0

Now three indices (n’, m’,l’) number rows and three
indices (n, m,I) number columns of the Hamiltonian
matrix. To derive a Hamiltonian matrix from (23), we
again fix an order of the coefficients b, in the column
vector for the wave function defined by (19). For exam-
ple, if c=1, the transposed column vector may be of the

form:
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"6” = <b_17_1,_] b esby b sb g5

LRFRH s S « NS

(O « W] <[P« AP < YT o S o R 22
bl,—l,—l;bl,—l,o;h,—l,l;Q,O,—l;bl,o,o;bl,o,l;
bl,l,—l;Q,l,O;bl,l,1>

We assume that a change of three indices n’,m’,q’,
numbering rows for the Hamiltonian matrix is in the
same order from top to bottom. Then a matrix ele-
ment of H is numbered by two pairs of three indices,
H(n mi.q).(nma) - Considering that, as previously, we
have d>ab,c, then for the diagonal elements
(n=n, m=m’,q = q) we can write:

H nN*A+m’B+q°C+Uy, —E (25

b—l,O,l;b—l,l, ) 1105

() () =
And for nondiagonal elements we can write:

H(n’,m’,q’),(n,m,q) = un’—n,m’—m,q’—q

(26)
if [ —n|<a;|m-m/<band|q'-q|<c

H Oif|n’—n|>—a

(', q),(nma) — 27)
0r|m’—I’T’1 - b0r|ql—Q|>'C

when numbering the matrix elements of H by the ordi-
nary indices (i, j) each of which is varying from 1 to
(2C+1)3 , we should establish for each of them a
one-to-one correspondence to three numbers by the prin-
ciple: i < (n’ m.q); j< (n],mj,q ) Spec1ﬁcally,
in the case given by (24) for i =3 we have n; =-1;

m,=-1; ¢;=1, and for J=19 we have ng=1;
m, = —1 3 O = —1 . Now an algorithm to form the ma-
trix H takes the form:

H; =n?A+m’B+q°C +Uy, - E (28)

Hij :uf\'*nj Jm—mj . —qj lf|ni _nJ'|£ & (29)

|m —mj|£band|qi’—qj|£c

H; =0 if |ni’—n.|>-a

(30)

or|m m|>bor| qj|>c

3. Using of Orthogonal Polynomials

Let us consider the Schrodinger equation with one vari-
able (31), taking orthogonal Hermitian polynomials H,
as an example.

a’vy
R%+U (x)¥(x)=E¥(x) (1)
X
Let the potential energy be given as:
U (x)=> uH,(x) (32)
k=0
OPJ
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And we are looking for a wave function of the form:

¥ (x)= Y bH, (x)e 2 (33)
We substitute (32) and (33) into (31):
E(R(n+%)— E)ann(x)
~> Ra(n-1)BH, (X)
o (34)

8
Py}

_gzanmz(x)
+izukann(X)Hk (x)=0

n=0 k=0

3

Using the orthogonality of Hermitian polynomials, we
can write:
n+k

Ho(X)H (X)= X G ocHi (%)

I=|n-k|.2 35
s (35)

G = | Ho(0H, (M, (11"

As aresult, Equation (34) takes the form:

g}(R(n+%)— E)ann(x)—ni::)Rn(n—l)anm2 (x)(
730 o m +k7 36)
_Z();anM(poOél_zkzqn_kukan,(x):o

Taking the coefficients for H, , we construct a matrix
with the dimensions (h+1)x(h+1). In the second term
of Equation (36) we must assume

n-2=n"=n=n"+2,

in the third term we assume n+2=n"= n=n'-2,
and in the fourth —1 = n’. Instead of (36), we get:

(R(n’+%)—E)bn,Hn,(x)
-R(n'+2)(n"+1)b,,,H, (x) (37)

R h
—Zt%'—an' (x)+§zk:cn,nan,(x)bnuk =0
As previously, the index n' numbers rows of the
Hamiltonian matrix, whereas the index n numbers its
columns. Let an order of indices in the column vector of
the wave function be so that a form of the transposed
vector is given by:

[6]= (by:by:--y,) (38)

In a similar way we will number rows of the Hamilto-
nian matrix from top to bottom from 0 to h per unity.
According to Equation (37), at the first stage we can fill
the Hamiltonian matrix with the elements existing for

Copyright © 2012 SciRes.

representation of the potential energy in the form c,, U,
by the following principle:

Hn’n = ch’nkuk (39)

k
Summation in (39) is over all the existing indices Kk for
the specified index pair (n’, n) . Next, to every diagonal

element H_ , we add (n’+%)R and to every element

of the diagonal, parallel to the main diagonal and posi-
tioned above it as a next nearest (anmz), we add

—(n'+2)(n'+1)R. And in the case of a similar diagonal

positioned as a next nearest below (Hn,ﬁn_z) we add

—% R. So, diagonal elements take the form:

H,. = (n' +%) R+ Y Gyl (40)
k

Nondiagonal elements are of the form:

Hoipeo =—(0+2) (N +1)R+DChrnile (4D
k

1
H nn-2 — _Z R+ ch’,n’—z,kuk (42)

K

The remaining nondiagonal elements are as (39). Us-
ing the ordinary indices i, varying from 1 to h+1,
we can rewrite this algorithm as:

H; :(i _%)R+ZK:Q—1,i—l,kuk 43)
Hiin =—(i +1)iR+zk:Ci—l,i+1,kuk (44)
Hiio :_%R"’ZKIQ-u-z,kuk (45)
H;, = zk:clfl,jfl’kuk (46)

Finally, we consider Equation (3), trying to construct
the Hamiltonian matrix with the use of Hermitian poly-
nomials as basis functions. Let the potential energy be
represented as:

a,b,c
U(Xayaz):k,hzn:houklmHk(X)Hl(y)Hm(Z); (47)

ab,ceN
A wave function is derived as follows:

(% y.2)= R buH, (HH:(De 55 o

rr=x+y+7

Substituting (47) and (48) into (3), we obtain:
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0

3 (R(n+t+5+3)-E)buH, (0 H () H.(2)

—Z Rn(n-Db,H,, (X)H,(Y)H.(2)
—ZRUIMJW)HJUWJ@

‘Z (S_l)hﬁtSHn(X)Ht(y)HS—z(z)

(Y)H:(2)

-3 Rb o (H
—mz_ﬂbms
> b (O H(VH. ()

3 S Y CouuGabuetlan s (X)Hy (Y)H, (2)=0

nts=0 4
n( ) t+2 (y)HS(Z)
Z nts
nts=0 kim=0 fhr
(49)

Suppose that we need to construct a matrix with the
dimensions (d +1)3 x(d +1)3. We determine coeffi-
cients for the factor H (X)H, (y)H¢(2):

(R(m+t+5+2) - E) . (OH (V)H. (2)

“R(n+2)(n"+1)by 0 sHy (X) He (V) H (2)

—R(t"+2)(t'+1)by 0 s Hy (X)He (Y)Hy (2)

—-R(s'+2)(s'+1))b, 4 ¢, Hy (X)H, (Y)He (2)
H; (2)

R
_an’—z,t’,s’Hn( ) ( ) g2 (50)

R
4
R
- 4 bn’,t’,s’—z H n' (X) Ht’ (y) Hs’ (Z)

d
+ Z Z Cn’nkct’tl Cs’smbntsuklmHn’ (X) Ht’ (y) Hs’ (Z) =0

nts=0 kim

This expression may be rewritten as follows:

(R(n+t+s+ ) )bnts v (%)
—R(n'+2)(n"+1)b,,, ¢ — R( +2)(t'+1)by s

, : _R, (51
_R(S+2)(S+l)bn’,t’,s’+2 bn -2,t.,8 4 nt -2,8
R

d
_bn’,t’,s’—2 + Z ch’nkct’tl Cs’smbntsuklm =0

4 nts=0 kim

We fix an order of the coefficients b, in the column
vector of the wave function defined by Equation (48).
For example, if d=2, the transposed column vector

Copyright © 2012 SciRes.

may be of the form:

"6" :<b0,0,0; B 0.5 By0.25 o105 By 15 By 105 By 2,03 By 25
bo,z‘z;b1,0,0§ b1,0,1§ bl,O,Z; bl,l,O; b1,1,1; b1,1,2; bl,Z,O; b1,2,1§ b1,2,2§ (52)
bz,o,o; bZ,O,l; bz,o,z; bZ,l,O; bz,l,l; b2,1,2; bz,z,o; bZ,Z,l; bz,2,2>

Let us assume that a change in three indices (n’,t', s )
numbering rows of the Hamiltonian matrix is in the same
order from top to bottom. The matrix element H is
numbered by a pair of three indices H(n,’t,’s,),(m’s) . As
earlier, first we can fill the Hamiltonian matrix with the
existing elements representing the potential energy of the
form G, GyCeemlum DY the following principle:

H = Z Cn’nkct’tl Cs’snuklm (53)
Km

(n,t',s),(n,t,s)

Summation in Equation (53) is performed over all the
existing triples (k,I,m) for the pair of the specified
triples (n',t’,s') and (n,t,s). For the main diagonal
H we must add (n+t+s+3)R To the

(M.1.8)(n.t'.S)

nondiagonal elements of the form H(

H(n’,t',s’),(n’+2,t’,s’) , and H(n t',s),(n't',s'+2)
-R(n"+2)(n'+1); —R(t'+2)(t'+1), and
—R(s'+2)(s'+1). Finally, to the diagonal elements of
the form H and

H

nt.s),(n'+2.t',s) ’

we must add

(n’,t',s’),(n’—Q,t’,s’); H(n’,t',s’),(n’,t’—z,s') ’

(nt.s)(nr.s—2) We mustadd —% R. Thus, we have:

3
Hives)mes) = (n +t' +s+2)R s
+Z Cn’n’kCt’t’I Cs’s’muklm
Kim
H(n’,t',s’),(n'+2,t’,s’) = ch’,n’+2,k(:I’t’I Cs’s’muklm ( )
Km 55
-R(n'+2)(n'+1)
H(n’,t’,s’),(n’,t’+2,s’) = klZCn'n'kCt’,t'Jrz,ICs’s’muklm ( 6)
m 5
-R(t'+2)(t'+1)
H(nt s),(n.t',s+2) z nnkCt’t’ICs’,§+2,mukIm (57)
—R(s +2)(s'+1)
H(n’,t’s) n'-2.t',s’) ch -2,n', kCItI ssmuklm R (58)
1
H(n’,t’,s) nt'-2,s) zcnnkct t'-2,1 CosmUm _ZR (59)

1
H Z wivk Gt CosmUim — Z R (60)

(n,t,s),(n,t,s'-2)

In other cases, we have (53). Now numbering the ma-
trix elements of H by the ordinary indices (i, j) each of
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which is varying from 1 to (2d + 1)3 , we have to estab-
lish for them a one-to-one correspondence to three num-
bers according to the principle: i< (N.t.5) ;
JR=3 (nj ,4,s, ) . Specifically, in the case given by (52)
for i=5 we haven;=0; t;=1; s =1, and for
J=17 we have n,=1; t,=2; s, =1. Then an al-
gorithm to construct the matrix H; under condition of
(52) takes the following form:

H, = (n’ TN %) Re 3 G Cganthans (61
Hi,i+18 = z Cry’,r}’ﬂg,kqi’ti'l Cs’s’muklm - R(ny + 2)([}' + 1);
i (62)
i=1-9;
Hiis = zcr\'r\'kqi',ti;(,,l CosmUym — R(1'+2)(t'+1);
Km (63)
i —1-3:10—-12;19—21;
Hi,i+2 = Z Cr\’r\’kcti’ti’l Cﬁ’,s’ﬂ,muklm - R(S’ + 2)(3, + 1)7
Km (64)
i =1,4,7,10,13,16,19,22,25:
Hisi = ; Civ vk Gyt CggmUiim _% Ri=1-9; (65)
m
Hiei = % Cririk Gy 6.1 CygmUiam _% R; 66)
i —1-3:10-12;19-21;
_ 1p
Hi+2,i - %Cr\'r{kcti’ti’l Cs{s{,zmuklm 4 R’ (67)
i=1,4,7,10,13,16,19,22,25;
(68)

Hi,j = Zcﬂ'njkqi/tﬂcﬁ'sj'muldm
Kim

4. Conclusion

In this way we have derived analytical expressions for
elements of the Hamiltonian matrix describing the mole-
cules characterized by motions with a large amplitude.
The cases when the wave functions and potential energy
are represented by Fourier series and orthogonal poly-
nomials have been considered in detail taking Hermitian
polynomials as an example. Some specific types of
Schrodinger equations with a single variable or several
variables have been treated.
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