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ABSTRACT 

A simple approach to the formation of a Hamiltonian matrix for some Schrödinger equations describing the molecules 
with large amplitude motions has been proposed. The algorithm involving one or several variables has been concretely 
defined for the basis functions represented by Fourier series and orthogonal polynomials, taking Hermitian polynomials 
as an example. 
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1. Introduction 

Algebraic approaches to solving of Schrödinger equa-
tions have several advantages compared to other methods. 
Provided the basis functions used for expansion of the 
wave functions and the potential energy of a system are 
adequately selected, the Schrödinger equation takes the 
matrix form, in the end its solution being reduced to the 
derivation of eigenfunctions and eigenvalues for the 
Hamiltonian matrix. When studying the molecules whose 
variables are changing with a large amplitude, the Ham-
iltonian matrix derivation is a nontrivial problem. This 
work presents an algorithm to form the Hamiltonian ma-
trix for some Schrödinger equations describing mole-
cules and molecular systems with several variables of 
this type. Such equations may be illustrated by the fol-
lowing: 
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In all cases it is assumed that with a change in the vari-

ables the kinematic parameters remain invariable. This 
may be attained by an adequate selection of a coordinate 
system strongly related to the molecule, both in the case 
of symmetric [1-4] and low-symmetry [5-9] molecules. 
Equation (1), in particular, describes internal vibrations 
in a molecule of methanol, taking the effective vibra-
tional constant as F [10-12]. In some cases an invariable 
character of the molecular kinematic parameters for large 
amplitude motions may be considered as a physically 
valid approximation. Specifically, Equation (3) may be 
used for the description of motion of a hydrogen atom in 
the process of hydrogen bonding if we neglect motion of 
the oxygen atoms, the amplitude of which is in fact con-
siderably smaller than that of H motion as a mass ratio of 
these atoms is 1:16. This paper presents “quick” ap-
proaches to construct the Hamiltonian matrix for some 
basis functions. 

2. Using of Fourier Series 

Since the use of Fourier series for solving of equations of 
the form given in (1) is frequently described in the lit-
erature and in some works the formation algorithm for 
the Hamiltonian matrix is given in detail, we begin our 
analysis from Equation (2). Let the potential energy be 
given in the form: 
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Then a wave function is derived as: 
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Substituting (4) and (5) into (2), we obtain: 
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Next we define coefficients for the exponential 
. In the second term the following condition 

must be fulfilled: 

ie n s m t 

;n k n k n n
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Instead of (6), we have: 

   

 

i2 2

,
i

,
, , ,

e

e 0

n s m t
n m

a b
n s m t

n n m m nm
n m n n m m a b

n A m B E b

u b

 
 


 

  
     

  

   

N

   (8) 

Then we construct the finite matrix with the dimen-
sions . This means that n and 
m are varying within the limits from  to c per unity. 
From (8) we derive: 
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Now we take (9) as a matrix equation of the form 

ij j j jH b E b , where jb —column vector that, ac- 
cording to (5), gives the wave function corresponding to 
the energy jE . It is clear that a pair of the indices 
 ,n m   numbers rows of the Hamiltonian matrix and a 
pair of the indices  ,n m

b

—its columns. Next, to derive 
the Hamiltonian matrix from (9), first we have to fix an 
order of the coefficients nm  in the column vector of the 
wave function defined by Equation (5). For example, if 

, the transposed column vector may be of the form: 1c 

1, 1 1,0 1,1 0, 1 0,0 0,1 1, 1 1,0 1,1; ; ; ; ; ; ; ;b b b b b b b b b b       (10) 

Let us assume that in the same order from top to bot-
tom there is a change in the index pair  ,n m 

,a b

 num-
bering rows of the Hamiltonian matrix. Then a matrix 
element of H is numbered by two index pairs, 

   , , ,n m n m . Considering that usually , for the 
diagonal element 
H   c

 ;n n m m    we can write: 

   
2 2

00, , ,n m n mH n A m B u E               (11) 

and for nondiagional elements we can write: 
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Numbering matrix elements of H  by the ordinary 
indices  ,i j

2
 each of which is varying from 1 to 

, we should establish for each of them a one- 
to-one correspondence to a pair of numbers by the prin-
ciple: 

2 1c 

 ,i ni im  ;  ,j jj n m
3i

. Specifically, in the 
case given by (10) for   we have ; 33 1n   1m  ; 
and for 6j   we have 6 ; 6 . Now an algo-
rithm for the formation of the matrix 

0n  1m 
H takes the fol-

lowing form: 
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0 if orij i j i jH n n a m m     b  (16) 

Let us write the Hamiltonian matrix in the explicit 
form with the use of (14 - 16) for . Besides, we 
assume that the index order is determined by the relation 
of (10), and 

1c 

1a b  . Then we have: 
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Next we consider the case of three variables. Let the Schrödinger equation be of the form: 
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Then we define an algorithm to form the Hamiltonian 
matrix when using three-dimensional Fourier series. Let 
the potential energy be given as: 
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A wave function takes the form: 
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Substituting (18) and (19) into (17), we obtain: 
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Let us find coefficients for the exponential ie n s m t q r    . 
The following condition must be fulfilled: 
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Instead of (20), we have: 
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We construct the finite matrix with the dimensions 
, i.e. n, m, and q are varying 

within the limits from  to d per unity. From Equa-
tion (22) we get: 
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Now three indices  , ,n m l    number rows and three 
indices  , ,n m l

1c 

 number columns of the Hamiltonian 
matrix. To derive a Hamiltonian matrix from (23), we 
again fix an order of the coefficients nmq  in the column 
vector for the wave function defined by (19). For exam-
ple, if , the transposed column vector may be of the 
form: 

b

1, 1, 1 1, 1,0 1, 1,1 1,0, 1 1,0,0

1,0,1 1,1, 1 1,1,0 1,1,1 0, 1, 1 0, 1,0

0, 1,1 0,0, 1 0,0,0 0,0,1 0,1, 1 0,1,0 0,1,1

1, 1, 1 1, 1,0 1, 1,1 1,0, 1 1,0,0 1,0,1

1,
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1, 1 1,1,0 1,1,1; ;b b

  (24) 

We assume that a change of three indices , ,n m q   , 
numbering rows for the Hamiltonian matrix is in the 
same order from top to bottom. Then a matrix ele- 
ment of H is numbered by two pairs of three indices, 

 , , . Considering that, as previously, we 
have , then for the diagonal elements 

, , ,n m q n m qH   

d 

, ,a b c

 q; ;m qn n m     we can write: 

   
2 2 2

000, , , , ,n m q n m qH n A m B q C u         E        (25) 

And for nondiagonal elements we can write: 
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when numbering the matrix elements of H by the ordi-
nary indices  ,i j  each of which is varying from 1 to 
 3
2 1c  , we should establish for each of them a 

one-to-one correspondence to three numbers by the prin-
ciple:  q, ,i ii n m i   ;  , ,j j jj n m q

3i 
. Specifically, 

in the case given by (24) for  we have 3 1n   ; 

3 1m   ; 3 1q  , and for  we have 1919j  1n  ; 

19 1m   ; 19 1q   . Now an algorithm to form the ma-
trix H takes the form: 
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3. Using of Orthogonal Polynomials 

Let us consider the Schrödinger equation with one vari-
able (31), taking orthogonal Hermitian polynomials nH  
as an example.  
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Let the potential energy be given as: 
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And we are looking for a wave function of the form: 
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We substitute (32) and (33) into (31): 
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Using the orthogonality of Hermitian polynomials, we 
can write: 
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As a result, Equation (34) takes the form: 
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Taking the coefficients for nH  , we construct a matrix 
with the dimensions    1 h 1

,

h   . In the second term 
of Equation (36) we must assume  

2 2n n n n       

in the third term we assume , 
and in the fourth – . Instead of (36), we get: 
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As previously, the index  numbers rows of the 
Hamiltonian matrix, whereas the index n numbers its 
columns. Let an order of indices in the column vector of 
the wave function be so that a form of the transposed 
vector is given by: 

n

0 1; ; hb b b b               (38) 

In a similar way we will number rows of the Hamilto-
nian matrix from top to bottom from 0 to h per unity. 
According to Equation (37), at the first stage we can fill 
the Hamiltonian matrix with the elements existing for 

representation of the potential energy in the form  
by the following principle:  

n nk kc u

n n n nk k
k

H c u                (39) 

Summation in (39) is over all the existing indices k for 
the specified index pair  ,n n . Next, to every diagonal  

element n nH    we add  1
2

n R   and to every element  

of the diagonal, parallel to the main diagonal and posi-

tioned above it as a next nearest  , 2n nH   , we add  

  2 1n n    R


. And in the case of a similar diagonal 

positioned as a next nearest below   we add  , 2n nH  

1
4

R . So, diagonal elements take the form: 

 1
2n n n n k k

k
H n R c u                   (40) 

Nondiagonal elements are of the form: 

  2 ,2 1n n n n k k
k

2,H n n R c          u    (41) 

2 ,
1
4n n n n k k

k
2,H R c u                     (42) 

The remaining nondiagonal elements are as (39). Us-
ing the ordinary indices  varying from 1 to ,i j 1h  , 
we can rewrite this algorithm as: 
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Finally, we consider Equation (3), trying to construct 
the Hamiltonian matrix with the use of Hermitian poly-
nomials as basis functions. Let the potential energy be 
represented as: 
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A wave function is derived as follows: 
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Substituting (47) and (48) into (3), we obtain: 
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This expression may be rewritten as follows:  
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We fix an order of the coefficients nts  in the column 
vector of the wave function defined by Equation (48). 
For example, if , the transposed column vector 

may be of the form: 

b

2d 

0,0,0 0,0,1 0,0,2 0,1,0 0,1,1 0,1,2 0,2,0 0,2,1

0,2,2 1,0,0 1,0,1 1,0,2 1,1,0 1,1,1 1,1,2 1,2,0 1,2,1 1,2,2

2,0,0 2,0,1 2,0,2 2,1,0 2,1,1 2,1,2 2,2,0 2,2,1 2,2,2

; ; ; ; ; ; ; ;

; ; ; ; ; ; ; ; ;

; ; ; ; ; ; ; ;

b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b



; (52) 

Let us assume that a change in three indices  , ,n t s    
numbering rows of the Hamiltonian matrix is in the same 
order from top to bottom. The matrix element H is 
numbered by a pair of three indices    , , , , ,n t s n t s . As 
earlier, first we can fill the Hamiltonian matrix with the 
existing elements representing the potential energy of the 
form  by the following principle:  

H   

n nk t tl s sm klmc c c u  

   , , , , , n nk t tl s sm klmn t s n t s
klm

H c c c u               (53) 

Summation in Equation (53) is performed over all the 
existing triples  , ,k l m  for the pair of the specified 
triples  , ,n t s    and  , ,n t s . For the main diagonal  

  , , , , ,n t s n t sH        we must add  3
2
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  , , , 2, ,n t s n t sH       , and  we must add   , , , , , 2n t s n t sH       
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In other cases, we have (53). Now numbering the ma-
trix elements of H by the ordinary indices  ,i j  each of 
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which is varying from 1 to , we have to estab-
lish for them a one-to-one correspondence to three num-
bers according to the principle: 

 3
2 1d 

 , ,i i ii n t s   ; 
 , ,j j j j n t s

5i 
17j 

. Specifically, in the case given by (52) 
for  we have ; ; , and for 
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(52) takes the following form: 
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4. Conclusion 

In this way we have derived analytical expressions for 
elements of the Hamiltonian matrix describing the mole-
cules characterized by motions with a large amplitude. 
The cases when the wave functions and potential energy 
are represented by Fourier series and orthogonal poly-
nomials have been considered in detail taking Hermitian 
polynomials as an example. Some specific types of 
Schrödinger equations with a single variable or several 
variables have been treated. 
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