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ABSTRACT 

In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gy-
roscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in optical fiber gyro-
scopes is investigated theoretically. Results are simulated by the MATLAB software; therefore we could compare the 
results in simulated area with the values derived from theory. Also, feedback Erbium-doped fiber amplifier (EFDA) 
FOGs, called FE-FOG, is categorized in closed-loop IFOGs. The procedure of finding the Sagnac shift for open-loop 
and closed-loop IFOG have been studied and compared to one another. The signal processing in the open-loop IFOG 
was simulated using Matlab software and for the closed-loop IFOG by PSCAD. In the open-loop IFOG the analogue 
formulation of the IFOG in order to extract the phase shift is analyzed. A novel and promising method for derivation of 
Sagnac phase shift based on digital finite impulse response filtering is proposed. Based on our simulation results, the 
reliability and accuracy of the method is determined. In the closed-loop IFOG, the shift was derived through frequent 
use of Sagnac loop. The output signal is injected in the input again as feedback. The shift phase between clockwise and 
counterclockwise waves in each complete route, including primary and feedback route, is identified as Sagnac shift 
phase. 
 
Keywords: Feedback Erbium-Doped Fiber Amplifier FOG (FE-FOG); Erbium-Doped Fiber Amplifier (EFDA); Digital 

Signal Processing; PSCAD; FIR Digital Filters; Interferometric Fiber Optic Gyro (IFOG); Sagnac Shift 

1. Introduction 

Angular rotation in vehicles is one of the parameters that 
need to be accurately measured in order to describe the 
position of an object. Traditionally, the angular momen- 
tum of a spinning rotor was used to determine the angu- 
lar rate or displacement [1-3]. These devices are suscep- 
tible to damage from shock and vibration, exhibit cross- 
axis acceleration sensitivity and, for the lower cost ver- 
sions; they have reliability problems [3].  

Directions around the same closed optical path will 
experience path length difference that is proportional to 
the rotation rate of the setup [4,5]. Sagnac shift is the 
common feature among optical gyros. Sagnac is now 
extensively used in commercial inertial navigation sys-
tems for aircraft. Given the advantage of this effect, the 
actual path length difference due to the rotation is quite 
small, e.g. the gyro used in the aircraft navigation must 
detect rotation rates below 0.01 deg/hr [6]. FOG is used 
for measurement of the rotation based on Sagnact Effect. 
Two types of FOG are used: the interferometric FOG 
(I-FOG) in which a low coherence light source is used  

and the resonance FOG (R-FOG). In the R-FOG the dif-
ferences of resonance frequency caused by sagnact effect 
is utilized for measuring the rotation. Therefore even a 
short length of optical fiber is sufficient for the meas-
urement. R-FOG needs a coherent light source for which 
such effects like Kerr effect and reflective optic phe-
nomenon must be considered. The FOG converts the 
Sagnact phase shift into a beam frequency between the 
clockwise and counterclockwise of laser modes. This 
implies sensing path length changes of about one part in 
1016, which corresponds to absolute length changes on 
the order of a nuclear dimension. Requirement of the 
precision of rotation measurement for spacecraft naviga-
tion lies between 0.01˚/hr to 0.001˚/hr.  

The principle of operation of a typical fiber gyro is 
based on a phase modulation in both directions of an 
optical fiber loop, as if it acts as a delay line. The modu- 

lation frequency, 
1

2Pf 
 , matches the half period of  

the transit time  . Such a modulation scheme provides a 
sinusoidal response with a stable bias. However this re-
sponse is nonlinear and the rotation rate proportional to 
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the returning power is not perfectly stable. 
Ring laser gyroscope (RLG) consists of a ring laser 

having two counter-propagating modes over the same 
path in order to detect rotation. It works based on Sagnac 
shift effect and requires high vacuum and precision mir- 
ror technology, which makes this technique very expen- 
sive [4]. The physical principal of RLG operation is ana- 
logous to the Doppler Effect, but it involves determina- 
tion of the phase shift between two counter-propagating 
light beams in an evacuated mirrored cavity [6]. To ad- 
dress this drawback, interferometric fiber optic gyro (IFOG) 
is employed whose function resembles RLG, notwith- 
standing the fact that, in IFOG, the same effect is ob- 
tained in a fiber coil with the elimination of the high 
voltage and high vacuum, which results in a low-cost 
inertial rotation sensor [4,6]. In addition, IFOGs are ab- 
stracted in miniature devices; all-solid state with a lim- 
ited number of components, therefore lower cost.  

In terms of light source, RLG requires an external 
narrow band gas laser with its active gain medium which 
is an integral part of the sensing cavity, whereas IFOG 
works with an external broadband light source [7]. Path 
length measurement in RLG is performed by measuring 
the difference of resonant frequencies between two cavi-
ties [5]. Despite, IFOG rotation rate sensing is achieved 
through a direct measurement (open loop) or nulling 
(close loop) of the optical phase difference due to the 
rotation-induced Sagnac phase shift [4,6,7].  

According to the fact that high precision gyro is not 
always required, e.g. in land automotive vehicle an IFOG 
with the accuracy between 10 to 200 deg/hr is sufficient 
[8], and also regarding to the least requirements with the 
most flexibility in the design of IFOG, the improvement 
of this sensor becomes more sensible. 

2. Principle of Operation 

The principle of operation of an IFOG is based on the 
phenomenon that a circuital system has different optical 
path lengths in the two propagation directions when it 
rotates [9]. The difference between counter propagating 
beams provides the amount of the rotation. The main 
structure includes a laser diode, usually a super lumines-
cent diode (SLD) or Rare-earth doped fiber with im-
proved wavelength stability, a coupler to split light into 
clockwise and counterclockwise directions, a length of 
optical fiber wound on a coil as the rotation sensing loop, 
and a photo detector to convert optical information into 
electrical signals for further processing. Light source tem- 
perature is controlled by using a thermo electric cooler 
(TEC) and the detector is a PINFET module with a high 
sensitivity and hybrid trans-impedance amplifier. The type 
of the fiber optic and the way of winding specify the par- 
ticular category that IFOG belongs to, which suits it to 

the specific application of the sensor [10]. A complete 
IFOG has identical optical paths in the clockwise and 
counter clock wise. In this IFOG known as “minimum 
configuration”, a polarizer and second coupler are em- 
ployed [5,11].  

Optical signal is received by the detector after passing 
through the fiber coil and couplers and converted into the 
electric current. An electrical amplifier is connected to 
the detector to change the current to the appropriate vol- 
tage. The obtained voltage is, then, amplified and fed 
into the signal processing circuit to extract the angular 
rotation rate [5,12]. 

EF-FOG work by frequent utilize of sagnact loop, in 
this manner output signal re-inputted as feedback. It per-
forms like R-FOG but without high length coherence 
light source and never use the resonance effect. FE-FOG 
in comparison with Open-loop I-FOG has high sensibil-
ity and wide dynamic range. In this paper we compare 
the results of open loop and closed loop I-FOG.  

A light source with a coherence length much shorter 
than the coil length allows only the wave pairs that have 
circulated the same number of times in the loop to inter-
fere with each other and to produce an output related to 
the rotation-induced nonreciprocal phase shift. The re-
sultant optical response is essentially the sum of all the 
optical responses of a series of conventional Sagnac In-
terferometric fiber-optic gyroscopes with their effective 
loop length in multiples of a single coil’s length. The 
multiple-trip interference and the associated intensity 
summation produces a response resembling a resonance 
phenomenon, with the strength and sharpness of the 
resonance increasing with the number of interfering light 
waves. The proposed gyro has different from a resonant 
fiber-optic gyro (R-FOG) because it uses a low coherent 
light source. The low coherent source minimizes not only 
errors from Rayleigh back scattering, but also bias errors 
caused by the optical Kerr effect. This could not possibly 
be done in an R-FOG because of high coherent light 
source. 

If the modulation frequency of phase modulator in 
sagnact loop consists of whole loop time delay, the out-
put signal in IFOG will be in pulse shape; therefore, 
when rotation occurs in the system, the location of output 
peak pulse shifts by sagnact effect. Precision of meas-
urement depends on sharpness of the output pulses. 
Sharpness of output pulse is determined by the phase 
modulation depth and EFDA gain. 

Miniature fiber optic gyros have also been manufac-
tured with all solid-state optical devices for precise meas- 
urements of mechanical rotation based on the sagnac 
principle.  

Open-loop IFOG is a simple configuration of the 
IFOG. Closed-loop IFOG performs similar to the reso-
nance FOG (R-FOG), both based on Sagnac effect, al-
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though used for different tasks.  

3. Rotation Equation  

When the optical ring is rotated with a tangential velocity 
 , the beam rotating with the ring will have an optical 
path longer than the counter-rotating beam by a distance 

 given by [1]: L
4πR

L
c


                   (1) 

where, R is the ring radius and c is the speed of light in 
the vacuum. For a monochromatic light of wavelength 
 , this change in optical path length results in the 
Sagnac phase difference, which is given by Equation (2). 

22π 8π R
L

c


 

                (2) 

The phase difference between two beams, after pass- 
ing the ring with the area A and rotating with an angular 
velocity , generates a phase difference which is given 
by [1]: 



8πA

c





                   (3) 

It is important to note that, the resultant phase shift is 
independent of the medium and of the exact shape of the 
loop. This compliant property of the IFOG is an ad- 
vantage when it is required to design it to fit the volume 
constrains in the specific applications [1]. However, the 
resultant phase shift can be increased by additional loops 
(turns of fiber) i.e. if it is wound N turns of the fiber coil. 
The resultant phase shift becomes [13]: 

8πA N

c





                   (4) 

Alternatively, we can express the resultant phase shift 
in terms of coil diameter and fiber length by noting that: 

2π

4

D
A                   (5) 

And, 
πL N D                  (6) 

So, the Sagnac phase shift can be rewritten as:  

2πLD

c



                    (7) 

As one example in a typical IFOG (200 m coil length, 
10 cm-diameter coil) for measurement of the earth 
angular rotation (  = 15˚/h = 0.73 µr/s), the sensor 
detects a phase difference of   = 36 µr, correspond- 
ing to an optical path difference of the order of 10 - 12 m 
[2,13].  

Eventually the output signal for such configuration 
will be [2]: 

   0 1 cosI t I

in which, 0I  is the current obtained when the ring is at 
the rest. 

4. Open-Loop Configuration with Phase  
Modulation 

As mentioned above, the major problem of the basic 
configuration is the output nonlinearity for small phase 
shift, 0s   which hinders high sensitivity measure-
ments of the small rotation angles [14]. This limitation is 
overcome by transforming the base band cosine-depen- 
dence into a sinusoidal function [1,3]. Although for 
translating the output signal from base band to a carrier 
at angular frequency mod , different solutions have been 
proposed, but today optical phase modulation technique 
is commonly used. The typical setup of a practical IFOG 
in all-fiber technology has a phase modulator which is 
inserted in the fiber coil close to a coupler output so that 
the phase delays are cumulated by the counter propagat-
ing waves. In all-fiber IFOG, phase modulator is con-
structed by winding and cementing a few fiber turns on a 
short, hollow piezoceramic tube (PZT). By applying a 
modulating voltage to the PZT, a radial elastic stress and 
a consequent optical path length variation due to the 
elasto-optic effect are generated [14]. 

5. The Open-Loop IFOG Modulation  
Equation 

In this section, the modulation equations of extracting the 
phase shift are comprehensively described. In the con-
figuration described in the previous section, the clock-
wise (CW) and counterclockwise (CCW) propagating 
waves experience a phase delay  t  and  t  , 
respectively [15], where L v   is the radiation transi-
tion time in a fiber with an overall length . By apply-
ing a phase modulation at angular frequency 

L

mod  , the 
modulation equation will be [16]:  

    mod mod,0 mod mod,0 modcos cos 2πt t     f t   (9) 

Here, mod,0  is the amplitude of modulation signal, 
and modf  is the modulation frequency.  

Therefore, CW and CCW waves are modulated as 
phase shift by  mod t  and mod t   , respectively. 
So, the modulation phase shift difference is as follows:  

    mod mod modt t t               (10) 

Finally, the total phase shift in the output signal will 
be: 

   mod modtotal ccw cw t t                 (11) 

Now, the output signal will become: 

        0 mod 01 cos 1 cos totalI t I t I         

(12)                 (8) 
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Considering the fact that the SLD switched by 
1 2pf  , with the help of Equations (9), (11) the phase 

shift becomes [16]: 

   
  

mod mod,0 mod

mod,0 mod

cos 2π

                 cos 2π

t f

f t

   t

 

   

 
      (13) 

   mod mod,0 mod mod

mod mod
mod,0 mod

2 sin π sin 2π
2

π π
2 sin sin 2π

2 2p p

t f f

f f
f t

f f

t
   

 

        
 

   
         

   




 (14) 

Substituting the amplitude with Equation (15) as fol-
low [1]: 

mod
mod,0

π
2 sin

2MI
p

f

f
 

 
 

 
            (15) 

The output current of photodiode becomes: 

  mod
0 mod

π
1 cos sin 2π

2MI
p

f
I t I f t

f
 

  
             


(16) 

Or can be rewritten as: 

   

 

mod
0 mo

mod
mod

π
1 cos cos sin 2π

2

π
           sin sin sin 2π

2

MI
p

MI
p

f
I t I f t

f

f
f t

f

 

 

  
       

  
       

d








           

(17) 

Using the below Bessel equations:  

      0 2
1

cos sin 2 cos 2m
m

x s J x J x ms




     (18) 

     2 1
1

sin sin 2 sin 2 1m
m

x s J x m





  s      (19) 

Equation (17) can be rewritten in a way that one can 
easily extract the relevant harmonics [16]: 

     

   

 

0 0 2
1

mod
mod

2 1
1

mod
mod

( ) 1 cos 2

π
         cos 2 2π

2

         sin 2

π
         cos 2 1 2π

2

MI m MI
m

p

m MI
m

p

I t I J J

f
m f t

f

J

f
m f t

f

  

 











    



  
      

  

  
         





 (20) 

To have an optimum sensitivity, output power, photon 
noise, and signal to noise, MI is selected to be as [16] 

  1.85 radMI opt              (21) 

To simplify Equation (20), we consider fmod = fp [1,16]. 
Using this assumption and Equation (15), we will have: 

 mod,0 mod,02 0MI opt     .925        (22) 

The amplitude of the output signal at fmod, which gives 
the first harmonic of the output current, i.e. Equation (20) 
will be [2]: 

    mod
mod 1 0 1 mod,0

π
2 sin 2 sin

2 p

f
I f C I J

f
 

  
         

(23) 

    mod 1 0 1 mod,02 sin 2pI f f C I J         (24) 

Table 1 shows the four harmonics generated in the 
photodiode output current [2]: 

Now, we can calculate   by H1 with the below 
equation [2,16]: 

 
1

0 1

arcsin
2 MIi

H

CI J



 

   
 

       (25) 

  Could be also obtained with another approach 
using H1, H2, J1 and J2 [16]: 

 
 

1 2

2 1

arctan MI

MI

H J

H J





 

   
 

          (26) 

A comfort and reliable method is proposed here is to 
use H1, H2, H3 and H4 to calculate   with the help of 
the solution of Equation (27) and Table 1 [2,16]:  

     1 1

2
m m m

m
J x J x J x

x           (27) 

 
 

22

4 4

MI

MI

JH

H J




               (28) 

2
1 3

4
tan

MI

H
H H 


            (29) 

 
Table 1. Harmonics of the photodiode output current. Ci = 
C, i = 0, ···, 4. 

Amplitude frequency 

    0 0 0 01 cos MIH C I J     DC 

   1 1 0 12 sin MIH C I J     modf  

   2 2 0 22 cos MIH C I J    mod2 f  

   3 3 0 32 sin MIH C I J     mod3 f  

   4 4 0 42 cos MIH C I J    mod4 f  
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 
3

2 4

6 1

tanMI

H
H H

 
 


         (30) 

Owing to this, the Sagnac shift is obtained as Equation 
(31) which is the best suited for hardware implementa-
tion: 

 
 

3 1 3

2 2 4

3
arctan

2

H H H

H H H



 


         (31) 

6. Evaluation of Digital Filtering in an  
Open-Loop IFOG 

The simulation results of the abovementioned procedure 
show that, this approach can perfectly be employed in the 
signal processing part of IFOGs. To achieve the required 
harmonics, four digital filters are designed. These filters 
were designed by SPtool in Matlab 7a. Since the phase 
linearity of the filters was important, finite impulse re-
sponse (FIR) filters were taken into account to have the 
four required band pass filters. Regarding to the available 
data the beneath quantities are listed as input of the 
simulation:  

Input rotation rate = 10 deg/s (AHRS range); 
Coil length = 500 m; 
Coil diameter = 10 cm; 
Sampling frequency = 10 MHz; 
Time domain = 2 ms; 
Wave length = 1310 nm; 
Refractive index of optical fiber core = 1.43; 
Coil length transient time = (500/3e8) × 1.43. 
The coil frequency is obtained as  

 1 2 1 2 1.43 0.208 MHzL c   . As mentioned before,
this frequency is the PZT vibration and SLD switch fre-
quency, as well.  

 

Figure 1 shows the designed band pass filters with the 
same bandwidth (0.208 MHz) but different central fre-
quencies. In the filters in Figure 1, Fp and Fs are, pass 
band frequency and stop band frequency, respectively. 
Also, Rp and Rs are ripples in pass band and stop band.  

The filters are described as follows:  
1) Band pass filter: Gain = 1, central frequency = 

0.208 MHz; 
2) Band pass filter: Gain = 1, central frequency = 

0.416 MHz; 
3) Band pass filter: Gain = 1, central frequency = 

0.624 MHz; 
4) Band pass filter: Gain = 1, central frequency = 

0.832 MHz. 
To extract the four harmonics from the IFOG output 

current, the filters are implemented by considering the 
direct form structure. Figure 2 shows the amplitude of 
the filtered signals, H1 to H4. In the next step, rotation 
rate , is calculated using H1 to H4 with the help of 

Equations (7) and (31).  



The comparison of calculated  with the input rota-
tion rate, i.e. 10 deg/s showed one percent difference. 
This discrepancy caused from utilizing unsharp filters. 
As it has been experienced, we will reach to the better 
accuracy if higher order filters are considered. 



7. Closed-Loop EF-FOG Configuration and  
Operation 

In this structure the weak feedback signal is amplified by 
the Er-Doped Fiber Amplifier (EDFA) to prevent the 
laser scattering. Fiber amplifier is assumed to be linear, 
which means there are no gain effects. The output signal 
is the sum of interferometric CW and CCW beams in the 
total route. The modulator is located in sagnac loop. If 
the phase modulator frequency is selected properly, the 
output signal will be a series of short pulses [17]. Hence 
modulation frequency of phase modulator and route de-
lay must be approved by the equation 2 πm n    where 

m  is angular frequency of the phase modulation, and 
  is the time delay in whole round trip loop consisting 
of Sagnac loop and amplified fiber optic loop. If the 
sharpness of output pulses could not be adjusted by phase 
modulation, by changing EFDA gain it can be compen-
sated. If this equation 02 πm n     is not realized, for 
example due to detuning, there will be a phase shift 0  
that can be demodulated as an error signal for phase 
modulated (PM) technology. The operation of the FE- 
FOG is sensitive to the EDFA gain [18]. In theory the 
first intereferometric output signal without feedback is 
equal to ordinary IFOG as: 

    1 12 π 1 cos coss e mm n P t K v t           (32) 

where v is the interferometric coefficient and K1 is a pa-
rameter that expresses the loss resulting from the Sagnac 
loop and the couplers of the Sagnac interferometer, m  
is the modulation frequency, e  is the effective phase- 
modulation depth, which is expressed as 

2 sin πe m m sf              (33) 

s  is the wave-propagation time through the Sagnac 
loop (please note the difference with the total time round- 
trip delay t) and is expressed as s nL c   (where L is 
the length of Sagnac loop), and m  is the phase-modu- 
lation depth. s  is the Sagnac phase shift induced by 
rotational movement, which is expressed as Equation (7) 
in the previous section. 

By considering the effect of optical feedback, the sec-
ond-time interference signal experienced after the feed-
back has been derived is 

    
  

2
2 1 2 1 cos cos

             1 cos cos

s e m m

s e m

P t AK K v t

t

    

  

     

    
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(c) 

 

 
(d) 

Figure 1. Band pass filters for extracting four harmonics from the photocurrent IFOG signal. FIR filter design is taken into 
account as these filters have phase linearity. (a) Band pass filter (harmonic 1) Kaiser window FIR with order = 100, Fp1 = 
0.202 MHz, Fp2 = 0.21 MHz, Fs1 = 0.334MHz, Fs2 = 0.399 MHz, Rp = 0.3917, Rs = 39.45, Phase Delay = −0.255 rad; (b) Band 
pass filter (harmonic 2) Kaiser window FIR with order = 153, Fp1 = 0.4 MHz, Fp2 = 0.43 MHz Fs1 = 0.249 MHz, Fs2 = 0.587 
MHz, Rp = 0.3276, Rs = 40.97, Phase Delay = −1.159 rad; (c) Band pass filter (harmonic 3) Kaiser window FIR with order = 
162, Fp1 = 0.597 MHz, Fp2 = 0.653 MHz, Fs1 = 0.457 MHz, Fs2 = 0.802 MHz, Rp = 0.33, Rs = 40.29, Phase Delay = −0.361 rad; (d) 
Band pass filter (harmonic 4) Kaiser window FIR with order = 148, Fp1 = 0.802MHz, Fp2 = 0.849MHz, Fs1 = 0.650 MHz, Fs2 = 
1.71MHz, Rp = 0.32, Rs = 40.25, Phase Delay = −0.612 rad. 
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(c) 

 

 
(d) 

Figure 2. Signal harmonic extracted from FIR filtering. (a) Harmonic 1 filtered signal, Amplitude = 0.28 mV; (b) Harmonic 2 
filtered signal, Amplitude = 0.125 mV; (c) Harmonic 3 filtered signal, Amplitude = 0.03 mV; (d) Harmonic 4 filtered signal, 
Amplitude = 0.008 mV. 
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and the third-time interference signal that occurs after 
feedback has been twice derived is  

      
  
  

22 3 2
3 1 2 1 cos cos 2

             1 cos cos

             1 cos cos

s e m m

s e m m

s e m

P t A K K v t

v t

v t

    

    

  

     

     

    

 

(35) 

where A is the gain of the fiber amplifier and K2 is a pa-
rameter that depends on the coupling ratio of the feed-
back couplers and the transmission loss in the feedback 
loop. For simplicity, we assume that 1 2K K K   . The 
total output at the photodetector is the summation of the 
number of above-mentioned interferences and is ex-
pressed as 

       1 2 3totalP t P t P t P t          (36) 

If 2 πm n   , the total photodetector output can be 
realized by proper adjustment of the modulation fre-
quency to match the round-trip time, and we can have  

 
 
 




1 cos cos

1 1 cos

s e m

total

s e m

K v t
P t

AK

  

  

   
     t

,

     (37) 

where K is the photodetector coefficient, because the 
total output is a series of short pulses, we can determine 
the peak value through the following equation: 

 
 

 

0

sin cos 0

cos 2 π, 0,1,2,3

total

s e m

s e m

P t

Kv t

t n n

  

  

 

   
    

   (38) 

Above Equation is a condition required to find the 
peak position of the output pulse that is valid for both 
cases of rotation and nonrotation, please note that only 
those equations of even p correspond to the peak position. 
From this equation and condition we can see that the 
output pulse shifts if rotation occurs.  

For Open-Loop Method for the FE-FOG In Equation 
(33) if e  is selected to be between 0 2πe   and 

0s   there is no rotation, Equation (33) is satisfied 
only when n = 0. In this case, the peak positions of the 
output pulse are determined through the following equa-
tion: 

0

2 1
π, 0,1,2,

2m

i
t i 
            (39) 

Here 0  represents the peak positions corresponding 
to the nonrotation case and i denotes the peak number of 
the output pulse in the time axis. We see that the peak 
positions are not affected by the phase-modulation depth 

t

e  when there is no rotation. On the other hand, when 

rotation occurs ( 0s  ) the peak positions are affected 
by the Sagnac phase shift and can be determined by 

arccosm r 2 π, 0,1, 2,s

e

t i i




 

   
 

    (40) 

where r  denotes the peak positions when rotation oc-
curs and i has the same meaning as in Equation (39) 
Comparing Equations (39) and (40), we see that the peak 
positions shift if rotation occurs, and the shift of the 
peaks is just equal to 0r

t

t t t   . Therefore, the peak 
positions are in fenced by only the Sagnac phase shift if 
rotation occurs and if we fix the phase-modulation depth 

e . We can thus determine the rotation rate by the detec-
tion of the peak shift t  of the output pulse. 

In this paper the wave-length of optical source is 

0 1.5 μm  , the modulation frequency of the phase 
modulator, 0.209790 MHzmf   ( m2πm f  

rad

), and 
the radius of the Sagnac loop is R = 0.05 m. The 
round-trip length is 500 m, which is selected to match the 
modulation frequency for the pulse output, of which the 
Sagnac-loop length is 460 m and the length of the EDFA 
(including the pigtail of couplers) is 40 m. The interfer- 
ometric coefficient is v = 0.96, the photodetection coeffi- 
cient is K = 0.2, the parameter K = 0.06, the effective 
phase-modulation depth is e 0.6  , and the Sagnac 
phase shift is  for the nonrotation case. 0s 

Figure 3 demonstrates the principle of the rotation 
measurement for the open-loop method when the output 
pulse is shifted by rotation. The plots are normalized and 

0.18 rade  . We see that the peak position shifts if ro-
tation occurs, phase shift 0˚/h and 3.6˚/h. Further calcula-
tions show that the shift is increased as the rotation rate 
increases. The very sharp peak of the output pulse can 
result in a high-resolution rotation measurement. From 
Equations (7) and (38)-(40) (in Equation (39), i = 0, 2, 4), 
we can derive the rotation rate as: 
 

 

Figure 3. Rotation measurement for open-loop IFOG. 
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0
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0

cos
4π

sin
4π

e m m

e m

c
t t

RL
c

t
RL


  


 

    

 
      (41) 

where  is the time shift of the output peak as a result 
of the rotation, In Closed-Loop Method for the FE-FOG, 
we selected e

t

  with a condition of 2π 4πe  . In 
such a case the output pulse is shifted by only the rota-
tion. In this section, we hope to show that the output 
pulse is affected by both rotation and phase modulation, 
so that we can use the phase modulation to compensate 
the Sagnac phase shift. Such a technical idea is consistent 
with the closed-loop method. 

In Equation (38), if we assume that 0s   (nonrota-
tion) and we select 2π 4πe  , e.g., 2.2πe  , then 
Equation (38), can be satisfied by n = 1, n = 0, and n = 
−1, which means that the output pulse has three kinds of 
peaks. The peaks corresponding to n = 0 have the same 
properties as do those of the open-loop method and will 
not be affected by the phase modulation; however, the 
peaks corresponding to n = 1 or n = −1 will be in fenced 
by both the Sagnac phase shift and the phase-modulation 
depth. This performance can be used for the rotation 
measurement.  

Figure 4 shows that the output pulses related to 
0.2πe 
2.2πe

 is simple, but, the output pulses related to 
   are complicated and consist of three kinds of  

peaks designated A, B, and C. (Note: if we select e  to 
be greater than , even more output peaks will appear, 
because in Equation (38) n also includes integers over. 
This case can also be analyzed similarly). The peak posi-
tions for A, B, and C are determined by n = 1, 0, −1, re-
spectively, in Equation (38). In this paper, we look at the 
peak positions corresponding to peaks A (peaks C also 
have similar properties). In one time period, peaks A also 
consist of two additional peaks, marked with circles and 
squares, whose positions are determined by  

4π

 
 

arccos 2π 2 π

2π arccos(2π ) 2 π 0,1,2,

m A e

m A e

t n

t n n

 

 

 

    
 (42) 

N = 0, 1, 2, ··· respectively. If the Sagnac phase shift 
induced by rotation is canceled by the phase modulation 
of the phase modulator, the peak positions corresponding 
to peaks A will not shift in spite of rotation’s occurring. 
To realize this phase compensation we can feed back an 
electrical signal at the phase modulator. The rotation rate 
can thus be evaluated through the value of the phase 
modulation. Further calculations also show that, although 
in the closed-loop case (when both rotation and feedback 
control of e  occur) peaks B and C are shifted, they 
cannot cross with peaks A. This is because, for in any 
case, the peak positions of peaks A, B, and C are deter-
mined from Equation (38) with n = 1, 0, −1, respectively, 
and they always have different values. The above result 

 

 

Figure 4. show the comparison of the output pulses for different phase modulations when one value of e , 0 2e    and 

2 4e    . The plots are normalized. 
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lls us that dynamic range is 

ore detailed mathematical description is presented 
in

te  in the closed-loop case the 
large. 

A m
 the following paragraphs. We first consider the case of 

nonrotation ( 0s  , for which the peak positions corre-
sponding to p  can be determined by  

 0 cos 2πe m At        

eaks A

      (43) 

where is the phase-modulation dep

     (44) 

and from Equations (43) and (44) we can further derive 

0e  
onr

th corresponding 
to the n otation case. On the other hand, when rotation 
occurs and if the electrical-feedback signal is placed on 
the phase modulator, the peak positions corresponding to 
peaks A will not change, and we then have 

   02π cos ,s e e m At          

 
0

cos 2π ,ets e m A
e


  


           (45) 

We can evaluate the rotation rate by detecting e . 
dulaFigure 5 shows the variation of the phase-mo tion 

depth e  as a function of the rotation rate for the closed 
loop. Fi re 5(a) shows the output pulse when the rota- 
tion doesn’t exist 0

gu
   and 0 2.2πe e    and Fig- 

ure 5(b) shows th put pu e without 
electric feedback signal in phase modulator Ω = 3.65˚/h 
and 0 2.2πe e

e out lse when rotat

    therefore when rotation occur out-
put pul n see the peak that shifted by 
rotation could back to the first position that e

ses shifted. We ca
  shows 

the variation of phase modulation induced electric  by 
 

 
(a) 

 

 
(b) 

Figure 5. (a) Output pulse when the rotation doesn’t exist 0  and    0 2 2. e e  ; (b) output pulse when rotate without 

electric feedback signal in phase modulator Ω = 3.65˚/h and 0 2 2.e e  . 
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feedback, that means the rotation rate of Ω = 3.65˚/h 
needs the phase compensation  

1.63508262092E 5e    . 

8. Conclusions 

prehensive formulation of open loop

 o
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