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Abstract 
A crowdsourcing experiment in which viewers (the “crowd”) of a British 
Broadcasting Corporation (BBC) television show submitted estimates of the 
number of coins in a tumbler was shown in an antecedent paper (Part 1) to 

follow a log-normal distribution ( )2,m sΛ . The coin-estimation experiment 

is an archetype of a broad class of image analysis and object counting prob-
lems suitable for solution by crowdsourcing. The objective of the current pa-
per (Part 2) is to determine the location and scale parameters ( ),m s  of 

( )2,m sΛ  by both Bayesian and maximum likelihood (ML) methods and to 

compare the results. One outcome of the analysis is the resolution, by means 
of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is 
shown that Bayesian and ML analyses lead to the same expression for the lo-
cation parameter, but different expressions for the scale parameter, which 
become identical in the limit of an infinite sample size. A second outcome of 
the analysis concerns use of the sample mean as the measure of information 
of the crowd in applications where the distribution of responses is not sought 
or known. In the coin-estimation experiment, the sample mean was found to 

differ widely from the mean number of coins calculated from ( )2,m sΛ . This 

discordance raises critical questions concerning whether, and under what 
conditions, the sample mean provides a reliable measure of the information 
of the crowd. This paper resolves that problem by use of the principle of 
maximum entropy (PME). The PME yields a set of equations for finding the 
most probable distribution consistent with given prior information and only 
that information. If there is no solution to the PME equations for a specified 
sample mean and sample variance, then the sample mean is an unreliable sta-
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tistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 to-
gether demonstrate that the information content of crowdsourcing resides in 
the distribution of responses (very often log-normal in form), which can be 
obtained empirically or by appropriate modeling.  
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1. Introduction 

In a previous paper [1] to be designated Part 1, the author described a crowd-
sourcing experiment, implemented in collaboration with a British Broadcasting 
Corporation (BBC) television show, to solve a quantitative problem involving 
image analysis and object counting. The objective of the experiment was two-
fold: 1) to compare the true solution with the solution obtained by sampling the 
estimates submitted by a large number of participating BBC viewers (the 
“crowd”), and 2) to find the statistical distribution of the individual responses 
from the crowd. 

The present paper, to be designated Part 2, extends the statistical analysis of 
crowdsourcing further. Whereas Part 1 was concerned primarily with the iden-
tity and universality of the distribution of crowd responses, Part 2 investigates 
the parameters by which this distribution is defined and discusses the procedure 
to be employed when the distribution of crowd responses is not known. 

1.1. Estimation of Distribution Parameters 

In contrast to impressions fostered by popularized accounts of crowdsourcing 
[2], whereby the “wisdom” of a crowd is represented by a single statistic such as 
the sample mean, the information provided by a crowdsourced sample is con-
tained in the distribution of responses [1]. Knowledge of this distribution per-
mits the analyst to calculate, theoretically or numerically, all desired statistics 
and their associated uncertainties and correlations. Moreover, the mathematical 
expression for the distribution, as given by the probability density function 
(PDF) or the cumulative distribution function (CDF), permits the analyst to de-
duce the population statistics of an arbitrarily large sample, which can differ sig-
nificantly from the sample statistics of a practically attainable crowd. 

Part 1 focused primarily on identifying, and demonstrating the universality of, 
the distribution of crowdsourced responses to a large class of quantitative prob-
lems. This class includes problems whose solutions are representable by a com-
posite random variable (RV), i.e. a variable expressible as a product (or sum of 
products) of other random variables. Statistical analysis of the crowdsourced 
responses was shown to follow a log-normal distribution. More generally, theo-
retical analysis and Monte Carlo simulation (MCS) demonstrated that, for a 
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sufficiently large sample size, the distribution of any composite RV comprising 
factor variables of low relative uncertainty is log-normal to an excellent ap-
proximation. (Relative uncertainty is defined by the ratio of standard deviation 
to mean.) If the factor variables are themselves independent and log-normal, 
then the composite variable is rigorously (not approximately) log-normal itself. 

The present article is concerned with estimation of the parameters that define 
the log-normal distribution. In general, statistical estimation can be classified 
into two methodologies: maximum likelihood and Bayesian [3]. Each method 
has its perceived advantages and disadvantages, which have been discussed at 
great length—and sometimes quite heatedly—in the statistical literature; see, for 
example, [4] [5] [6] [7]. As an atomic and nuclear physicist whose researches or-
dinarily involve probability and uncertainty [8], the author has used both me-
thods, depending on the specific problem at hand.  

The method of maximum likelihood (ML) is the simpler and easier to use; it 
was the method employed in Part 1 to extract information from both the 
crowdsourced sample and much larger MCS sample. The crux of the method, 
elaborated in the following section, is to compose from the data and known PDF 
a conditional probability density referred to as the likelihood function, and to 
solve for the parameters that maximize this function. The ML method is most 
successful when the likelihood function is unimodal and sharply peaked.  

The Bayesian method is more complicated for several reasons. First, in gener-
al, it requires the analyst to assess the probability of the sought-for parameters 
prior to any experimental information about them. This prior probability func-
tion is referred to simply as “the prior”. Much of the past debate over Bayesian 
methods centered on the alleged subjectivity of the prior. Subsequent research, 
rooted in mathematical group theory (i.e. theory of invariants) has established a 
rigorous procedure for finding an objective prior for most well-behaved PDFs; 
see Ref [4], pp. 378-396.  

The second complication to the Bayesian method, as applied in the present 
case, is that the distributions relevant to crowdsourcing (normal and log-normal) 
are defined by two parameters: a location parameter m and a scale parameter s. 
The crux of the Bayesian method, as elaborated in the following section, is to 
integrate over the likelihood and prior so as to obtain a posterior probability 
function (more simply referred to as “the posterior”) from which the statistics 
of the parameters can be calculated. However, for a two-parameter distribution 
there are two non-equivalent priors that may apply, depending on whether the 
analyst is interested in estimating only one or both of the parameters.  

Despite the preceding complications, Bayesian methods afford a standardized 
procedure for incorporating new data by which to progressively update the 
posterior probability. 

1.2. Organization 

The remainder of this paper is organized in the following way. 
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Section 2 derives the likelihood function and estimation relations for a RV 
described by a log-normal distribution. Section 3 elaborates on the question of 
dual priors and derives the corresponding posterior probability densities for a 
log-normal RV. Section 4 applies the ML and Bayesian methods of parameter es-
timation to the image analysis and object counting problem of Part 1. Section 5 
examines the problem of parameter estimation when the distribution of res-
ponses by the crowd is not known, and addresses the question of reliability when 
two different statistical methods yield significantly different results. Section 6 
concludes the paper with a summary of principal findings. 

As a matter of statistical terminology, the samples of a random variable are 
referred to as variates. In keeping with standard statistical notation, a random 
variable will be denoted by an upper-case letter (e.g. Z), and its variates will be 
denoted by a corresponding lower-case letter (e.g. z).  

2. Maximum Likelihood Estimate of Log-Normal Parameters 

A random variable Z is log-normal, as symbolized by 

( )2,Z m s= Λ ,                          (1) 

if the variable Y, defined and symbolized by 

( ) ( )2ln ,Y Z N m s= = ,                       (2) 

is described by a normal (also called Gaussian) distribution. Reciprocally, one 
can express Z in the form 

( )expZ Y= .                            (3) 

The parameters m and s in Equations (1) and (2) are respectively the mean 
and standard deviation of the normal RV Y whose PDF takes the familiar form 

( ) ( )( )2 21, exp 2
2Yp y m s y m s

s
= − −

π
.                (4) 

The PDF of the original log-normal variable Z, derived in Part 1 from Equa-
tion (2), is 

( ) ( )( )( )2 21, exp ln 2
2Zp z m s z m s

sz
= − −

π
.             (5) 

The qth statistical moment of Z for 0,1,2,q =  , derived in Part 1, is given by 

2 21exp
2

qZ qm q s = + 
 

,                     (6) 

from which the mean Zm  and variance 2
Zs  directly follow 

21exp
2Zm Z m s = = + 

 
,                     (7) 

( ) ( ) ( )( )22 2 2 2exp 2 exp 2 expZs Z Z m s s= − = − .            (8) 

Given the set of variates { }kz , 1, ,k n=  , obtained, for example, as solu-
tions to a problem by crowdsourcing or by MCS in which the sought-for quan-
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tity Z is taken to be log-normal, the likelihood function { }( ),kL z m s  is defined 
to be 

{ }( ) ( )
1

, ,
n

k Z k
k

L z m s p z m s
=

=∏ ,                    (9) 

where the factors on the right side are evaluations of PDF (5). Equation (9) 
quantifies the conditional probability of the data, given the distribution parame-
ters m, s.  

Since the extremum of a function and of its logarithm occur at the same point, 
it is more convenient to find the maximum of the log-likelihood 

{ }( ) ( ) ( )( )
11

, ln , ln ,
n n

k Z k Z k
kk

z m s p z m s p z m s
==

 = = 
 

∑∏L ,       (10) 

which, upon substitution of Equation (5), takes the form 

{ }( ) ( ) ( )( ) ( ) ( )2 2

1 1
, ln ln 2 ln ln 2

2

n n

k k k
k k

nz m s n s m z s z
= =

 = − − − − − π 
∑ ∑L . (11) 

The last two terms of Equation (11) are independent of the parameters and 
could have been omitted. Solution of the maximization equations 

( )( )2

1
ln 0

n

k
k

s m z
m

−

=

∂
= − − =

∂ ∑L
,                  (12) 

( )( )21 3

1
ln 0

n

k
k

ns s m z
s

− −

=

∂
= − + − =

∂ ∑L
,               (13) 

leads to the ML parameters 

( )1 1

1 1
ˆ ln

n n

k k
k k

m n y n z− −

= =

= =∑ ∑ ,                   (14) 

( ) ( )( )222 1 1

1 1
ˆ ˆ ˆln

n n

k k
k k

s n y m n z m− −

= =

= − = −∑ ∑ ,             (15) 

in which the ML solution m̂  was substituted for the variable m in Equation 
(13). 

It is to be noted for use later that (a) the first equality of Equation (14) is pre-
cisely the form of the sample mean of Y for a sample of size n, and (b) the first 
equality of Equation (15) differs from the unbiased sample variance of Y for 
which the normalizing factor of a sample of size n is ( ) 11n −− , rather than 1n−  
[9]. For sufficiently large n, the distinction between the ML variance and un-
biased sample variance is insignificant and will be disregarded in this paper1. 

The variance and correlation of the ML parameters are elements of a 
2-dimensional correlation matrix C obtained from the Hessian matrix H  (i.e. 
matrix of second derivatives) according to [8] [10] 

1C −= −H ,                          (16) 

 

 

1The term “unbiased” means that the expectation value of the sample variance equals the theoretical 
population variance. This is not the case for the ML variance. A heuristic justification for the factor 

( ) 11n −
−  is that there can be no variance for a sample of size 1, and thus the unbiased variance 

should become indeterminate. 
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in which 
2 2

2

2 2

2

m sm

s m s

 ∂ ∂
 ∂ ∂∂ =
 ∂ ∂
 
∂ ∂ ∂ 

L L

L L
H .                     (17) 

Upon differentiation of Equations (12) and (13) and use of Equations (14) and 
(15), the coherence matrix (16) reduces to 

2 2

2 2

ˆ 0
ˆ0 2

m ms

ms s

s n
C

s n
σ ρ
ρ σ

   
= =   

  
.               (18) 

One sees, therefore, that the ML parameters m̂  and ŝ  are uncorrelated and 
that the standard error (i.e. standard deviation of the mean) of each is inversely 
proportional to the square root of the sample size, as expected.  

3. Bayesian Estimate of Log-Normal Parameters 
3.1. Bayesian Posterior for a Two-Dimensional Parameter Space 

Although past uses of Bayes’ theorem for estimation and prediction were at 
times controversial, the theorem itself is a fundamental part of the principles of 
statistics. Succinctly expressed in terms of hypotheses (H) and data (D), Bayes’ 
theorem takes a simple form 

( ) ( ) ( )
( )

P D H P H
P H D

P D
= ,                  (19) 

where ( )P H  is the prior, ( )P D H  is the likelihood, and ( )P H D  is the 
posterior; the denominator ( )P D  is a normalization constant to be calculated, 
when needed, by summing or integrating over the full range of the numerator. 

Applying Equation (19) in detail to the set of log-normal variates of Section 2 
leads to the posterior probability 

( )
( ) { }( ) ( )

( ) { }( ) ( ) ( )

( )
( ) { }( ) ( ) ( )

22
2

22

, ,
,

, , d d

n
kn

k n
k

p z m s m s
p m s z

p z m s m s m s

π

π
=
∫∫

,       (20) 

in which ( ) ( )2 ,m sπ  is the prior probability of parameters m, s and the likelihood 
function is given by Equations (9) and (5). The subscript (2) in Equation (20) 
signifies that the parameter space is 2-dimensional; the superscript (n) marks the 
total sample size with variates denoted individually by 1, ,k n=  . The range of 
m extends from −∞  to ∞ ; the range of s extends from 0 to ∞ . These ranges 
hold throughout the entire paper and will, therefore, be omitted from display so 
that equations will appear less cluttered. 

The denominator in Equation (20) is an integral over a log-normal PDF, 
which is difficult to perform as such. However, since the posterior in Equation 
(20) is a conditional probability density for the parameters and not for the va-
riates, a major simplification can be achieved by applying Bayes’ theorem to the 
associated normal variable Y, Equation (2). The expression for the posterior then 
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takes the form 

( )
( ) { }( ) ( )

( ) { }( ) ( ) ( )

( )
( ) { }( ) ( ) ( )

22
2

22

, ,
,

, , d d

n
kn

k n
k

p y m s m s
p m s y

p y m s m s m s

π

π
=
∫∫

,         (21) 

where the likelihood function (the numerator of (21)) is now taken to be 

{ }( ) ( )
1

, ,
n

k Y k
k

L y m s p y m s
=

=∏ ,                 (22) 

instead of Equation (9), and the set of variates { }ky  is obtained from Equation 
(2) 

( )lnk ky z= ,                          (23) 

for 1, ,k n=  . The integral in the denominator of Equation (21) now involves 
the Gaussian density (4), instead of the log-normal density (5). Actually, had the 
calculation proceeded as originally formulated in Equation (20), a transforma-
tion of integration variable would have resulted in an expression equivalent to  

Equation (21). The product 
1

n

k
k

z
=
∏  in the denominator of the log-normal  

likelihood (see Equations (5) and (9)) would have canceled from both numerator 
and denominator of Equation (20) since it is not a function of the integration 
variables m, s. In view of the equivalence of posteriors (20) and (21), the same 
symbol ( )

( )
2
np  is retained. 

To evaluate the right side of Equation (21), one must have an appropriate ex-
pression for the prior ( ),m sπ . A general rule for determining the prior proba-
bility in a large class of estimation problems was developed by Jeffreys [11] based 
on the requirement that it be invariant under certain transformations of the pa-
rameters. Applied to the 2-dimensional parameter space of the normal distribu-
tion (4), Jeffreys’ rule takes the form 

( ) ( )( ), det ,m s M m sπ ∝ ,                   (24) 

in which ( )( )det ,M m s  is the determinant of the Hessian matrix 

( ) ( ) ( )
2 2

2 2, , dmm ms
Y Y m m

s ssm ss

M m s p y m s p y m s y′ ′
′=
′′ ′ =

 ∂ ∂
′ ′=  

∂ ∂ 
∫ ,      (25) 

where the differential operators ( )2 2
uv u v∂ ≡ ∂ ∂ ∂  act on the integral to the right. 

Substitution of Equation (4) into Equation (25) results in the matrix 

( )
( )

( )

12

12

4 0
,

0 2

s
M m s

s

−

−

 
 =   
 

.                 (26) 

Evaluation of the determinant in Equation (24) then yields the prior 

( ) ( ) 2
2 ,m s sπ −∝ .                       (27) 

Constant factors in Equation (26) are unimportant since they cancel from the 
expression (21) for the posterior, and one can replace the proportionality in (27) 
with an equality. 
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Substitution of prior (27) into Equation (21) leads to the posterior probability 
density 

( )
( ) { }( )

( ) ( )
( ) ( )

21 2 2
2

2 1 2 2

exp
2,

2 2

n n

n
k n n

nn S m Y S
sp m s y

n s

+

− +

  − − +    =
π Γ

,       (28) 

in which 

( )1 1

1 1
ln

n n

k k
k k

Y n y n z− −

= =

= =∑ ∑ ,                  (29) 

( )22 1 2 1

1 1
ln

n n

k k
k k

Y n y n z− −

= =

= =∑ ∑ ,                (30) 

2 2 2S Y Y= − ,                        (31) 

and  

( ) 1
0

e dx ux u u
∞ − −Γ = ∫                      (32) 

is the gamma function. 
Since the set of variates { }ky  obtained by sampling the crowd enters Equa-

tion (28) in the form of two statistics, a sample mean (29) and sample variance 
(31), the posterior probability function will be designated ( )

( ) ( )2 , ,np m s Y S  in the 
remainder of the article. 

3.2. Confidence Intervals and Expectation Values 

Plots of solutions to the equation ( )
( ) ( )2 , ,np m s Y S c=  for different values of the 

conditional probability c and sample size n form contours analogous to equipo-
tential lines in electrostatics. Viewed as a topographical map, the peak—or point 
of highest probability density—provides a graphical means of estimating the best 
set of parameters ( ),m s   to be inferred from the sample statistics Y , S. This is 
the Bayesian counterpart to the ML procedure of maximizing the likelihood 
function analytically.  

Figure 1 illustrates this point for sample sizes n = 10, 100, 1000, 4000, given 
hypothetical sample statistics 5Y = , 1S =  chosen for the convenience of vis-
ual display. Values of m and s for contours of fixed c for sample size n = 10 vary 
widely along each contour. For sample size n = 1000, however, the contours for 
the same values c are tightly compressed and encompass a maximum at or near 
the point ( ) ( ), 5,1m s =  . For n = 4000, the single black contour c = 15 encircles 
the presumptive maximum point even more tightly. In the limit of arbitrarily 
large n, the uncertainty in location of the point of maximum probability density 
in parameter space will be arbitrarily small. (Note that ( )

( )
2
np  is a probability 

density, not a probability, and can take values greater than unity). 
Numerical estimates of the parameters m, s, are obtained from PDF (28) by 

calculating the expectation values 

( )
( ) ( ) ( )

( ) ( )2 2, , d d , dn n
mm mp m s Y S s m mp m Y S m Y= = =∫∫ ∫ ,        (33) 

https://doi.org/10.4236/ojs.2019.95038


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2019.95038 579 Open Journal of Statistics 
 

 

Figure 1. Contours of the posterior ( )
( ) ( )10
2 ,p m s c=  for constants c = 0.2 (red), 0.4 

(blue), 0.6 (green), 0.8 (yellow), 1.0 (violet), 1.2 (orange), 1.4 (black). Contours of  

( )
( ) ( )100
2 ,p m s c=  are shown in green for the same values of c. Contours of  

( )
( ) ( )1000
2 ,p m s c=  are shown as variants of the foregoing colors for the same values of c. 

The greater the sample size n, the more compressed the contours. The central black con-
tour surrounding point (5.0, 1.0) is c = 15 for n = 4000. 
 

( )
( ) ( ) ( )

( ) ( ) ( )( )
( )2 2

1 2
, , d d , d

2 2
n n

s

n ns sp m s Y S m s sp m Y S s S
n

Γ −
= = =

Γ∫∫ ∫ ,  (34) 

where the second equality in Equations (33) and (34) defines the marginal 
probability densities for m and s respectively, as indicated by subscripts (2m) 
and (2s) 

( )
( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )
2 2 1

2 22

1 2
, , , d

2

n
n n
m n

S n
p m Y S p m s Y S s

n m Y S
+ 

 
 

Γ +
= =

 πΓ − +  

∫ ,  (35) 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 2 2

2 2
1 12

exp 2
, , , d

2 2

n n
n n
s n

n

n S nS s
p s Y S p m s Y S m

n s
− +

−
= =

Γ
∫ .     (36) 

From Equations (33), (29), and (14), it is seen that the Bayesian mean m  is 
identical to the maximum likelihood m̂ . However, the two estimates of s given 
by Equations (34) and (15) differ, since expansion of Equation (15) yields 

( )( ) ( )2 22 1 1 2 2 2 2

1 1
ˆ ˆ ˆln ln

n n

k k
k k

s n m z n z m Y Y S− −

= =

 = − = − = − = 
 

∑ ∑ .    (37) 

In the limit of an infinite sample size, the numerical coefficient of S in Equa-
tion (34) reduces to 

( )( )
( )

1 2
lim 1

2 2n

n n
n→∞

 Γ −
=  Γ 

,                   (38) 

in which case the Bayesian and ML scale parameters become identical. For finite 
sample sizes, a series expansion of the coefficient yields the Bayesian scale para-
meter to 4th order in 1n− , 
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1 2 3 43 25 105 16591
4 32 128 2048

s n n n n S− − − − = + + + + 
 

             (39) 

in comparison with the ML scale parameter ŝ S= . 
Figure 2 and Figure 3 respectively show plots of the marginal densities (35) 

and (36) conditioned on sample statistics 5Y = , 1S =  for different values of 
sample size n. As n increases, density (35) (solid curves) in Figure 2 peaks 
sharply about the location m . (The dashed curves will be discussed in Section 
3.3.) The functional form of ( )

( ) ( )2 ,np m Y S , which corresponds to a Cauchy dis-
tribution [12] for n = 1, approaches the PDF of a Gaussian distribution as n in-
creases. Similarly, density (36) in Figure 3 is highly skewed to the right for low 
n, but approaches the PDF of a Gaussian distribution narrowly centered on s  
as n increases. The functional form of (36) for arbitrary sample size can be cast 
into the PDF of a gamma distribution by the change of variable 2sλ −= .  
 

 

Figure 2. Marginal probability density of location parameter ( )
( ) ( )2 ,np m Y S  (solid 

curves) and ( )
( ) ( )1 ,np m Y S  (dashed curves) for sample sizes n = 4 (red), 10 (dark blue), 40 

(green), 100 (light blue), 200 (violet). The marginal densities are conditioned on data 
5Y = , 1S = . 

 

 

Figure 3. Marginal probability density of scale parameter ( )
( ) ( )2 ,np s Y S  for the same 

sample sizes and color-coding as in Figure 3. 
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The uncertainties in Bayesian estimates, 2m∆  and 2s∆ , which can be com-
pared with the ML uncertainties derived from the correlation matrix (18), are 
obtained again as expectation values of the marginal density functions (35) and 
(36) as follows 

( ) ( )
( ) ( )

2
22

2 , d
2

n
m

Sm m m p m Y S m
n

∆ ≡ − =
−∫ ,            (40) 

( ) ( )
( ) ( ) ( )( )

( )

2
22 2

2 2

1 21, d
2 2 2

n
s

n
s s s p s Y S s nS

n n

 Γ −
 ∆ ≡ − = −

− Γ 
∫ .      (41) 

In the limit of infinite sample size, Equations (40) and (41) respectively reduce 
to 

( )
2

2 2

Bayes ML
lim mn

Sm
n

σ
→∞

∆ = = ,                 (42) 

( )
2

2 2

Bayes ML
lim

2 sn

Ss
n

σ
→∞

∆ = = ,                  (43) 

which again shows large-sample agreement between Bayesian and maximum 
likelihood statistics. For finite sample sizes, series expansion of the Bayesian un-
certainty (41) to 4th order in 1n−  yields 

2
2 1 2 315 83 16051

4 8 64 2
Ss n n n

n
− − − ∆ = + + + 

 
.             (44) 

As expected on the basis of the Central Limit Theorem [13], the PDFs of the 
marginal distributions (35) and (36) reduce to the following Gaussian forms for 
large n 

( )
( ) ( ) ( )( )

( )
( ) ( )( )

21 2
2 2

2 2

2

1, exp 2
2

1 exp 2
2

n
mm

m

p m Y S m Y

m Y S n
S n

σ
σ

→ − −
π

= − −
π



,       (45) 

( )
( ) ( ) ( )( )

( )
( ) ( )( )

21 2
2 2

2 2

2

1, exp 2
2

1 exp
2 2

n
ss

s

p s Y S s S

s S S n
S n

σ
σ

→ − −
π

= − −
π



,        (46) 

signifying that ( )2,m N Y S n  and ( )2, 2s N S S n  in the large-sample 
approximation. 

A summary of the means and variances of the log-normal parameters ob-
tained by both ML and Bayesian methods is given in Table 1.  

3.3. Bayesian Posterior for a One-Dimensional Parameter Space 

The log-normal distribution ( )2,m sΛ , as demonstrated in Part 1, describes the 
distribution of crowdsourced estimates { }kz  of the solution Z to a quantitative 
problem involving products of random variables. Both parameters (m, s) are  
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Table 1. Comparison of maximum likelihood and Bayesian estimates of parameters (m, s).  

Statistic 
Maximum Likelihood Bayesian Expectation Values 

Symbol Value Symbol Value Limit n →∞  

location m m̂  Y  ( )

( )

2

n
m m=  Y   

scale s ŝ  2 2S Y Y≡ −  ( )

( )

2

n
s s=  ( )( )

( )

1
2 1 2

2 2
nn S

n
Γ − 

  Γ 
 S 

( )var m  2ˆmσ  2S n  ( )
( )

( )22

2

n

m m m∆ = −  
2

2
S

n −
 2S n  

( )var s  2ˆ sσ  2 2S n  ( )
( )

( )22

2

n

s s s∆ = −  
( )( )
( )

2

2
2

1 2
2 2 2

n nn S
n n

 Γ −
 −

− Γ 
 2 2S n  

Sample Statistics: ( )
1

1 ln
n

k
k

Y z
n =

= ∑  ( )22

1

1 ln
n

k
k

Y z
n =

= ∑  

 
needed to determine the population statistics of Z, as shown explicitly by Equa-
tion (6). It is to be recalled, however, that m and s are respectively the mean and 
standard deviation of a normal random variable ( ) ( )2ln ,Y Z N m s≡ = . For the 
purposes of this paper and its antecedent, which is to extract information from 
sampling or simulating the responses of a crowd, Z is the quantity of interest, 
and Y is merely an intermediary for obtaining the parameters m and s.  

Under other circumstances, however, an analyst may be interested in the 
normal variable Y, but desire only to know its mean value, i.e. the location pa-
rameter m and its distribution. In such a case, it may seem reasonable simply to 
follow the approach of Section 3.2—namely, to use the marginal probability 
density ( )

( ) ( )2 ,np m Y S . Surprisingly, the matter of how to proceed in this case is 
controversial. Arguments against the preceding approach claim that it leads to 
“marginalization paradoxes” [14] [15], whereas counter-arguments point out 
that such paradoxes are specious and arise as a result of ambiguities in the use of 
language and reasoning [16]. 

According to critics of using ( )
( ) ( )2 ,np m Y S , the correct Bayesian approach for 

estimating the posterior by which to calculate one parameter of a two-parameter 
distribution is to return to Jeffrey’s rule, Equation (24), and determine the prior 

( ) ( )1 ,m sπ  for a one-dimensional parameter space. Implementing this instruc-
tion leads to a matrix with the single element 11M  of matrix (26) whose subs-
titution in Equation (24), then yields the prior 

( ) ( ) 1
1 ,m s sπ −∝ .                        (47) 

Use of prior (47) in Equation (21) with subsequent integration over s as in 
Equation (35) results in the posterior 

( )
( ) ( ) ( )

( )( ) ( )

1

1
2 22

2
,

1 2

n
n

n

S n
p m Y S

n m Y S

− Γ
=

 πΓ − − +  

,          (48) 
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where the subscript (1) explicitly denotes a prior for a one-dimensional parame-
ter space. Comparison of Equations (48) and (35) shows that ( )

( )
( )
( )1

1 2
n np p −= . 

The dashed curves in Figure 2 are plots of ( )
( )
1
np  as a function of m for in-

creasing values of n, conditioned on the same sample statistics as the plots of 

( )
( )
2
np . For sample sizes n greater than about 10, the two posterior probability 

densities are equivalent for all practical purposes.  

4. Bayesian Analysis of the Coin Estimation Experiment 

Part 1 reported a crowdsourcing experiment devised by the author and imple-
mented with the collaboration of a BBC television show. In brief, the experiment 
involved a transparent tumbler in the shape of a conical frustum filled with £1 
coins. Viewers saw the 3-dimensional tumbler as a 2-dimensional projection on 
their television screens. Viewers were asked to submit by email their estimates of 
the number of coins in the tumbler, which were subsequently transmitted to the 
author for analysis. The number of participants was 1706n = . Objectives of the 
experiment were 1) to determine the statistical distribution of the viewers’ esti-
mates and 2) to gauge how closely a statistical analysis of crowd responses 
matched the true count, which was c 1111N = . The sample mean Z , sample 
variance (biased 2ˆ

ZS  or unbiased 2
ZS ), and standard error ZS  of the res-

ponses from the BBC viewers were calculated to be 

1

1 982
n

k
k

Z z
n =

= =∑ ,                       (49) 

2 2 2 2 2 2

1 1

1 1ˆ 1592.65 or 1593.29
1

n n

Z k Z k
k k

S z S z
n n= =

= = = =
−∑ ∑ ,        (50) 

38.56Z
Z

SS
n

= = ,                       (51) 

where Z is the random variable representing the estimated number of coins 
submitted by a participant in the crowd. 

The sample of estimates was satisfactorily accounted for by a log-normal dis-
tribution as shown by the histogram (gray bars) in Figure 4. Superposed on the 
histogram is the theoretical PDF (dark-red solid curve) of log-normal variable 
( )ˆ ˆ,m sΛ  with ML parameters ˆ 6.5651m Y=  , ˆ 0.7186s S=   calculated from 

the sample mean Y  and variance 2S  of the associated normal variable  
( )lnY Z= . 

From the relations of the previous section as summarized in Table 1, the ex-
pectation value of the Bayesian location parameter m  is seen to be identical to 
the ML parameter m̂ , 

ˆ 6.5651m m Y= = = ,                     (52) 

and the Bayesian scale parameter s , Equation (34), for a sample size n = 1706, 
is  

1.0004399 0.7189s S= × = ,                  (53) 

which differs from the ML parameter ŝ  only in the fourth decimal place. Thus,  
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Figure 4. Histogram (gray bars) of estimates of the number of coins submitted by viewers 
of the BBC show bordered by log-normal PDF (dark red). Superposed are Gaussian dis-
tributions of (a) the mean of the log-normal distribution (bright red) and (b) the sample 
mean (blue) for a sample size n = 1706. Plots (a) and (b) are shown in greater detail in the 
insert. 
 
for a sample size of nearly 2000, the ML and Bayesian analyses lead to statistical-
ly equivalent log-normal parameters. 

Substitution of the Bayesian (or ML) parameters, Equations (52) and (53), in-
to the log-normal expectation values (7) and (8) for the mean, variance, and 
standard error of Z results in an estimate of the number of coins significantly 
different from that of Equation (49) 

21exp 919
2

Z m s = + = 
 

,                (54) 

( ) ( ) ( )( )2 2 2 2exp 2 exp 2 exp 756.26Z m s sσ = − = ,         (55) 

18.31ZZ nσ σ= = .                   (56) 

According to the Central Limit Theorem (CLT) [13], the distribution of the 
mean of a random variable with finite first and second moments approaches a 
Gaussian distribution in the limit of an effectively infinite sample size. Figure 4 
shows the Gaussian distributions, labeled (a) for the Bayesian-estimated mean 

Z  and (b) for the sample mean Z , superposed on the histogram as well as in 
greater detail in the insert. The difference in estimates of the two means in units 
of the standard error of the mean Zσ  is  

3.5
Z

Z Z
σ

−
≈ ,                      (57) 

corresponding to a P-value(Ref [8], pp. 66-72): 

( ) 4Pr 3.5 4.7 10ZZ Z σ −− ≥ = × .             (58) 

The low probability (58) signifies that it is very unlikely that the difference in 
the two means occurred as a matter of chance. 
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Since the sample mean has been the statistic routinely used in numerous 
crowdsourcing applications, the large discrepancy between Equations (49) and 
(54) raises questions crucial to the extraction and interpretation of crowd-
sourced information: 

1) Is there some fundamental statistical principal that justifies use of the sam-
ple mean as a measure of the collective response of the crowd? 

2) Why does the sample mean differ so markedly from the Bayesian (or ML) 
estimate of the mean number of coins? 

3) Which estimate of Z—(a) the sample mean (49) obtained directly from the 
variates { }kz  or (b) the population mean (54) of the log-normal distribution 

( )2,m sΛ —more accurately reflects the information contained in the collective 
response of the crowd? 

These questions are resolved in Section 5.3 by first examining a third estima-
tion procedure based on the principle of maximum entropy (PME). 

5. Crowdsourcing and the Maximum Entropy Distribution 

When the probability distribution of a random variable is known, the maximum 
likelihood or Bayesian methods can be used to estimate the parameters of that 
distribution, as was done in previous sections. However, in numerous applica-
tions of crowdsourcing—starting with the original experiment of Sir Francis 
Galton in 1907 [17] [18]—where the statistical distribution was not reported, the 
sample mean was taken to represent the crowd’s collective response. This section 
examines whether, and under what conditions, such a choice can be justified. 

Given incomplete statistical information of a random variable, there is a pro-
cedure for finding the most objective probability distribution—i.e. the distribu-
tion least biased by unwarranted assumptions—consistent with the known in-
formation. This is the distribution that maximizes entropy subject to the con-
straints of prior information. The so-called principle of maximum entropy 
(PME) has a vast literature [19] [20], since it is widely used throughout the 
physical sciences and engineering. It was employed initially to provide a founda-
tion for equilibrium statistical mechanics [21] [22] and has subsequently been 
shown to be a general inferential method applicable to almost any problem in-
volving probability and uncertainty [23]. For example, besides applications to 
physics, the author has used the PME as a means to ascertain whether students 
have cheated on assignments [24]. A brief summary, not intended to be rigorous 
in all details but merely to provide enough background for readers unfamiliar 
with the PME to understand its application here, is given in the following sec-
tion. 

5.1. Principle of Maximum Entropy (PME) 

Suppose ( )p z , 0, ,z = ∞ , is the probability for outcome z of the random va-
riable Z, which represents the possible estimates of the number of coins by the 
crowd. Given the discrete nature of the problem, z should be a non-negative in-
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teger, but it is written as the argument of a function rather than as an index be-
cause, where summation is required, it will be treated as a continuous variable to 
be integrated. The practical justification for the continuum approximation is 
that it leads to useful closed-form expressions. The mathematical justification 
lies in the fact that the range is infinite, and the mean and variance of the system 
are assumed to be large compared to the unit interval. Thus, treatment of ( )p z  
as a continuous PDF is analogous to the well-known procedures for transform-
ing a discrete distribution like the binomial or Poisson into a Gaussian. 

The entropy 0H  of a system whose states (i.e. possible outcomes) z occur 
with probability ( )p z  is given by [25] 

( ) ( )( )0
0

ln
z

H p z p z
∞

=

= −∑ ,                    (59) 

and corresponds to the quantity designated by Shannon as “information” in 
communication theory [26]. Although it may not be apparent, the right side of 
Equation (59) is equivalent, up to a universal constant factor (Boltzmann’s con-
stant), to the thermodynamic and statistical mechanical expressions for entropy 
of systems in thermodynamic equilibrium [27] [28].  

Suppose further that all that is known of the system, in addition to the 
non-negative range of outcomes, are the first and second moments of Z, or 
equivalently the mean and variance. In other words, the prior information can 
be summarized as 

( ) ( )
0

0
1 d

z
p z p z z

∞ ∞

=

= =∑ ∫ ,                   (60) 

( ) ( ) 10
0

d
z

Z zp z zp z z α
∞ ∞

=

= = =∑ ∫ ,               (61) 

( ) ( )2 2 2
20

0
d

z
Z z p z z p z z α

∞ ∞

=

= = =∑ ∫ ,             (62) 

in which Equation (60) is the completeness relation for ( )p z  to be a probabili-
ty (for discrete z) or probability density (for continuous z). Moments (61) and 
(62), respectively defined by the first equality and calculated by the second 
equality, take the known numerical values ( )1 2,α α  given by the third equality. 
Then, according to the PME, the least-biased distribution ( )p z  can be ob-
tained by maximizing the functional 

( ) ( )( ) ( )

( ) ( )

0
0 0

2
1 1 2 2

0 0

ln 1
z z

z z

H p z p z p z

zp z z p z

λ

λ α λ α

∞ ∞

= =

∞ ∞

= =

 = − + −  
   + − + −      

∑ ∑

∑ ∑
,           (63) 

with respect to each independent probability ( )p z′ , 0, ,z′ = ∞ , where the 
three factors kλ , 0,1,2k = , are Lagrange multipliers. 

Implementation of the maximization procedure  

( ) 0H p z′∂ ∂ = ,                       (64) 
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by means of the orthonormality relation of independent probabilities 

( ) ( ) zzp z p z δ ′′∂ ∂ = ,                       (65) 

in which zzδ ′  is the Kronecker delta function [29], leads directly to the solution 

( ) ( )
( )

2
1 2

1 2
1 2

exp
,

,

z z
p z

Q

λ λ
λ λ

λ λ

− −
= ,                  (66) 

where the multiplier 0λ  has been absorbed into the partition function  

( ) ( )

( )( )

2
1 2 1 2

0

21
1 2

2 2

, exp d

1 1 erf exp 4
2 2

Q z z zλ λ λ λ

λ
λ λ

λ λ

∞

≡ − −

  π  = +      

∫
,         (67) 

to yield 

( )
( )

( )( )

2
1 2422

1 2

1 2

1 2

2 exp e
,

1 erf 2

z z
p z

λ λλ λ λ
λ λ

λ λ

−− −
π=

+
.            (68) 

The error function ( )erf x  is defined by the integral 

( ) ( )2
0

2erf exp d
x

x t t≡ −
π ∫ ,                    (69) 

which yields limiting values ( )erf 0 0= , ( )erf 1∞ = , and has odd symmetry 
( ) ( )erf erfx x− = − .  

PDF (68) satisfies the completeness integral (60). From the definition of the 
partition function in Equation (67), it follows that the first two moments of the 
distribution can be calculated from the derivatives 

( )( )1 2 1ln ,Z Q λ λ λ= −∂ ∂ ,                  (70) 

( )( )2
1 2 2ln ,Z Q λ λ λ= −∂ ∂ ,                  (71) 

which, when substituted into Equations (61) and (62), yield expressions for de-
termining the Lagrange multipliers 

( )
2
1 24

1
1

2 2 1 2

1 e
2 1 erf 2

λ λλ
α

λ λ λ λ

−

+ =
−π

,                (72) 

( )( )
2

1 22 4
1 1

22 3 2
22 2 1 2

1 e
24 2 1 erf 2

λ λλ λ
α

λλ λ λ λ

−

−π
+ − = .           (73) 

At this point2 the analysis is considerably facilitated by a change of variables 
from ( )1 2,λ λ  to the variables ( ),a b  defined by 

2
1 a bλ = − ,                          (74) 

2
2 1 2bλ = ,                          (75) 

 

 

2To calculate moments of a distribution from the partition function, differentiation must be with 
respect to the Lagrange multipliers ( )1 2,λ λ  and not the transformed variables ( ),a b .  
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which, when substituted into Equation (68), result in the PDF 

( )
( )( )

( )( )

22 exp
,

1 erf 2

z a
p z a b

b a b

− −
=

+

π .                (76) 

The form of PDF (76) gives the impression that a  is a location parameter 
(mean) and b is a scale parameter (standard deviation). This is not strictly cor-
rect, as can be seen by substituting Equations (74) and (75) into Equations (72) 
and (73) to obtain 

( ) 1,Z a bq a b α= + = ,                    (77) 

( )2 2 2
2,Z a b abq a b α= + + = ,                (78) 

where 

( ) ( )
2 222 e

,
1 erf 2

a b

q a b
a b

−π
=

+
.                   (79) 

However, ( )lim , 0
a b

q a b
→∞

→  in which case 1a Z α= =  and  
22 2 2

2 1b Z Z α α= − = − . Thus, if the distribution is sharply defined, then, for 
all practical purposes, the error function in Equation (76) is equal to 1, and 
( ),p z a b  becomes a Gaussian PDF extending over the full real axis with mean 

a  > 0 and standard deviation b. 

5.2. Maximum Likelihood Solution to the Maximum Entropy  
Equations 

To solve the set of PME Equations (77)-(79) for a  and b one must supply the 
values of 1α  and 2α , which constitute prior information, but which in prac-
tice must be estimated from the sample whose theoretical distribution is not part 
of the prior information. The optimal estimation procedure is to use the sample 
averages 

1
1

1

n

i
i

Z n zα −

=

≈ = ∑ ,                     (80) 

2 1 2
2

1

n

i
i

Z n zα −

=

≈ = ∑ ,                    (81) 

again symbolized by overbars to distinguish them from theoretical expectation 
values symbolized by angular brackets. Justification of (80) and (81) derives 
from a general result of probability theory that maximizing the entropy subject 
to constraints (61) and (62) is equivalent to maximizing the likelihood function 
over the manifold of sampling distributions selected by maximum entropy. (See 
Ref. [23], pages 270-271). An explicit demonstration of this result as it pertains 
to the present problem is given in Appendix 1. 

Equations (77)-(79) are highly nonlinear in the variables a  and b. One way 
to solve the set of equations is graphically by plotting the variation of b as a 
function of a  subject to each of the two constraints 
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( ) 1, 0a bq a b α+ − = ,                    (82) 

and 

( )2 2
2, 0a b abq a b α+ + − = ,                (83) 

and finding the common point ( )ˆˆ,a b  of intersection. As an example that illu-
minates the present discussion, consider a hypothetical set of estimates with 
sample mean 1 981α =  and sample mean-square 2

2 1156α = . The mean 1α  
was chosen to be very close to the mean coin estimate Equation (49) of the BBC 
viewers, but the variance 2 2

2 1 612α α− =  is significantly lower than the sample 
variance Equation (50). The left panel of Figure 5 shows implicit plots of Equa-
tions (82) and (83) with intersection at P yielding the solution ( ) ( )ˆˆ, 740,780a b = . 

Figure 6 shows the variation with z of the corresponding maximum entropy 
PDF ( )ˆˆ,p z a b  defined by Equation (76). Comparison of Figure 6 with the 
log-normal PDF (solid red curve) in Figure 4 shows that the PME distribution 
for the illustrative data ( )1 2,α α  fails to reproduce the observed distribution in 
at least two ways: 1) it does not tend toward 0 for estimates z in the vicinity of 0, 
and 2) it decreases toward 0 much faster than a heavy-tailed power law as z in-
creases toward infinity. 

The right panel of Figure 5 shows implicit plots of Equations (82) and (83) for 
values of 1α  and 2α  corresponding to the actual sample mean and sample 
mean-square of responses obtained in the coin-estimation experiment. The two 
curves do not intersect, and therefore there is no maximum-entropy solu-
tion—and no associated PDF—for this sample under the conditions specified by 
Equations (80) and (81). 

So that the reader does not misinterpret these results, it is to be emphasized 
that the failure of the PME to yield a solution under some specified conditions is  
 

 
Figure 5. Implicit plots of the PME relations (A) Equation (82) (red) and (B) Equation 
(83) (blue), The point of intersection of the two curves in the left panel mark the solution 

( ) ( )ˆˆ, 740,780a b = . The plots of the right panel, corresponding to sample statistics 1α  

and 2α  of the crowdsourced coin experiment do not intersect, indicating there is insuf-
ficient information for a maximum-entropy solution. 
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Figure 6. Plot of the maximum-entropy PDF, Equation (76), employing the parameters 

( )ˆˆ,a b  obtained in the left panel of Figure 5. 

 
not a failure of the method. Rather, it is useful information signifying that the 
prior information was insufficient to provide a solution, and that additional or 
more consistent information is required. Thus, to persist in this approach to 
finding the mean response of the crowd in the absence of a known distribution, 
one might have to include in the prior information the sample mean-cube 3α  
and the sample mean-quartic 4α  and so on, until a satisfactory solution was 
obtained. However, to construct a solution incrementally by including high-
er-order sample moments is a very unsatisfactory way to proceed, since the ma-
thematics soon becomes impractically complicated. Moreover, from a concep-
tual perspective, the need for such an approach is entirely unnecessary because 
the actual distribution can be deduced or estimated from the crowdsourced 
sample. 

Recall that the rationale for using the PME in the first place arose from ig-
norance of the distribution, and that under such circumstances the PME fur-
nishes the least biased distribution by which to interpret the sample mean and 
variance. However, the distribution of a wide class of crowdsourced samples is 
knowable, if only the analyst were to extract it from the set of responses: it is the 
log-normal distribution [1]. Knowing this, one could then construct the best 
log-normal for the sample by finding only 2 parameters (m, s)—as was done in 
Part 1 and previous sections of Part 2—rather than having to solve a set of 

2q >  nonlinear equations of constraint involving q sample moments. 
It may be argued that the complexity of the analysis in Sections 5.1 and 5.2 

could be avoided if one simply omitted from the prior information the require-
ment that 0z ≥ . Permitting z to range over the entire real axis would then yield 
a PME distribution of pure Gaussian form 

( ) ( )( )2 2

2

1, exp 2
2

p z a b z a b
b

= − −
π

,             (84) 

in which parameters a  and 2b  are unambiguously the population mean and 
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variance. Thus, given the mean and variance as the only prior information, it 
follows from the PME that 1) the most objective distribution is Gaussian, and 2) 
the theoretical mean and variance can be estimated directly from the sample 
mean and sample variance. In other words, it may seem that reducing the prior 
information would lead unfailingly to a PME solution (i.e. Equation (84)) with 
easily obtainable parameters. However, although omission of known informa-
tion may simplify the mathematics, it yields an unreliable solution, as discussed 
in the following section. 

5.3. Answers to the Three Questions of Section 4 

In regard to Question (1), consider a large set of crowdsourced responses to a 
problem for which the analyst receives just the sample mean and standard devia-
tion, and not the full set of responses. Under these conditions, the resulting 
maximum entropy distribution is a normal distribution, Equation (84), and the 
use of maximum likelihood or Bayesian methods for estimating the mean of a 
normal distribution is precisely the sample mean, as expressed by Equation (49) 
for the coin estimation experiment. Thus, use of the sample mean to estimate the 
population mean when the actual distribution is unknown is justified by the 
PME. 

Moreover, the reverse logic also applies. To use the sample mean and standard 
deviation as the statistics representing the crowd’s collective answer to a problem 
is to assume implicitly that the responses received from the crowd were normally 
distributed. However, in the example of the coin-estimation experiment, that 
assumption is incorrect, as evidenced by the histogram of Figure 4 which has 
the form of a log-normal, not a Gaussian, distribution. Furthermore, as demon-
strated analytically and by MCS in [1], one can expect all crowdsourced esti-
mates that involve products of random variables to be approximately or rigo-
rously of log-normal form. The answer, therefore, to Question (2) at the end of 
Section 4 is now clear. One does not expect the means calculated from two dif-
ferent, nonequivalent distributions to be the same.  

There remains Question (3): Which statistic better represents the information 
of the crowd—the sample mean of a falsely presumed Gaussian distribution or 
the expectation value calculated from the appropriate log-normal distribution? 
The answer to this question is somewhat subjective, since it depends on how one 
views the process of crowdsourcing and what one expects to learn from it.  

One way of thinking might be the following. Recall that the idea underlying 
crowdsourcing is to pose a problem to a large number of diverse, indepen-
dent-minded people, who collectively represent a wide range of proficiencies and 
experiences, and see what answers they provide. It is assumed that the crowd will 
include some members who know enough to address the problem rationally, 
some members who will guess randomly, and most of the rest whose responses 
fall somewhere in-between. Since the crowd is large and their responses ano-
nymous, it is not possible to distinguish the experts from the random guessers, 
so one might just as well average all solutions with equal weighting, which is 
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what the sample mean does. The fact that the sample mean 982 [Equation (49)] 
of the coin-estimation experiment was closer to the true number c 1111N =  
than the estimate 919 [Equation (54)] based on the log-normal distribution 
might seem to support this viewpoint. 

There is, however, a different way to think about the question—but first ex-
amine Figure 7, which shows the log-normal distribution of the coin estimates 
(plot A) and three Gaussian distributions (plots B, C, D).  

On theoretical grounds alone, the log-normal plot A manifests the most im-
portant statistical properties to be expected of the responses of a crowd to a 
problem calling for a positive numerical answer. The PDF ( ) ( ),Zp z m sΛ  must 
be 0 for all 0z ≤ , since every viewer could see that the tumbler had at least 1 
coin (and, in fact, many more coins than 1). The shape of the plot—main body 
of roughly Gaussian form coupled to a highly skewed right tail—graphically dis-
plays the distinction between informed respondents (main body) and random 
guessers (outliers under the heavy tail). Thus, without knowing which respon-
dents submitted which estimates, the log-normal PDF appropriately weights 
each estimate depending on its value relative to the totality of estimates. If the 
most accurate estimate of cN  should actually differ significantly from the mean 
of ( )2,m sΛ , that indicates that the crowd as a whole was not knowledgeable in 
regard to the posed problem. 

A log-normal curve can be approximated by a normal curve, as carried out in 
detail in Appendix 2. The resulting Gaussian, which takes the form 

( ) ( ) ( ) ( ) ( )( )2 21, exp e 2 e
2 e

N m m
Z m

p z m s z s
s

−
π

= ,           (85) 

 

 

Figure 7. (a) PDF of log-normal ( )2,m sΛ  (red) fit to the empirical distribution of coin 

estimates submitted by BBC viewers; (b) PDF of Gaussian approximation (blue) to 

( )2,m sΛ  as derived in Appendix 2; (c) PDF of a Gaussian with mean and variance of 

( )2,m sΛ  (green); (d) PDF of Gaussian with the sample mean and sample variance of 

the coin estimation experiment. 
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is shown as plot B in Figure 7. The log-normal parameters ( ) ( )2 2, 6.57,0.72m s =  
of the coin-estimation experiment result in the Gaussian mean and variance 

( ) ( )2 2
B B, 710,510M S = , respectively. Plot B overlaps most of plot A although it 

lacks the heavy right tail, and a small fraction of the area under plot B falls in the 
unphysical region of negative estimates. The center B emM =  of this Gaussian is 
actually the median of the log-normal distribution ( )2,m sΛ  comprising plot 
A. 

A second, lesser accurate normal approximation to the log-normal plot A is 
obtained simply by substituting the log-normal mean and variance  

( ) ( )2 2
C C, 919,756M S =  of Equations (7) and (8) into a Gaussian PDF. The re-

sulting distribution comprises plot C in Figure 7. The peak of plot C is located 
closer to Nc than the peak of plot B, but plot C is wider, overlaps plot A less, as-
cribes higher probability than plot B to the outliers in the heavy tail of plot A, 
and extends more significantly into the unphysical negative region.  

The final Gaussian, plot D, is the distribution predicted by the PME with sam-
ple mean and sample variance ( ) ( )2 2

D D, 982,1593M S =  of the coin-estimation 
experiment with neglect of the non-negativity of the range of outcomes. Al-
though the peak is closest to Nc of the four plots, plot D has the greatest width 
(and therefore greatest uncertainty), overlaps the true distribution (plot A) the 
least, gives the greatest weight to the outliers of plot A, and extends furthest into 
the domain of unphysical negative estimates. By weighting each estimate the 
same, the sample mean (center of plot D) ignores the distinction between in-
formed respondents and wild guessers that is a critical part of the structure of 
plot A. In view of the adverse features of plot D, one must ask whether the fact 
that the mean of plot D, rather than the mean of plot A, lies closer to Nc is in any 
way significant. 

The answer is “No”. Observe that the center of plot D can be displaced even 
further toward Nc simply by increasing the number of outliers with values great-
er than 3 or more times the value of Nc. In short, a statistic that can be made 
more accurate by the inclusion of estimates that are increasingly wrong is not re-
liable. Note that the effect of outliers on the theoretical mean of plot A is much 
weaker because (1) the exponential part of the log-normal PDF ( ) ( ),Zp z m sΛ  is 
a function of ( )ln z  rather than z, and (2) the non-exponential part of 

( ) ( ),Zp z m sΛ  decreases inversely with increasing z.  
Given the preceding observations regarding the plots of Figure 7—and the 

fact that a more informed application of the PME, which includes the correct 
range of outcomes, leads to no solution at all—it is clear that the mean of plot D, 
irrespective of its value, is an unreliable statistic. Thus, an alternative answer to 
Question (3) might go as follows. The most important information that can be 
extracted from a crowdsourced sample is its distribution (and not any individual 
statistic) because the distribution helps the analyst gauge the overall knowledge 
of the crowd and therefore the reliability of the sample. After all, there is no ma-
thematical or statistical principle that guarantees that a crowdsourced answer to 
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a problem will necessarily be correct, even in the limit of an arbitrarily large 
crowd. 

5.4. Quantitative Measure of Information Content 

The entropy of a distribution is a measure of its information content. Because 
the word “information” has different meanings in different fields of science and 
engineering that employ statistical reasoning, this section uses “information” as 
it is interpreted in physics—i.e. as a measure of uncertainty. The greater the en-
tropy of a particular distribution, the greater is the uncertainty (and the lower is 
the reliability) of its predictive capability. The word “particular” is italicized 
above for emphasis so as to avoid misconstruing the objective of the method of 
maximum entropy.  

When all one knows about a statistical system is partial prior information 
such as the mean and variance, the PME provides an inferential method to find 
the most probable distribution consistent with that information and only that 
information. This is the distribution that is consistent with the prior information 
in the greatest number of ways—i.e. which maximizes the entropy of the system. 
On the other hand, if an analyst has to chose between two known distributions 
for purposes of prediction, the better choice is the distribution for which the 
number of possible outcomes inconsistent with the observed properties of the 
system is fewer—i.e. the distribution with lower entropy. 

The two distributions of relevance in this analysis of crowdsourcing are the 
log-normal and normal distributions whose entropies, given by Equation (59), 
are respectively evaluated to be 

( ) ( ) ( ) ( ) ( )( ) ( )0 0
, ln , d ln 2 eH p z m s p z m s z s m

∞Λ Λ Λ= − π= +∫ ,       (86) 

( ) ( ) ( ) ( ) ( )( ) ( )0 0
, ln , d ln 2 eN N NH p z a b p z a b z b

∞
− = π= ∫ ,        (87) 

where the log-normal and Gaussian PDFs are respectively given by Equations (5) 
and (84). Substituting into Equations (86) and (87) the parameters obtained 
from the coin-estimation experiment (repeated below for convenience) 

Log-Normal ( )2,m sΛ   ( ) ( ), 6.57,0.72m s = ,            (88) 

Normal ( )2
sample sample,N a b  ( ) ( ), 982.17,1593.65a b = ,       (89) 

yields entropies 
( )
0 7.65H Λ = ,                         (90) 

and 
( )
0 8.79NH = ,                         (91) 

in units of nats (i.e. natural entropy units), since the natural logarithm is used in 
the definition of entropy in physics. (In communication theory, the logarithm to 
base 2 is usually employed, in which case entropy is expressed in bits, i.e. binary 
digits).  
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Although the numerical difference between relations (90) and (91),  
( ) ( )
0 0 1.14NH H Λ− = , may appear unremarkable, the micro-statistical implications 

are actually beyond imagining. The number Ω  of possible samples of size n 
consistent with the known prior information of a distribution formed from a 
particular sample—what in physics would be termed the multiplicity or number 
of accessible microstates [30]—is given by an adaptation of the Boltzmann for-
mula [31] [32] 

( ) 0ln nHΩ = .                       (92) 

The greater the entropy, the greater is the number of possible outcomes of any 
draw from the distribution describing the sample. It then follows from Equation 
(92) that the relative uncertainty—i.e. ratio of microstates—of the two distribu-
tions parameterized by (88) and (89) describing the BBC crowd of size n = 1706 
is 

( )

( )
( )( )( ) 844exp 4.5 10

N
Nn H H Λ

Λ

Ω
= − ≈ ×

Ω
.            (93) 

Numbers of the order of the ratio (93) rarely, if ever, occur even in physics on 
a cosmological scale. The import of (93) is that a vast number of Gaussian mi-
crostates—i.e. outcomes of the distribution (84) compatible with the prior in-
formation (89)—describe outcomes (e.g. negative numbers of coins) that are not 
compatible with the physical conditions of the experiment or the statistics of the 
crowd response as deducible from (88).  

Section 5.3 and the foregoing analysis of Section 5.4 call for revisiting Figure 
4, in which inserts (a) and (b) respectively show the distributions of the means 
( AM , DM ) of plots A and D of Figure 7. Based on the central limit theorem 
(CLT), these means are distributed normally with variances smaller than the va-
riances of plots A and D by the factor n. Although insert (b) (the sample mean) 
is a little wider than insert (a) (the log-normal mean), it nevertheless appears 
sharply localized around the sample mean DM . Does this indicate that the 
sample mean is a reliable measure of the information content of the crowd in the 
coin-estimation experiment? 

The answer again is “No”. In brief, all that the CLT tells us in regard to the 
coin-estimation experiment is this: if the experiment is run a large number of 
times n, then the variation (standard deviation) of the mean result will be nar-
rower than the variation for a single run in proportion to 1 2n− . This is perfectly 
valid as applied to insert (a) since it derives from a legitimate single-run distri-
bution function(of log-normal form) illustrated by the histogram A or plot B in 
Figure 4 or plot A in Figure 7. For the CLT to be valid the single-run distribu-
tion function must have finite first and second moments. However, it has been 
shown by use of the PME that, given the sample mean, sample variance, and ap-
propriate non-negative range of the coin-estimation experiment as prior infor-
mation, no compatible single-run distribution function exists. Thus, the distri-
bution depicted by insert (b) is irrelevant and uninformative. 
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6. Conclusions 

In sampling a large group of non-experts (a “crowd”) for the solution to a quan-
titative problem, there is no guarantee (e.g. by some principle of probability or 
statistics) that the answer provided by the crowd will be correct or accurate. 
What usable information the crowd may provide is encoded in the distribution 
of responses, which the analyst can observe empirically (e.g. as a histogram) or 
try to deduce theoretically (as in Part 1) by modeling the reasoning process of an 
informed and incentivized crowd. The distribution function provides the means 
for obtaining the mean, median, mode, variance, and higher-order moments of 
the hypothetical population of which the sampled crowd is an approximate re-
presentation. Without knowledge of the distribution, statistical measures of un-
certainty cannot be interpreted probabilistically. 

The antecedent paper [1], showed that crowdsourced solutions to problems 
involving products (or sums of products) of random variables—as in the case of 
image analysis and counting of physical objects—led to a log-normal distribu-
tion. The log-normal ( )2,m sΛ  is a two-parameter distribution with location 
parameter m and scale parameter s. The present paper has shown that maximum 
likelihood and Bayesian estimation methods applied to the log-normal distribu-
tion yield the same expression for m, but different expressions for s that become 
identical in the limit of an infinitely large sample. For most practical purposes, 
the asymptotic limit is attained in sample sizes of a few hundred to a thousand 
and possibly even as low as on the order of tens. 

In applications where the analyst receives only the mean response of the 
crowd and a measure of its uncertainty, the principle of maximum entropy 
shows that the most probable distribution compatible with this information is 
either a Gaussian (for outcomes that span the real axis) or a truncated Gaussian 
(for non-negative outcomes). It is possible, however, that the equations for the 
parameters of the maximum entropy distribution lead to no solution given the 
prior information. In such a case, as illustrated by the coin-estimation experi-
ment, the sample mean of the crowd, irrespective of its value, is not a reliable 
statistic, since, without an underlying single-run distribution, no confidence 
limits can be assigned to the uncertainty of the sample mean. 

The foregoing problem is in all cases avoidable if the analyst utilizes the com-
plete set of responses from the crowd to obtain the sample distribution, either 
empirically or by appropriate modeling. 
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Appendix 1. 

Maximum Likelihood Solution to the Maximum Entropy 
Distribution of Coin Estimates 
A general consequence of probability theory cited in Section 5.2 is that max-

imizing the entropy subject to constraints on the first and second moments is 
equivalent to maximizing the likelihood function over the manifold of sampling 
distributions selected by maximum entropy. The significance of this is that one 
can use the sample mean and sample mean square to obtain the first and second 
moments as prior information with which to derive the maximum entropy dis-
tribution. This equivalence is demonstrated below for the coin-estimation expe-
riment, which is an archetype for problems whereby the outcomes are non-negative 
numbers. 

The likelihood function for the set { }kz , 1, ,k n=  , of estimates of the 
number of coins is given by 

( )
( )

( )( )

22 2

1

21

2 exp 2
,

1 erf 2

n
n

kn
k

k n
n nk

z a b
L p z a b

b a b

=

=

 − − 
 = =
− −π

∑
∏ ,           (94) 

where the form of the maximum-entropy PDF derived on the basis of prior in-
formation (60)-(62) is given by Equation (76). The log-likelihood function is 
then 

{ }( ) ( ) ( )( ) ( )2 2

1
, ln ln 1 erf 2 2

n

k k
k

z a b n b n a b z a b
=

= − − − − − −∑L ,  (95) 

where only terms involving parameters a  and b were included. 
The ML equations for the parameters are 

( )0 ,a Z bq a b
a

∂
= ⇒ = −

∂
L ,                (96) 

( ) ( )22

1
0 ,

n

k
k

b z a abq a b
b =

∂
= ⇒ = − +

∂ ∑L
,           (97) 

where 

( ) ( )
2 222 e

,
1 erf 2

a b

q a b
a b

−π
=

+
                  (98) 

was defined previously in Equation (79), and  

( )1

1

n

k
k

Z n z−

=

= ∑                       (99) 

is the sample mean. 
Comparison of Equations (96) and (77) shows that the two equations are 

equivalent if the expectation value Z  is estimated by the sample mean (99). 
Furthermore, replacement of a  in Equation (97) by the right hand side of Eq-
uation (96) and comparison with Equation (83) leads to the equivalence of the 
expectation value 2Z  and the sample mean-square  
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( )2 1 2

1

n

k
k

Z n z−

=

= ∑ .                        (100) 

Thus, the ML and PME equations lead to the same distribution parameters 
when the first and second moments in the maximum entropy equations are es-
timated by the sample moments obtained by the method of maximum likelihood. 

Appendix 2. 

Gaussian Approximation to a Log-Normal Distribution 
The PDF of a general log-normal as defined in Equation (5) is repeated below 

for convenience 

( ) ( )( )( )2 21, exp ln 2
2

p z m s z m s
szπ

= − − .           (101) 

Transformation of the location parameter m 

0 emµ = ,                            (102) 

and change of variable 

0z µ ε= + ,                           (103) 

where 1ε  , lead to the form 

( )
( )

2

2

00

1, exp ln 1 2
2

p z m s s
s

ε
µµ ε

    = − +
π

    +    
.       (104) 

Neglect of ε  in the denominator for 0 1µ >  and expansion of the exponen-
tial in Equation (104) to first power in ε  leads to the Gaussian function 

( ) ( )( )
( ) ( )( )

22
0

0

2 2

1, exp 2
2

1 exp e 2 e
2 e

m m
m

p z m s s
s

z s
s

ε µ
µ

−

= − −

π

π



,         (105) 

with mean em  and standard deviation ems . Note that em  is the median of 
the log-normal distribution.  
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