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Abstract 

Background: Factors associated with hospital mortality are usually identified 
and their effects are quantified through statistical modeling. To guide the 
choice of the best statistical model, we first quantify the predictive ability of 
each model and then use the CIHI index to see if the hospital policy needs 
any change. Objectives: The main purpose of this study compared three sta-
tistical models in the evaluation of the association between hospital mortality 
and two risk factors, namely subject’s age at admission and the length of stay, 
adjusting for the effect of Diagnostic Related Groups (DRG). Methods: We 
use several SAS procedures to quantify the effect of DRG on the variability in 
hospital mortality. These procedures are the Logistic Regression model (ig-
noring the DRG effect), the Generalized Estimating Equation (GEE) that 
takes into account the within DRG clustering effect (but the within cluster 
correlation is treated as nuisance parameter), and the Generalized Linear 
Mixed Model (GLIMMIX). We showed that the GLIMMIX is superior to 
other models as it properly accounts for the clustering effect of “Diagnostic 
Related Groups” denoted by DRG. Results: The GLM procedure showed that 
the proportional contribution of DRG is 16%. All three models showed sig-
nificant and increasing trend in mortality (P < 0.0001) with respect to the two 
risk factors (age at admission, and hospital length of stay). It was also clear 
that the CIHI index was not different under the three models. We 
re-estimated the models parameters after dichotomizing the risk factors at the 
optimal cut-off points, using the ROC curve. The parameters estimates and 
their significance did not change.  
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1. Introduction 

The ability to gauge hospital performance using patient outcome data depends 
upon many factors. In principle, the outcome needs reflect features that are di-
rectly affected by the quality of hospital care, to name but a few; mortality, 
readmission rates patients and employee satisfaction. Beyond this, however, 
there are a number of important data and statistical considerations:  

1) Data must be available and used to adjust for differences in patient health at 
admission across different hospitals (case-mix differences). These adjustments 
are required to ensure that variations in reported performance apply to hospit-
als’ contributions to their patients’ outcomes rather than to the intrinsic diffi-
culty of the patients they treat. Needless to say that, performance of the adjust-
ments depends on the type and quality of available data. 

2) In distinct contrast to the previous point, reported performance should not 
adjust away differences related to the quality of the hospital. For example, if 
“presence of a special dialysis care unit” is systematically associated with better 
survival following organ failure, a hospital’s reported performance should cap-
ture the benefit provided by that unit and as a consequence such hospital-level 
characteristic should not influence the risk adjustment. 

3) The reported performance measure should be little affected by the variabil-
ity associated with rates based on the small numbers of cases.  

In this report we address technical statistical issues associated with the 
KFSHRC hospital mortality data. The salient point is that there is no consensus 
to guide our choice of an appropriate statistical model. However, we shall use 
the most scientific statistical models to analyze our data. To enhance the tradi-
tional modeling techniques we include use of more flexible models incorporat-
ing Diagnosis Related Groups (DRG) adjustment [1]; stressing the use of statis-
tical distributions that do not belong to the well-known Gaussian family used in 
the hierarchical, random effects models; evaluation of the effectiveness of cur-
rent outlier detection methods; and consideration of producing an ensemble of 
hospital-specific Standardized Mortality Ratios (HSMR) that accurately esti-
mates the true, underlying distribution of ratios [2]. Discussion with clinicians 
and other quality experts concluded that risk adjustments should not reflect 
hospital characteristics, but their use in reducing confounding of the case-mix/ 
risk relation. Statistical models are available for each of these operations. The 
ability to develop and implement such models is now available since the adop-
tion of the SAS software and the acquisition of its important components. 

In Section 2 we define what is meant by DGR, and in Section 3 we describe the 
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data that were made available to us, with mortality as the primary outcome at 
the King Faisal Specialist Hospital (KFSHRC). In Section 4 we compare the 
models, and in Section 5 we discuss the quantitative merits of these models, fol-
lowed by recommendations. 

2. The Importance of Incorporating DRG’s within the  
Proposed Models 

The Diagnostic Related Groups (DRGs) were first developed at Yale University 
in 1975. The main objective was to group patients with similar treatments and 
conditions for comparative studies. DRGs were designed to be homogeneous 
units of hospital activity to which binding prices could be attached. A central 
theme in the advocacy of DRGs was that this reimbursement system would, by 
constraining the hospitals, oblige their administrators to alter the behavior of the 
physicians and surgeons comprising their medical staffs. Hospitals were forced 
to leave the nearly risk-free world of cost reimbursement, and face the uncertain 
financial consequences associated with the provision of health care. DRGs were 
designed to provide practice pattern information that administrators could use 
to influence individual physician behavior. 

DRGs were designed to be homogeneous units of hospital activity to which 
binding prices could be attached. A central theme in the advocacy of DRGs was 
that this reimbursement system would, by constraining the hospitals, oblige their 
administrators to alter the behavior of the physicians and surgeons comprising 
their medical staffs. Hospitals were forced to leave the nearly risk-free world of 
cost reimbursement, and face the uncertain financial consequences associated 
with the provision of health care. DRGs were designed to provide practice pat-
tern information that administrators could use to influence individual physician 
behavior. 

In 2007, author Rick Mayes [3] described DRGs as:  

...the single most influential postwar innovation in medical financing: 
Medicare’s prospective payment system (PPS). Inexorably rising medical 
inflation and deep economic deterioration forced policymakers in the late 
1970s to pursue radical reform of Medicare to keep the program from in-
solvency.  

In the USA the most significant change in health policy since Medicare and 
Medicaid’s passage in 1965 went virtually unnoticed by the general public [4]. 
Nevertheless, the change was nothing short of revolutionary. For the first time, 
the federal government gained the upper hand in its financial relationship with 
the hospital industry. Medicare’s new prospective payment system with DRGs 
triggered a shift in the balance of political and economic power between the pro-
viders of medical care (hospitals and physicians) and those who paid for it—power 
that providers had successfully accumulated for more than half a century. From 
statistical view point DRG’s are considered artificial clusters of subjects. 
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Krumholz et al. [5] discussed several factors that should be considered when 
assessing hospital quality. These relate to differences in the chronic and clinical 
acuity of patients at hospital presentation, the numbers of patients treated at a 
hospital, the frequency of the outcome studied, the extent to which the outcome 
reflects a hospital quality signal, and the form of the performance metric used to 
assess hospital quality. However, issues related to DRG have not been considered 
as factors of importance. Since the outcome of interest is hospital mortality, any 
attempt to derive risk adjusted mortality that does not take into account the rel-
ative importance of DRG will produce biased estimates [6]. The performance 
measure is reported as: 

Observed # deaths/Expected (model based) # of deaths          (1) 

The denominator of Equation (1) results from applying a model that ad-
justs/standardizes for an ensemble of patient-level, pre-admission risk factors, 
rather than only demographic factors such as age and gender as is typical in epi-
demiological applications. The statistical issues arising in the estimation of the 
standardized death rate and the SMR are identical because the latter is simply 
the hospital-specific value divided by the expected number of deaths computed 
from the postulated risk model.  

3. Methods 

3.1. Study Design 

Hospital discharge status, available from the hospital medical records from 2014 
through 2016 were extracted. For each subject, the age at admission, length of 
stay and DRG membership were included in this cross sectional retrospective 
design. The study was reviewed and approved by the Institutional Review Board 
at the King Faisal Specialist Hospital and Research Center (KFSHRC). 

3.2. Study Variables 

3.2.1. Dependent Variable 
Discharge status is the dependent variable (dead/alive). Because of the Bernoulli 
distribution of the outcome, the log-odds of death were calculated in the analyt-
ical cohort. 

3.2.2. Independent Variables 
Regression models included parameters that defined age at admission, length of 
stay, gender, and DRG. Because DRG is a categorical variable with excessive 
number of levels our modeling strategy used DRG as a clustering variable, and as 
a random effect variable. The fundamental aim was to adjust the standard errors 
of the estimated model parameters for the possible within DRG correlation. 
Another reason is, to preserve the stochastic process and hierarchical structure 
of the data, and develop an effective risk adjustment. Because patient-specific 
outcomes are binary (death indicator), a Bernoulli model operating at the pa-
tient level is appropriate. Risk adjustment and stabilization should adopt this 
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model and thus logistic regression is a suitable approach for including the effects 
of patient-level characteristics. With flexible modeling of covariate influences, 
the model would produce a valid risk adjustment and there is no reason to re-
place the logistic by another function. 

The evaluation process must be based on an effective risk adjustment. Though 
one might wish to have additional information of patient attributes and clinical 
severity, even with currently available data we should evaluate whether a more 
flexible risk adjustment model will improve performance. Patient characteristics 
(clinical and demographic) are of the three types, measured and accounted for, 
measurable but not accounted for, and characteristics that are difficult or im-
possible to measure. Prudence dictates that risk adjustments should include 
pre-admission medical conditions, but whether or not to include demographic 
attributes is a policy decision. 

3.3. Statistical Analysis 

Univariate and descriptive statistics were used to profile the study covariates, in-
cluding the frequency distribution of the top twelve DRG’s, as shown in Table 1. 
Because of the binary nature of the outcome of interest (patient’s status when 
discharged), we fitted logistic regression models to estimate change in level (in-
tercept) and trend (slope) on log-odds of age at admission and length of stay. 
Each model was adjusted to account for the clustering effect of DRG. 

Three statistical estimation procedures in SAS (GLM, GEE, GLIMMIX) were 
used to account for the correlation between responses with a DRG and hetero-
geneity across individuals in the study. The intra-class correlation was calculated 
using the one-way ANOVA using the GLM procedure in SAS. Data manage-
ment and analyses were accomplished via PC-SAS (v9.4) [7], with an a-priori 
Type I error rate set at 0.01. 
 
Table 1. The ICD9 diagnoses for the top most frequent DRG’s in the hospital data base. 

DRG frequency ICD9 Diagnosis 

1-P67D 4270 Neonate-admission weight > 2499 g W/O significant OR procedure. 

2-O60Z 2097 Vaginal delivery complications 

3-F42B 1434 Diseases of the circulatory system 

4-R60B 1308 Acute Leukemia W catastrophic CC 

5-R61B 1273 Lymphoma & non-acute Leukemia W/O catastrophic CC 

6-O01B 1187 Pregnancy complications 

7-L04C 1173 Diseases of Kidney and Urinary tract 

8-K64B 1127 Endocrine and metabolic diseases 

9-Q60A 1064 Immunity disorders 

10-E62B 1016 Diseases of the respiratory system 

11-O66Z 1004 Antenatal and other obstetric admissions 

12-B02C 1002 Diseases of the nervous system 
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The analyses produced point estimates and 95% confidence intervals of the 
odds ratios whether the two covariates were entered the models as continuous or 
as categorical variables. 

4. Results 

The study included 191943 discharges, of which 184,907 alive and 7046 dead. 
The summary statistics are outlined in Table 1 and Table 2.  

Assuming that the number of DRG’s in the data base is k, and the size of the 
ith DRG is ik . The estimated intra-cluster correlation obtained from the 
one-way ANOVA using the GLM procedure in SAS (Shoukri [8]) is given in 
Equation (2):  

( )0

MSBD MSWDˆ
MSBD 1 MSWDk

ρ −
=

+ −
                     (2) 

where MSBD and MSWD are respectively the between DRG mean squares and 
the within DRG mean squares. Moreover:  
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Summary statistics for age at admission and length of stay are presented in 
Table 2. Note that the standard deviation formula uses the (number of observa-
tions minus one) to produce an unbiased estimator for the corresponding popu-
lation parameter (Shoukri [8]). 

The main purpose of using the GLM, which requires independent responses, 
is to produce a point estimator of the within cluster correlation (Shoukri, [8]).  

From the GLM procedure we have, MSBD 1.8214= , MSWD 0.0218=  and 

0 474k = . From Equation (1) the intra-cluster correlation coefficient ˆ 0.16ρ = . 
Note that: 
The Effect of Dichotomization 
Measurements of continuous variables are made in all branches of epidemio-

logical studies aiding in the diagnosis and treatment of patients. In clinical prac-
tice it is helpful to label individuals as having r not having an attribute, such as  
 
Table 2. Summary statistics for age at admission (AAA) and length of stay (LOS) pre-
sented by discharge status (Alive, Dead). (a) Status = Alive; (b) Status = Dead. 

(a) 
 N Minimum Maximum Mean Std. Deviation 

AAA 184907 0 100 32.39 24.841 

LOS 184894 1 358 9.10 15.352 

(b) 

 N Minimum Maximum Mean Std. Deviation 

AAA 7046 0 100 46.31 27.196 

LOS 6990 1 362 28.74 41.572 
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being “old” or “young” or having “long stay” depending on the number of days. 
Dichotomization of continuous variables is also common in clinical research, 

but the statistical analysis has some serious drawbacks as there will be reduction 
in the precision of the estimated effect sizes. Though grouping may help data 
presentation, notably in tables, categorization is unnecessary for. Here we con-
sider the impact of converting continuous data to two groups (dichotomizing), 
as this is the most common approach in clinical research. 

Within each model we estimated for each effect the log-odds as an effect size 
using continuous and categorized covariates. We found that the GLIMMIX has 
superior advantage over the logistic regression and the GEE models. We calcu-
lated the optimal split for the AAA and LOS using the “Receiver Operating 
Characteristic curve” or ROC curve. Figure 1 and Table 3 shows the optimal cut 
off for LOS is 160 days, and the corresponding area under curve 73%. This 
means that the risk of death is significantly higher among patients who are hos-
pitalized over 160 days relative to those who stay less than 160 days, (corrected 
P-value = 0.0001). Additionally, in Figure 2, and Table 4 we show that the op-
timal split for AAA is 53 years. The areas under the ROC curve corresponding to 
the dichotomized covariate AAA is 65%. 
 

 
Figure 1. The ROC curve for the LOS. 

 
Table 3. Area under the curve for the LOS optimal cut-off point. 

Area Std. Error P-value 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

0.727 0.004 0.0001 0.720 0.734 

Corrected P-value = 0.0001; The optimal cut-off point is LOS ≥ 160 days. 
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Figure 2. The ROC curve for AAA. 

 
Table 4. Area under the curve, test result variable(s) for AAA. 

Area Std. Error P-Value 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

0.647 0.004 0.0001 0.640 0.654 

Corrected p-value = 0.0001; The optimal cut-off pint is age ≥ 53 is associated with death. 

 
Dichotomizing leads to several problems. Firstly, much information is lost, 

and this can been seen from the increase in the estimated standard errors of the 
odds ratios. Moreover, the odds ratios point estimates are inflated as well and 
therefore are potentially biased. For example, in Table 5 the estimated odds ratio 
of the dichotomized LOS is 14.53 while its value is 1.024 when measured on the 
continuous scale under the same model. The remark holds true if the fitted 
model is the GEE as shown in Table 6. The estimates are somewhat stable under 
the GLIMMIX and the results are shown in Table 7. One may conclude that di-
chotomization may increase the risk of a positive result being a false-positive.  

Categorical Age:  
Alternative to dichotomization we categorized age in a meaningful way such 

that: 
Group 1: Age is less than 14 years 
Group 2: Age between 15 and 30 
Group 3: Age between 31 and 59 
Group 4: Age above 60. 
When we plotted the mortality rate, with 95% confidence limits, against the 4 

age categories, as shown in Figure 3, there was an increasing trend in mortality  
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Figure 3. Death rate versus the 4 age categories. 
 
Table 5. Estimating the odds ratios using the logistic regression models. 

Effect 
Continuous Covariates Dichotomized Covariates 

OR 95% CI OR 95% CI 

AAA 1.021 1.02 - 1.022 2.88 2.75 - 3.03 

LOS 1.024 1.023 - 1.025 14.53 11.86 - 17.80 

AIC = 54522   AIC = 57694  

 
Table 6. Estimating the odds ratios using the GEE models. 

Effect 
Continuous Covariates Dichotomized Covariates 

OR 95% CI OR 95% CI 

AAA 1.025 1.02 - 1.031 3.22 2.304 - 4.511 

LOS 1.030 1.024 - 1.036 19.88 10.665 - 37.308 

QIC = 13192   QIC = 14319  

 
Table 7. Estimating the odds ratios using the GLIMMIX models. 

Effect 
Continuous Covariates Dichotomized Covariates 

OR 95% CI OR 95% CI 

AAA 1.014 1.012 - 1.017 1.68 1.48 - 1.90 

LOS 1.013 1.011 - 1.015 2.42 1.48 - 3.97 

2 3.24 0.50bσ = ±   2 3.56 0.54bσ = ±  

Scaled deviance = 0.62  Scaled deviance = 0.65 

−2 Res log-likelihood = 477379  −2 Res log pseudo-likelihood = 478461 
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as age groups moved up. The one-degree of freedom Cochran-Armitage test for 
trend was quite significant with p-value < 0.001.  

2 3.56 0.54bσ = ± , Scaled deviance = 0.61, and, −2 Res log pseudo-likelihood = 
477030. 

The GLIMMIX estimation when age is categorized into 4 groups is given in 
Table 8. The odds ratio estimate of LOS, which is highly correlated with age has 
improved and in fact is almost similar to the estimated odds ratio when the age 
was taken as a continuous covariate. There is almost no change in the between 
DRG variance component estimate, 2 3.56bσ = , confirming the hypothesis that 
the measured covariates are not correlated with the random component in the 
model. The scaled deviance is less than one, indicating that the model has cap-
tured the effect of the measured and the unmeasured covariates. The value of −2 
Res log pseudo-likelihood, (which is equivalently defined as the AIC),indicates 
that model goodness of fit is also acceptable. 

Under the GLIMMIX model, whose results are summarized in Table 8, the-
CIHI [9] index of hospital performance when mortality is the outcome of inter-
est is: 

7053iNUM O == ∑ , and 7117iDEN E == ∑  

giving CIHI = NUM/DEN less than unity. This indicates that the hospital risk 
adjusted mortality meets the CIHI criteria for quality. 

5. Discussion 

Although the fitted models produced odds ratio estimates whose changes and 
trend were in the same direction and of the same significance, the magnitude of 
point estimates and length of confidence intervals varied. Clearly the logistic re-
gression produced a smaller length of confidence intervals. This should be ex-
pected, since this model ignores the nature of the correlation structure among 
responses within each DRG, and hence the standard errors are under-estimated. 
The GEE, introduced by Liang and Zeger [10] is suitable for the analysis of clus-
tered data. The GEE estimation produced similar magnitude of point estimates 
but relatively less precise confidence intervals. The GEE is supposed to produce 
consistent estimates even if the within DRG correlation parameter is misspeci-
fied. In our case we assigned an exchangeable correlation, as a working correla-
tion parameter to represent the average within DRG heterogeneity. Finally the 
GLIMMIX produced entirely different set of estimates, and an estimate of an  
 
Table 8. GLIMMIX: Age is categorized into 4 groups with group 4 being the reference. 

Effect OR 95% CI 

Age group 1 0.901 0.816 - 0.996 

Age group 2 1.805 1.684 - 1.935 

Age group 3 3.589 3.353 - 3.842 

LOS 1.024 1.023 - 1.025 
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additional parameter representing the variance component or quantification of 
the between DRG variation. 

When applied to dichotomous response variable, the GEE results are to be in-
terpreted at the population average (PA) level and does not account for hetero-
geneity across the DGRs. The GEE indicates that the risk of death depends on 
AAA and LOS that are measured at the individual level and not on any random 
effect across the clusters of DRGs. This model uses a working correlation as an 
instrument to account for the within DRGs variations. 

However the, the fundamental feature of the GLIMMIX is the assumption of 
heterogeneity across DRGs in our study population. The GLIMMIX interprets 
the estimated model parameter (the odds ratio) as conditioned on DRG specific 
intercepts. These intercepts reflect a natural heterogeneity due to unmeasured 
covariates. For example, presence or absence of co-morbid conditions, or 
re-admission (yes/no) may produce different trajectory for the risk of death. 
Therefore, there is as expected a sizable difference in the magnitude of uncer-
tainties between the GEE and the GLIMMIX. 

6. Conclusion 

In conclusion, health services and quality of care research might use any of the 
above models depending on the scientific question posed. The GEE, will produce 
estimates that will be of most interest to quality health services and policy mak-
ers who evaluate hospital performance on an average level. On the other hand, 
the GLIMMIX will have RDRG level interpretation. 
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