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Abstract 

A class of pseudo distances is used to derive test statistics using transformed 
data or spacings for testing goodness-of-fit for parametric models. These sta-
tistics can be considered as density based statistics and expressible as simple 
functions of spacings. It is known that when the null hypothesis is simple, the 
statistics follow asymptotic normal distributions without unknown parame-
ters. In this paper we emphasize results for the null composite hypothesis: the 
parameters can be estimated by a generalized spacing method (GSP) first 
which is equivalent to minimize a pseudo distance from the class which is 
considered; subsequently the estimated parameters are used to replace the 
parameters in the pseudo distance used for estimation; goodness-of-fit statis-
tics for the composite hypothesis can be constructed and shown to have again 
an asymptotic normal distribution without unknown parameters. Since these 
statistics are related to a discrepancy measure, these tests can be shown to be 
consistent in general. Furthermore, due to the simplicity of these statistics 
and they come a no extra cost after fitting the model, they can be considered 
as alternative statistics to chi-square statistics which require a choice of inter-
vals and statistics based on empirical distribution (EDF) using the original 
data with a complicated null distribution which might depend on the para-
metric family being considered and also might depend on the vector of true 
parameters but EDF tests might be more powerful against some specific 
models which are specified by the alternative hypothesis. 
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1. Introduction 

Let 1 1, , nX X −  be a sample of size 1n −  from a continuous distribution 
{ }F F∈ θ  and let 1 1nX X −≤ ≤  be the order statistics and let the transformed 

data be defined as ( ) ( ) , 1, , 1i iU F X i n= = −θθ , ( ) ( ) ( )( ) , 1, , 1i iU F X i n= = −θθ  
and define ( )( ) 1nF X =θ  and ( )( )0 0F X =θ . The spacings are given by 

( ) ( )( ) ( )( )1i i iD F X F X −= −θ θθ , 1, ,i n=   
Ghosh and Jammalammadaka [1], Luong [2] have studied generalized spacing 

methods (GSP) of estimation with the vector of GSP estimators given by the 
vector θ̂  which minimizes 

( )1
n

ii h nD
=∑  with ( )h x xα= −                    (1) 

Using this class of ( )h x , it is shown that the asymptotic covariance matrix of 
θ̂  is given by 

( ) ( ) 121
h I

n
σ α

−
  θ  with ( )2 0hσ α ≥  

and ( )2
hσ α  depends on α  but does not depend on the parametric family 

{ }Fθ  and ( )I θ  is the usual information matrix of maximum likelihood (ML) 
estimation. 

Furthermore, by letting 0α +→ , ( )2 1hσ α → . This result is interesting, as it 
means if we set 0.01α =  we then have ( )2 1.02hσ α ≈  and therefore, the loss of 
efficiency comparing to ML estimation or maximum spacing (MSP) method is 
around two percent no matter which parametric model is used. Luong [2] has 
also shown that this loss of efficiency is compensated by a gain in robustness and 
it might be preferred to use GSP estimation if ML and MSP estimation are not 
robust; see Remark 2 as given by Luong [2] (p 632). Furthermore, when there are 
tied observations, this implies some spacings will be equal to 0 and log of these 
spacings is undefined so that we might want to use GSP methods instead of 
maximum spacing method (MSP) method; see Section 5 for tied-observations. 
MSP method is also called maximum product of spacings method; see Cheng 
and Stephens [3]. 

In this paper, we focus on using this class of GSP methods for construction of 
goodness-of-fit tests statistics for testing the simple null hypothesis: 

H0: data come from a distribution 
00F F= θ ; 0θ  is specified and for testing 

the composite null hypothesis. 
H0: data come from the parametric family { }F F∈ θ ; θ  is unspecified. For 

the composite H0, Cheng and Stephens [3] have shown that the Moran’s statistic 
with parameters estimated by the MSP method has an asymptotic normal dis-
tribution which does not depend on the parametric family { }Fθ  and we shall 
show that similar properties hold for the class of test statistics constructed using 
the class of GSP methods being considered in this paper. In a previous paper, we 
have considered estimation using this class of GSP methods and parameter hy-
pothesis testing. In this paper, we focus on model validation using this class of 
GSP methods since testing for goodness-of-fit for composite H0 using GDP me-
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thods has not received much attention in the literature. 
We adopt an approach using pseudo distances by showing the class of 
( ) ,0 1h x xα α= − < <  induces a class of pseudo distances which we shall denote 

by ( )ф 1 2,d f f , the function ( )ф 1 1x h xα= − = + , 1f  and 2f  are densities 
and ( )ф 1 2,d f f  is a measure to quantify how close these densities are. Implicitly, 
for methods using spacings we work with transform data and if 0θ  is the true 
parameter then the transform data 

( ) ( )
00 , 1, , 1i i iU F X F X i nθ= = = −  

will follow a standard uniform distribution with density 1,0 1Uf x= ≤ ≤  and 
0Uf = , elsewhere. 

Using the transformed data we can obtain an easily constructed elementary 
density estimate without requiring a kernel of the usual density estimate, this 
empirical density estimate is denoted by n̂f , see expression (6) and for testing 
the simple null hypothesis, a test statistic can be constructed which is based on 

( )ф ,k
n Un d f f                             (2) 

with the restriction on 0k >  and ( )ф ,k
n Un d f f  can be reexpressed equiva-

lently as a simple function of spacings and numerically simple to compute; the 
statistic will follow an asymptotic normal distribution which does not depend on 
the parametric family. For the statistic to have good power for large samples, it 
appears that we should choose the scaling factor kn  so that an asymptotic dis-
tribution exists for the statistic given by expression (2) and at the same time 

0k >  so that kn →∞  as n →∞  and if ( )ф ,n Ud f f  can be used to discri-
minate whether the sample is drawn from an assumed distribution, the test will 
be consistent and it is an advantage over chi-square tests which do not have the 
consistency property, in general. 

For the composite hypothesis, we use a GSP method to obtain the GSP esti-
mators given by the vector θ̂  first but we shall see that minimizing expression 
(1) is equivalent to minimizing the following pseudo distance based on a func-
tion ф , the expression up to a positive multiplicative constant is given by 

( )ф ,k
n Un d f fθ , nf

θ  is defined by expression (11) in Section (4). 
Subsequently the statistic is based on 

( )ˆ
ф ,k

n Un d f fθ                           (3) 

and after simplifications, it is reduced to a simple function of spacings with es-
timated parameters and it will be shown again the equivalent statistic to the one 
given by expression (3) will follow an asymptotic normal distribution without 
unknown parameters; this property will facilitate goodness-of-fit testing. Using 
this unified presentation, we would like to show that these statistics are density 
based and they are parallel to traditional test statistics based on distribution 
functions (EDF) such as the Anderson-Darling statistic, see Anderson Darling 
[4], Boos [5], Stephens [6] or chi-square goodness-of-fit statistics with parame-
ters estimated with minimum chi-square methods as discussed by Greenwood 
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and Nikulin [7] (p 70-159). 
The approach used in this paper hopefully will unify estimation and model 

testing and facilitate the comparisons of these density based statistics with tradi-
tional EDF statistics and chi-square statistics which are more often used than 
these density based statistics. We note that these statistics can be computed easi-
ly and their null asymptotic distribution is normal without unknown parameters 
which make it easy to use these statistics and comparing to the related chi-square 
statistics, these statistics do not need a choice of intervals and they come as by 
products when fitting models using the corresponding GSP methods. This fea-
ture is not shared by maximum likelihood (ML) methods. 

We also note that power analysis using theoretical works might not give a 
complete picture for these density based statistics as the analysis is often based 
on only one sequence of functions which belongs to the alternative hypothesis 
converging to the functions specified by the null distribution and there are so 
many sequences that can approach the functions of the hypothesis in a function-
al space; see Sethuraman and Rao [8] for Pitman efficiency analysis for these sta-
tistics for the simple null hypothesis. 

In this paper, we shall concentrate on asymptotic distributions goodness-of-fit 
tests statistics based on GSP methods and emphasizing a class of GSP methods 
which complete the results on estimation and parameter testing given by a pre-
vious paper. Implicitly, GSP methods in this paper mean GSP methods restricted 
to the class being considered in this paper. Furthermore, we do not touch upon 
the question of power analysis which might need extensive simulations studies 
with many models chosen for the alternative hypothesis as we do not have 
enough computing facilities and resources for such large scale simulation stu-
dies, see Cheng and Stephens [3] (p 386) on power of the Moran’s statistic 
with the MSP method which is also called maximum product of spacings me-
thod; also see Zhang [9] for simulation studies for assessing the power of some 
EDF tests. 

The paper is organized as follows. 
In Section 2, a class of pseudo distances which generate the related GSP me-

thods for estimation and model testing is introduced and the inference methods 
are based on spacings or equivalently on transformed data. The elementary den-
sity estimate introduced by Kale [10] is presented in Section 3 and a pseudo dis-
tance between the elementary density estimate and the standard uniform density 
is used to construct goodness-of-fit statistic for testing the simple null hypothesis, 
the statistic is shown to be expressible as a simple function of spacings which 
follows an asymptotic normal distribution without unknown parameters under 
the simple null hypothesis. In Section 4, for testing the composite hypothesis we 
can choose a GSP method within the class being considered by minimizing a 
corresponding pseudo distance which implicitly define a GSP method for esti-
mation then use the obtained estimators to replace the unknown parameters in 
the pseudo distance to construct a goodness-of-fit statistic and after simplifica-
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tion the statistic is expressible as a simple function of spacings with an asymp-
totic normal distribution which does not depend on the parameters as in the 
simple null hypothesis case. In Section 5, tied-observations are discussed and it 
might be more practical to use a GSP method instead of the MSP method as tied 
observations do not cause numerical difficulties for GSP methods but extra cares 
are needed if MSP method is used, see Cheng and Stephens [3] (p 391) for tied 
observation treatments for MSP method. Section 6 gives some discussions on 
power analysis using theoretical works highlighting that theoretical power anal-
ysis might not give a complete picture of power of the statistics due to functions 
are involved under the null and alternative hypothesis comparing to the classical 
set up which only involve scalars. 

2. Discrepancy Measures or Pseudo Distances 

We shall see that pseudo-distances can be created using a convex function 
( )ф , 0x x ≥  with ( )ф x′  and ( )ф x′′  being respectively its first and second de-

rivatives with ( )ф 0x′′ ≥ . We focus on pseudo distances defined by using as 
( )ф 1 , 0,0 1x x xδ δ= − ≥ < <  and let 1α δ= − . The GSP estimators given by 

the vector θ̂  can be seen are based on this class as they are obtained by mini-
mizing the following objective function with respect to θ  and by choosing a 
value for α , 

( ) ( )( )1 ,0 1n
n iiT nD

α
α

=
= − < <∑θ θ , 

i.e., specifying ( ) ,0 1, 0h x x xα α= − < < > . 
We shall see that using this class of ( )h x  using spacings is equivalent to use 

a class of pseudo distances for densities defined using ( )ф x . It has been shown 
in our previous paper that GSP methods can attain high efficiency for estimation 
using values for α  being positive and near 0. 

Note that by letting 0α +→  we obtain full efficiency and with 0.05α = , the 
asymptotic relative efficiency is around 0.98 for all parametric families compar-
ing to fully efficient methods such as the MSP method or ML method or Hellin-
ger method based on density estimate using the original data  introduced by 
Beran [11]. The elementary density estimate which makes use of spacings is 
based on transformed data and it is easily obtainable without requiring a kernel. 
The elementary density estimate is due to Kale [10]. We shall introduce it sub-
sequently after the definition of pseudo distance and give an interpretation to 
GSP methods as minimum distance methods based on pseudo distances which 
are density based measures of discrepancy. Presenting from this point of view, it 
parallels the Hellinger methods introduced by Beran [11] with the use of Hellin-
ger distance and the original data. It might be more complicated for practition-
ers to implement Beran’s minimum Hellinger distance methods which require a 
kernel density estimate with a choice of window than implementing these GSP 
methods. 

This will also make the GSP methods parallel to EDF methods such as the 
Cramér Von Mises methods or weighted Cramér-Von Mises distances such as 
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the Anderson-Darling distance methods which also make use of the original data. 
For Anderson-Darling (AD) distance, see Anderson and Darling [12]. The An-
derson-Darling distance is also a pseudo distance which is always nonnegative 
and measures the discrepancy between two distribution functions and it needs 
not obey the triangle inequality. Minimizing the discrepancy between the usual 
empirical distribution and the distribution of the parametric family will give the 
minimum Anderson-Darling estimators (MAD), see Boos [5]. 

In general, the MAD estimators are robust and have high efficiencies but for 
some parametric families, the overall relative efficiency when compared to 
maximum likelihood (ML) estimators can fall below 0.80, see Boos [5] (p 2754). 
Once the MAD estimators given by the vector θ  is obtained, the Ander-
son-Darling distance can be used to form the AD statistic which is given by 

( ) ( ) ( )2
dnAD n F F F x

∞

−∞
= −∫ θ θθ                  (4) 

to test the validity of the model specified by the composite { }0 :H F F∈ θ , i.e., 
the data is drawn from a distribution F which belongs to the family { }Fθ  and 

nF  is the usual empirical distribution function using the original data. The ex-
pression (4) can also be reexpressed so that it is more suitable for calculations 
see Boos [5] (p 2748). It has been shown that the null distribution of statistics 
which is based on empirical distribution function (EDF) such as the AD statistic 
defined by expression (4) does not have a unique null distribution asymptotical-
ly as it will depend on { }Fθ  and possibly also on 0 θ∈θ , see Boos [5] (p 
2759-2766), Pollard [12] (p 61). Even in the case where the null hypothesis is 
simple, it is still quite complicated and often extensive simulations are needed to 
calculate the p-value of such tests or extensive tables are needed for the use of 
these EDF tests. We shall see that it is not the case for the GSP methods based on 
the ф  functions as we have defined earlier. We focus on this class of ф  func-
tions as it can give high efficiency for estimation and the pseudo distances used 
for estimation can also be used to construct goodness-of-fit statistics. Unlike the 
EDF test statistics, for statistics using these pseudo distances we have an asymp-
totic normal distribution as null distribution regardless of the value of the vector 

0θ  and regardless of { }Fθ  for goodness-of-fit the parametric model. The 
goodness-of-fit statistics are easily obtainable as they are based on the same 
pseudo distances used for estimation and the statistics can be expressed in an 
equivalent form as simple functions of the spacings. In this paper, we relate es-
timation and goodness of fit by considering them as inference methods based on 
pseudo distances; the approach might provide more insights on the methods 
using spacings which have appeared in the literature as methods for estimation 
and testing using spacings are usually presented separately. 

Before introducing these goodness-of-fit statistics, first we shall define a 
ф-discrepancy measure which induces a ф-pseudo-distance. The definitions 
have been given by Ali and Silvey [13], Pardo [14] (p 5-7) and reproduced be-
low. 

Definition (ф -pseudo-distance) 
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The ф-pseudo-distance or ф-divergence measure between two densities 1f   

and 2f  is defined by ( )
2

1
ф 1 2

2

, фf
fd f f E
f

  
=      

, ( )
2

.fE  is the expectation using 

2f , ф  is a convex function with ( )ф x  defined for 0x ≥  and the second de-
rivative ( )ф x′′  exists and ( ) ( )ф 0,ф 1 0x′′ ≥ = . 

We have ( )ф 1 2, 0d f f ≥ , ( )ф 1 2, 0d f f =  if and only if 1 2f f=  except on a 
set of measure 0. The discrepancy measure needs not be symmetric as 

( ) ( )ф 1 2 ф 2 1, ,d f f d f f≠  and it does not need to obey the triangle inequality and 
unless otherwise stated, we focus on the class of ( )ф 1 , 0,0 1x x xδ δ= − ≥ < <  
and let 1α δ= − . 

Using the above function, the pseudo distance can be expressed as 

( ) ( )
( ) ( ) ( ) ( )1 1

ф 1 2 2 1 2
2

, 1 d 1 d
f x

d f f f x x f x f x x
f x

δ

δ δ∞ ∞ −

−∞ −∞

 
= − = −  

 
∫ ∫  

and we shall use these pseudo distances to construct goodness-of-fit test statis-
tics using transformed data or equivalently spacings and related them with re-
sults which already obtained using spacings which have appeared in the litera-
ture. The advantage of this approach is an unified treatment can be given to es-
timation and model testing and it can reveal tests based on statistics which make 
use of spacings which might not be powerful for large samples when used for 
testing of goodness-of-fit. 

Note that Hellinger distance (HD) which is a true distance as used by Beran 
[11] can be expressed in a similar form with 

( ) ( ) ( )( ) ( ) ( )
1 1

2 2 2
HD 1 2 1 2 1 2, d 2 2 dd f f f x f x x f x f x x

∞ ∞

−∞ −∞
= − = −∫ ∫ . 

In the next section, we shall present an elementary density estimate using 
transformed data and we aim to test the following simple H0 which specifies that 
the random sample of observation is drawn from a distribution function 

( ) ( )
00F x F x= θ , 0θ  is specified and ( )0F x  has a closed form expression. 

 We assume to have a random sample of size 1n −  which consists of 

1 1, , nX X −  and these observations are independent and identically distri-
buted(iid) as X which follows a distribution { }F F∈ θ ,{ }Fθ  is the parametric 
model used and let the order statistics be denoted by 1 2 1nX X X −≤ < ≤ .The 
vector of parameters is denoted by ( )1, , mθ θ ′= θ , 0θ  is the true vector of 
parameters. 

If we want to test the simple null hypothesis which specifies that data come 
from ( )

00F F x F= = θ , let ( )0i iU F X=  be the transformed data and the order 
statistics based on transformed data are ( ) ( ) ( )1 2 1nU U U −≤ ≤ ≤  and the spacings 
be defined as ( ) ( )1 , 1, ,i i iD U U i n−= − =   with ( )0 0U =  and ( ) 1nU =  and it is 
clear that the transformed data will follow a uniform distribution under the null 
hypothesis. Now using the transformed data and instead of constructing the 
usual empirical distribution function which is a step function, we use the line 
segments to join the points where there are jumps so that it becomes a piecewise 
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linear function, i.e., define the following smoothed empirical distribution as 
given by Kale [10] (p 44), 

( ) ( )
( ) ( )1

ˆ , , 1, ,i
n i i

i

x UiF x U x U i n
n nD −

−
= + ≤ ≤ =              (5) 

The density function of ( )UF x  is 

( ) ( )d
1,0 1

d
U

U
F x

f x x
x

= = ≤ ≤  and ( ) 0Uf x = , elsewhere.    (6) 

The procedure to smooth the empirical distribution using transformed data is 
similar to the procedure of constructing an ogive function when data have been 
grouped into intervals and we need to smooth the empirical distribution func-
tion, see Klugman et al. [15] (p 212) for the ogive function. 

The smoothed empirical distribution function admits the following elementa-
ry density estimate as density, 

( ) ( ) ( )1
1ˆ , , 1, ,n i i

i

f x U x U i n
nD −= ≤ ≤ =                (7) 

and it can be obtained easily without requiring a kernel and specifying a win-
dow. 

3. Density Based Statistics for Simple Null Hypothesis 

It is not difficult to see that under the simple null hypothesis the transformed 
data follow the uniform distribution with density function given by 

( ) 1,0 1Uf x x= ≤ ≤  and ( ) 0Uf x =  elsewhere and an appropriate good-
ness-of-fit statistic can be based on 

( ) ( ) ( ) ( )11
ф 0

ˆ ˆ ˆ, 1 d 1 dn U n U nd f f f x f x x f x xδ δ δ∞ −

−∞
= − = −∫ ∫  

since ( ) 1,0 1Uf x x= ≤ ≤  and ( ) 0Uf x =  elsewhere. 
Therefore, if we can find a real number 0k >  so that 

( )ф
ˆ ,k
n Un d f f                          (8) 

has an asymptotic distribution which no longer depends on the functional form 
of 0F , the statistic for testing goodness-of-fit can be based on the statistic 

( )ф
ˆ ,k
n UV n d f f=  and the test will have power since with n →∞ , this will 

imply kn →∞  and with ( )ф
ˆ ,n Ud f f  being a measure which can detect 

whether the sample is drawn from an assumed distribution, the statistic given by 
expression (8) will be able to detect departure from the null hypothesis in proba-
bility as n →∞ . 

In fact, we do not need to require ( )ф
ˆ , 0n Ud f f ≥ , ( )ф

ˆ ,n Ud f f  only needs to 
be defined up to a positive multiplicative constant and an additive constant. In 
fact, all we need is to have the following main property with the following situa-
tions: 

1) If the sample is drawn from a distribution F and n̂f  is constructed based 
on the transformation ( )ф

2

ˆ ,n Ud f f  applied on the data and we compute 
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( )ф
ˆ ,n Ud f f , we shall use the notation ( )ф

1

ˆ ,n Ud f f  for ( )ф
ˆ ,n Ud f f  computed 

under situation 1. 
2) If the sample is drawn from a distribution G and n̂f  is constructed based 

on the transformation F applied on the data and we compute ( )ф
ˆ ,n Ud f f  and  

we shall use the notation ( )ф
2

ˆ ,n Ud f f  when it is computed under situation 2. 

Then, we should have ( ) ( )ф ф
2 1

ˆ ˆ, ,n U n Ud f f d f f>  in probability and in gen-
eral this property holds using Theorem 1 as given by Kirmani and Alam [16] (p 
200). Consequently, by having this property, eventually we can detect departure 
from the null hypothesis as n →∞  using a statistic based on ( )ф

ˆ ,n Ud f f . 
Furthermore, if we can simplify the expression of V so that we can have an 

equivalent statistic which serves the same purpose and it is simpler to compute 
then it is interesting to use its equivalent form. It turns out that this is the case as 
the statistic can be expressed as a simple function of spacings. However, by re-
lating to the discrepancy measure, the test based on such a statistic can be seen 
to be consistent. This statistic parallels the one proposed by Beran [11] (p 458) 
which uses the Hellinger distance with the original data and a kernel density es-
timate. It is simpler to obtain this statistic than the one given by Beran. 

Now we shall examine the component ( )1

0
ˆ dnf x xδ∫  of ( )ф

ˆ ,n Ud f f . We ob-
serve that 

( )
( )

( ) ( )
1

1

1 10

1ˆ d di

i

Un n
n i ii iU

i

f x x x D nD
nD

δ
δδ

−

−

= =

 
= = 

 
∑ ∑∫ ∫  

and it can be re-expressed as 

( ) ( ) ( ) ( )1 1
1 10

ˆ d , 1n n
n i ii i

nf x x n D nD
n

δ
δ αδδ

α α δ
−

−−

= =
= = = −∑ ∑∫ ,     (9) 

see Kirmani and Alam [17] for goodness of fit test using statistic of the form 
( ) 1

1 , 1n r
iisgn r D r+

=
> −∑ . Our approach here is slightly different as we relate the 

statistic with the pseudo distance and by doing so we can examine the test statis-
tic from two angles and see whether the test statistic might have good power or 
not for large samples. 

Using results as given in section 2 by Luong [2], we can conclude that  

( )1

1 n
ii nD

n
α

=∑  has an asymptotic Normal distribution as a Central limit  

Theorem can be applied to the expression. By letting the mean and variance of 
W α  with W which follows a standard exponential distribution and using the 
moment generating function of the log-gamma distribution which states that 

( ) ( )1cE W c= Γ +  for 1c > − , 

we have ( ) ( )1E W αµ α= = Γ +  with ( ).Γ  being the usual gamma function, 

( ) ( )( ) ( ) ( )( )
2 22 2 1 2 1E W E Wα ασ α α= − = Γ + − Γ + , 

so that we have an asymptotic normal distribution for the test statistic P defined 
below and if we need to emphasize the dependence on 0θ , we also use the notation  
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( )0P P= θ  and it is given by
( )

( )
1

1

0,1

n
ii

L
nD n

nP N

α µ

σ

=
−

= →
∑

 with 

L→  to denote convergence in distribution or in law. 
Therefore, if we look for the scaling factor k using expression (9) we should 

consider 
1 1 11
2 2 2

k δ α= + − = − =  since 1α δ= −             (10) 

and with 0k > , this will imply kn →∞  with n →∞  and the test will have 
power for large samples. This magnified scaling factor kn  will make the statis-
tic sensitive to departure from the null hypothesis when the sample sizes become 
large. This property of consistency of the tests did not seem to have received at-
tention in the literature. 

The asymptotic distribution of the statistic 

( ) ( )ф 1

1ˆ , nk k
n U iiV n d f f n nD

n
α

=
= = − ∑  

which can also be represented as kV n Z= −  with ( )1

1 n
iiZ nD

n
α

=
= ∑  which  

follows a Normal distribution with mean Z nµ µ=  and variance 2 2
Zσ σ= . 

We should reject H0 if V b≥  and b is chosen so that the approximate probabil-
ity (aP) given by the asymptotic distribution with ( )aP V b p≥ =  for a test of 
size p. From the following equalities, 

( ) ( ) ( )k k kp aP V b aP V n b n aP Z b n= ≥ = − ≥ − = − ≥ −  

and hence, ( )kaP Z n b p≤ − = , we reject H0 if 

( )1

1 n
ii

p

nD n
nP z

α µ

σ

=
−

= ≤
∑

                (11) 

with pz  being the p-th percentile of the standard normal distribution. Note 
that we need to restrict α  to be positive and near 0 as within this range for α , 
GSP methods are efficient for estimation. The test based on Matusita’s distance  

or Hellinger distance with 
1
2

α =  using transformed data with the statistic as  

given by expression (11) might make the test having low power for large samples 
when the null hypothesis is composite; see Kirmani and Alam [16], Kirmani  

[17] for the statistic using 
1
2

α =  but with 
1
2

α =  the GSP method is not  

efficient for estimation. Testing for the null hypothesis which is composite will 
be considered subsequently. 

4. Density Based Statistics for Null Composite Hypothesis 

For testing the null composite hypothesis which specifies that data come from 
the parametric family { }Fθ  and since 0θ  is unknown, we proceed to estimate 
θ  by minimizing a chosen pseudo distance based on a value fixed for α  and 
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subsequently use the same pseudo distance to construct the statistic. The second 
step is similar to the construction of the statistic for simple null hypothesis as it 
consists of replacing the unknown parameters with their estimates and once they 
are replaced, the statistic will have a similar form as in the simple null hypothesis 
case. 

Parallel to the simple null hypothesis case, we transform the data and let 
( ) , 1, , 1i iU F X i n= = −θ  and since in this case the Ui’s depend on θ , we also 

use the notation ( )i iU U= θ  and define as before the spacings but they will de-
pend on θ  and given by 

( ) ( ) ( ) ( ) ( )1 , 1, ,i i iD U U i n−= − = θ θ θ  

with ( ) ( ) ( ) ( )0 0, 1nU U= =θ θ  for all θ∈θ , θ  is the parameter space assumed 

to be compact. 
Since the transformed data ( ) , 1, , 1i iU F X i n= = −θ  depends on θ , we 

might want to call them pseudo transformed data which leads to define the fol-
lowing pseudo elementary density estimate as 

( ) ( ) ( ) ( )1
1ˆ , , 1, ,n i i
i

f x U x U i n
nD −= ≤ ≤ = 

θ

θ
,         (12) 

using the notations 

( ) ( ) ( ) ( ) ( ) ( )1 1 ,i i i iU U U U− −= =θ θ . 

We estimate first θ  by θ̂  which minimizes ( )ф
ˆ ,n Ud f fθ  which is equiva-

lent to minimize ( )( )1
n

ii nD
α

=
−∑ θ  or maximizes ( )( )1

n
ii nD

α

=∑ θ . 
The estimators given by the vector θ̂  are Generalized spacing (GSP) esti-

mators with a GSP method using ( ) ,0 1h x xα α= − < <  with α  which is spe-
cified. 

The goodness-of-fit test statistic can be based on ( )ˆV V= θ  which depends 
on θ̂  this time and can be similarly constructed as for the simple hypothesis 
case with 

( ) ( ) ( ) ( )ˆ
ф

ˆˆ , ,ф 1k
n UV n d f f x xα α= = −θθ . 

Argue as in the case of simple null hypothesis it leads to consider the equiva-
lent statistic 

( )
( )( )1

1 ˆ
ˆ

n
ii nD n

nP

α
µ

σ

=
−

=
∑ θ

θ                 (13) 

We shall show subsequently that we have the equality in distribution  

( ) ( )0
ˆ dP P=θ θ ,                        (14) 

0θ  is the true vector of parameters, by showing 

( )( ) ( )( )01 1

1 1ˆn nd
i ii inD nD

n n

α α

= =
=∑ ∑θ θ , 0θ  is the vector of true parameters, 
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so that we reject the composite null hypothesis if 

( )ˆ pP z≤θ .                        (15) 

The statistic is similar to the one used for the simple null hypothesis case. All 
we need is to replace 0θ  by θ̂  in the expression of the statistic used for the 
simple hypothesis. 

Observe that we can expand the expression 

( ) ( )( )0 01

1 n
iiH nD

n
α

=
= ∑θ θ                  (16) 

around θ̂  using a Taylor’s type of expansion technique, a technique which is 
also used in the proof for asymptotic normality of θ̂  as given in section (3.2) 
by Luong [2] and let ( )′H θ  and ( )′′H θ  be respectively the first derivative 
vector and second derivative matrix and we have ( )ˆ 0′ =H θ  since θ̂  max-
imizes ( )H θ  or minimizes ( )H− θ . Therefore, we have the following equality 
in probability 

( ) ( ) ( ) ( ) ( )0 0 0 0
1ˆ ˆ ˆ

2
p n

n
 ′ ′′= + − − 
 

H H Hθ θ θ θ θ θ θ      (17) 

with ( )0
1
n

 ′′ 
 

H θ  and ( )0
ˆn ′−θ θ  being bounded in probability as  

( )0
1

2 n
 ′′ 
 

H θ  is up to a constant equivalent to the matrix 0A  which is given  

by Luong [2] (p 629-630) and ( )0
ˆn −θ θ  has an asymptotic distribution. Now 

with 0
ˆ p→θ θ , we then have ( ) ( ) ( )0

ˆ 1pH H o= +θ θ  with ( )1po  being an 
expression which converges to 0 in probability. Therefore, 

( )( ) ( )( )01 1

1 1ˆn nd
i ii inD nD

n n

α α

= =
=∑ ∑θ θ              (18) 

which justifies the use of expression (15). 
The same type of property has been shown to hold for the asymptotic distri-

bution of the Moran’s statistic with Maximum spacing estimators for testing 
goodness of fit for parametric models, see Cheng and Stephens [3] (p 390). 

The GSP methods with [ ]0.01,0.05α ∈  might be recommended as it induces 
a minimum loss of efficiency across parametric models, say with 0.01α = , the 
loss of efficiency comparing to the MSP method is around two percents only for 
all the parametric model and the GSP method has some robustness properties 
like the minimum Hellinger distance estimator proposed by Beran [11] (see Re-
mark 2 given by Luong [2]). With 0.05α = , the loss of efficiency is around ten 
per cents. It is simpler to implement GSP methods for estimation, parameter 
hypothesis testing and goodness of fit testing than implementing Hellinger dis-
tance method as proposed by Beran and practitioners might want to use the GSP 
methods based on this class for their applied works. The equivalent statistic for 
testing the composite using Hellinger distance which is also density based as 
proposed Beran [11] (p 459) might be more difficult to implement for practi-
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tioners. The same can be said for the test based on Genalized Method of Mo-
ments (GMM) using a continuum moment of conditions as proposed by Car-
rasco and Florens [18] (p 813). Of course, these conclusions are based on the 
distribution of the parametric family has a closed form expression so that data 
can be easily transformed which leads to consider spacings for inferences. These 
density based tests share with chi-square tests with parameters estimated with 
the minimum chi-square methods to have an asymptotic distribution which 
does not depend on { }Fθ  and since there is no need to choose intervals to per-
form these tests; this might be viewed as an advantage over the corresponding 
chi-square tests for testing simple null hypothesis and for composite null hypo-
thesis. 

5. Tied Observations 

In this section, we would like to make the following remark by pointing out that 
in a data set which is not large and there are many tied observations, it might be 
preferred to use a GSP method instead of the MSP method as the MSP method is 
based on minimizing ( )( )1logn

ii D
=

−∑ θ  or maximizing ( )( )1logn
ii D

=∑ θ  and 
for two ordered observations which are tied, this implies a spacing is equal to 0 
and log of this spacing is undefined, see table 3 in Cheng and Stephens [3] (p 391) 
which gives a real life data set where tied measurements are recorded. 

Cheng and Stephens [3] (p 391) also proposed methods to handle tied obser-
vations for the use of MSP method but tied measurements do not cause numeri-
cal difficulties for the GSP method as discussed and there is little loss of effi-
ciency using a GSP method and a GSP method might be more robust than the 
MSP method, see Remark 2 as given by Luong [2]. 

6. Discussions 

In this section, we touch upon the question of power analysis for these density 
based tests. Power analysis for null hypothesis which specifies functions is more 
complicated than Pitman efficiency analysis when parameters are scalars, see 
Lehmann [19] (p 158-187) for the classical set up with scalars as parameters in-
stead of functions. 

Here, under the null hypothesis a function or functions are specified, this 
makes the study of power more complicated even for the simplest case when the 
null hypothesis H0 is simple which specifies the data comes from F0 or equiva-
lently the transformed data comes from a standard uniform density with density 
function ( ) 1Uf x =  for 0 1x≤ ≤  and ( ) 0Uf x = , elsewhere. 

For power study, often a sequence of tests based on a sequence of functions 
which belongs to the alternative hypothesis aH  is considered. Sethuraman and  

Rao [8], used the following sequence of functions ( ){ }nh x  with ( ) ( )
1 41n

l x
h x

n
= + , 

( )l x  is twice differentiable with bounded second derivative and 
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( ) ( ) ( )1

0
d 0, ,0 1n Ul x x h x f x x= → ≤ ≤∫ . 

For theoretical works and Pitman efficiencies, the focus is on best tests based 
on a chosen sequence of functions but it might not provide a complete answer 
for applications as an optimum statistic might no longer be optimum if another 
sequence of functions are chosen. In applications, the distributions belonging to 
the alternative hypothesis which are useful and commonly used might not have 
been included in the analysis for theoretical works. This makes the assessment of 
power difficult using theoretical analysis especially when parameters are func-
tions instead of scalars, see Lehman [19] for the classical set up on Pitman effi-
ciency analysis using scalars and parameters belong to the real line. The func-
tional space is more complicated than the real line. 

Cheng and Stephens [3] (p 386) recognized this problem and pointed out that 
power depends on the alternative hypothesis and to get some ideas on the power 
of these tests often large scale simulations seem to be needed and many parame-
tric families should be considered as given by the alternative hypothesis which 
are techniques that Zhang [9] has used to conduct power studies for some EDF 
tests. We do not have resources for these large scale simulation studies. These 
tests have not been not used extensively and in the future if they are used more 
frequently and concomitantly with GSP methods for estimation in applications, 
we will have better ideas on power of these tests. 

7. Conclusion 

In a previous paper, we have studied estimation, asymptotic properties, robust-
ness and parameter hypothesis testing using GSP methods. In this paper we have 
adopted the view that GSP methods are minimum density based distance me-
thods using transformed data or equivalently spacings so that estimation and 
model testing can be treated in a unified way. Model validation via good-
ness-of-fit tests and construction of density based tests are treated in this paper. 
We have shown that these statistics for testing come at no extra cost once a GSP 
method is used for fitting a parametric model and might be useful for assess-
ment of the model in practice. These tests are simple to perform and practition-
ers might want to use these tests concomitantly with GSP estimation especially 
when sample sizes are relatively large. For some real life data sets, GSP methods 
might be preferred over MSP method for estimation and chosen for their ro-
bustness property, efficiency and the flexibility to handle tied observations and 
finally tests statistics for goodness-of-fit can be constructed at no extra cost. The 
last feature is not shared by maximum likelihood (ML) method. 
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