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Abstract 
The commonly used statistical methods in medical research generally assume 
patients arise from one homogeneous population. However, the existence and 
importance of significant heterogeneity have been widely documented. It is 
well known that common and complex human diseases usually have hetero-
geneous disease etiology, which often involves interplay of multiple genetic 
and environmental factors, leading to latent population substructure. Ge-
nome-wide association studies (GWAS) is a useful tool to uncover genetic as-
sociation with disease of interest, while linkage analysis is a commonly used 
method to identify statistical association between the inheritance of a human 
disease and inheritance of marker loci that are in linkage with disease causing 
loci. We propose a likelihood ratio test for genome-wide linkage analysis un-
der genetic heterogeneity using family data. We derive a closed-form formula 
for the LRT test statistic and provide explicit asymptotic null distribution. The 
closed form asymptotic distribution allows easy determination of the asymp-
totic p-values. Our extensive simulation studies indicate that the proposed test 
has proper type I error and good power under genetic heterogeneity. In order 
to simplify application of the proposed method for non-statisticians, we de-
velop an R package gLRTH to implement the proposed LRT for genome-wide 
linkage analysis as well as Qian and Shao’s LRT for GWAS under heterogene-
ity. The newly developed open source R package gLRTH is available at CRAN. 
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1. Introduction 

The commonly used statistical methods in medical research generally assume 
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that patients in the study arise from one homogeneous population. However, the 
existence and importance of significant heterogeneity are well known and have 
been documented in literature for many diseases, including Alzheimer’s disease 
[1] [2], asthma [3] [4], diabetes [5] [6], and multiple cancer types [7] [8] [9] [10]. 
These common and complex human diseases usually have non-unique disease 
etiology, which also frequently involve interplay of multiple genetic and 
environmental factors, leading to latent population substructure [11] [12] [13]. 
Therefore, it is common that the patient population of a complex disease 
consists of various latent subpopulations, each with disease caused by mutations 
at different loci. Yet each of the unobservable subgroups is relatively homogeneous 
in etiology or diagnosis. 

The genome-wide association study (GWAS) and linkage analysis are two 
classical approaches for studying human genetic disorders. GWAS is an 
experimental design (typically case-control) used to detect associations between 
genetic variants and diseases/traits from a study population [14]. The ultimate 
goal of the population-based GWAS is to assist researchers to have a better 
understanding of the biology of the disease and develop better prevention or 
treatment strategies for common and complex diseases. However, the standard 
GWAS analysis methods ignore the widely existing genetic heterogeneity. To 
account for latent genetic heterogeneity in GWAS, Qian and Shao [15] recently 
developed a novel likelihood ratio test under genetic heterogeneity (LRT-H). 
This methods has been shown to have superior power advantage over the 
commonly used Cochran-Armitage trend test (CATT) in GWAS for complex 
diseases where genetic heterogeneity commonly exists [15] [16]. 

Linkage analysis is a commonly used method to identify statistical association 
between the inheritance of a human disease and inheritance of marker loci 
before the era of GWAS. In the last two decades, linkage based gene mapping 
has been marginalized by the population-based genome-wide association study. 
Association analysis uses common variants and allows for finer mapping than 
linkage analysis in general. However, one major problem for association study is 
population stratification, which can lead to increased number of false negative as 
well as false positive findings if latent heterogeneity is not properly controlled 
for [17]. Yet this is not a concern for family-based linkage analysis, as children’s 
genotypes only depend on their parents but not on the population genotype 
frequencies [18] [19]. Recent advancement in next generation sequencing (NGS) 
has made it technologically feasible and financially affordable to determine 
mutation profiles for families. Linkage analysis again becomes important to 
identify causal variants using family-based deep sequencing data. Ott et al. [20] 
and Shao [21] presented reviews of genetic linkage analysis in the age of NGS. 

For marker alleles that are associated with inheritance of complex disease, it is 
not uncommon that the transmission probabilities of a marker allele of interest 
vary across heterozygous parents, due to locus heterogeneity, etiologic 
heterogeneity, and many other complexities and/or combinations of them [11]. 
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For example, breast cancer as a complex disease, is well known to be 
heterogeneous. Some cases of breast cancer are due to the inherited mutations in 
BRCA1/2 in some families [7], while in other families due to mutations in other 
genes (e.g. PTEN) [22]. These genetic heterogeneities are often not directly 
observable from linkage data or GWAS data. The current available genetic 
linkage methods that account for latent genetic heterogeneity are based on 
mixture models and generally are computational expensive for genome-wide or 
NGS data [13] [23] [24] [25], yet ignoring heterogeneity can cause loss of 
efficiency in statistical test with increased numbers of false negative findings or 
missed opportunities. 

In the era of whole genome sequencing, it is important to have statistical tests 
that are 1) computationally efficient even for genome-wide data, 2) robust under 
genetic heterogeneity and 3) statistically powerful. Motivated by the Qian and 
Shao’s [15] LRT-H for GWAS, in this paper we propose a powerful and 
computational efficient likelihood ratio test under genetic heterogeneity for 
linkage analysis based on a binomial mixture model, using family data with 
parental marker genotypes and genotypes of two affected siblings. We have 
developed an R package gLRTH to implement the newly proposed LRT for 
genome-wide linkage analysis under genetic heterogeneity as well as Qian and 
Shao’s [15] LRT-H for GWAS. The package is freely available on CRAN. The 
purpose of this R package is to simplify the application of these two methods for 
non-specialists. The rest of paper is organized as follows. In Section 2, we 
introduce the LRT for linkage analysis under genetic heterogeneity. We derive 
the closed-form test statistic and provide explicit asymptotic null distribution 
that simplify the computations for p-values. In Section 3, we present numerical 
simulation studies for type I error and power analysis. In Section 4, we describe 
the R functions and their arguments. The paper is concluded in Section 5. 

2. Methods 

Genetic markers can have multiple alleles. In next generation sequencing (NGS), 
GWAS and other genome-wide studies, markers with two alleles are most 
common. Thus, without much loss of generality, we focus on markers with two 
alleles. Here we consider a binary trait and focus on detecting linkage under 
genetic heterogeneity at a single marker locus with two alleles A and a. We 
consider independent families each with one marke-homozygous (AA) parent, 
one marker-heterozygous parent (Aa) and two diseased children. Let X denote 
the total number of allele a inherited by the two affected children from their 
heterozygous parent (Aa). Then X has a binomial distribution ( )2 , bB g θ , 

( ) ( ) [ ]2 , , 0,1, 2, 0,1 ,b bP X g B g gθ θ= = = ∈            (1) 

where  

( ) ( )( )2
2

2
, 1 gg

b b bB g
g

θ θ θ − 
= − 
 
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and bθ  is the transmission probability for the marker-heterogeneous patient to 
pass allele a to a child. 

Under the null hypothesis H0 of no linkage between the marker and any 
disease-causing loci, 0.5bθ =  for all families, i.e. ( )2~ ,0.5X B g . One can test 
linkage by detecting distribution departure from the null ( )2 ,0.5B g :  

( ) ( )0 2 2: ~ ,0.5 against : ~ ,0.5 .aH X B g H X B g/          (2) 

However, transmission heterogeneity, i.e., variations among bθ  generally 
exists in complex diseases. For example, any combination of the complexities 
listed in Lander and Schork [12] can result in transmission heterogeneity. Thus, 
under transmission heterogeneity, we assume X, the number of allele a, follows a 
binomial mixture distribution in the population, that is  

( ) ( )2
1

1

, , 0,1, 2,

2,1 0, 1, 0,

J

j j
j

J

j j j
j

P X g B g g

J

η α θ

θ α α

=

=

= = =

≥ > > = ≥

∑

∑
              (3) 

where ( ) ( )T
, , , 1, ,j j j jj J

j Jη η η θ α
≤

= = =  , and i jθ θ=  if and only if i j= . 
In particular, for many of the complex diseases with transmission heterogeneity, 
it is likely that J is quite large. Since it is hard to know the exact number of the 
sub-populations J under transmission heterogeneity, it is desirable to have a new 
test that is applicable without knowing the exact value of J while allowing 2J ≥ . 

Suppose n independent families each with one marker homozygous (AA) 
parent, one marker heterozygous parent (Aa) and two diseased children are 
sampled from the population. For each locus, the observed genotype frequencies 
inherited from the heterozygous Aa parent in the two diseased children are 
summarized in the first row in Table 1. Under H0, the expected genotype 
frequencies are summarized in the second row in Table 1. 

2.1. Mixture Binomial and Maximum Likelihood  

Assuming the setup in the previous subsection and using notations in Table 1, 
the maximum likelihood estimator (MLE) of θ  under the binomial likelihood 
in Equation (1) is  

( )2 1
ˆ 2 .n n nθ = +                      (4) 

Thus, the binomial likelihood in Equation (1) evaluated at θ̂  is  

( )
2

2
0

ˆ, ,
gn

M
g

L B g θ
=

=∏                     (5) 

 
Table 1. Genotype frequencies inherited from the heterozygous Aa parents for n affected 
sibling pairs. 

 AA Aa aa total 

Observed n0 n1 n2 n 

Expected n/4 n/2 n/4 n 
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where ( ) ( )2

2

2ˆ ˆ ˆ, 1
ggB g

g
θ θ θ

− 
= − 
 

. 

Under H0, 1 2θ = , the binomial likelihood value is  
2

0 2
0

1, .
2

gn

g
L B g

=

 =  
 

∏                      (6) 

The maximum of the mixture likelihood for X in Equation (3) has an explicit 
formula [15], that is 

( )
( )

( )

2 2
2 0 2 10

2 20
2 0 2 10

if 4
sup

ˆ; if 4 ,

g

g

g

n
ggn

D n
g

g

n n n n n
L P X g

B g n n n
η

η θ

=

=
=

 >= = = 
 ≤

∏
∏

∏
   (7) 

where θ̂  is defined in Equation (4). 

2.2. The Likelihood Ratio Test  

Using the maximum of the likelihood 0L , ML  and DL , respectively, we can 
write down the explicit formula of the log-LRT statistic 2 Nλ  as follows,  

( )02 2 log logN DL Lλ = −                   (8) 

Equation (8) can be written as following  

0 0

2 2 log 2log 2log .D D M
N

M

L L L
L L L

λ = = +             (9) 

First, we may consider a classic problem for testing ( )0 2: ;1 2H B g  against 
( ) ( )2: ; , 0,1a b bH B g θ θ ∈ . The LRT statistic is well known to have a 2

1χ  
distribution.  

( )
( )

( )
( ) ( )

2
2

2

00 2

ˆ 1 2,1 2
2log 2 log 2 1 ,

ˆ 1 2 1 1 2,
M

g p
g

B gL n n o
L B g

θ

θ=

−
= = +

−∑     (10) 

where ( )2 1
ˆ 2n n nθ = +  is the MLE of bθ  defined in Equation (4). 

When 2
0 2 14n n n≤ , we have D ML L= . Thus,  

2log 0.D

M

L
L

=                       (11) 

Therefore, when 2
0 2 14n n n≤ , we have ( ) 2

0 12 2 log log ~N DL Lλ χ= − . 
When 2

0 2 14n n n> , we can consider testing of goodness-of-fit of ( )0 2: ;1 2H B g . 
The LRT statistic has a 2

2χ  asymptotic distribution and can be written as  

( )

( )
( )

( )( )

( )
( )

( )
( )( ) ( )

2

0 2

2 2 2

0 02

2 2
2

0

2 log
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θ θ
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         (12) 

 

DOI: 10.4236/ojs.2018.83030 472 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2018.83030


X. X. Han, Y. Z. Shao 
 

The first term at the right-hand side of the last equality is equivalent to the 
Pearson’s classic 2χ  statistic (via comparing observed to expected cell 
frequencies) for testing Hardy-Weinberg equilibrium which is know to have the 

2
1χ  distribution. Note that the two terms in the right hand side of equation (12) 

are well known to be asymptotically independent. Therefore, when 2
0 2 14n n n> , 

we have  

2
2

0

2 2 log ~ .D
N

L
L

λ χ=                       (13) 

It is easy to show that ( )2
0 2 1 04 | 1 2P n n n H> →  as n →∞  as in Qian and 

Shao [15]. Thus, we obtain the explicit form of asymptotic distribution under the 
null hypothesis. That is, under H0,  

2 2
1 2

1 12 .
2 2Nλ χ χ→ +                       (14) 

Importantly, to implement the LRT, there is no need to identify the exact 
number of mixture components J in equation (3). 

3. Simulations  
3.1. Type I Errors  

As the LRT 2 Nλ  has an explicit asymptotic distribution under H0, it is 
convenient to evaluate p-value and type I error. We conducted simulations to 
compare the empirical type I error of the LRT to the nominal significant level 
ranging from 10−2 to 10−8. The genotype data were generated from binomial 
distribution ( )2 ;1 2B g . The simulation was replicated 1011 times. As shown in 
Table 2, the empirical type I error is slightly smaller than the nominal level, but 
they are very close to each other. Therefore, using the asymptotic null 
distribution for the LRT is valid. The closed form asymptotic distribution allows 
easy determination of the asymptotic p-values. 

3.2. Power Comparison  

In the simulation studies for power comparison, the sample was generated from 
a two-component mixture binomial distribution as described in equation (3) 
with 2J = , i.e.,  

( ) ( )
2

2 1 2
1

, , 0,1, 2,1 0, 1, 0.j j j j
j

P X g B g gη α θ θ α α α
=

= = = > > + = ≥∑  

One hundred-thousand replicate dataset of n disease cases 
( )800,1000 or 1200n =  were simulated for each of the seven simulation setup  
 
Table 2. Empirical type I error and nominal significant level at 1 2θ =  and 1000n =  
with 1011 replications. 

Nominal level 0.01 0.001 41 10−×  51 10−×  61 10−×  71 10−×  81 10−×  

Empirical level 0.0097 49.9 10−×  59.5 10−×  69.8 10−×  79.4 10−×  89.6 10−×  99.1 10−×  
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and the empirical power for LRT and 2
2χ  are shown in Table 3. The simulation 

results indicate that the LRT has power advantage over the 2
2χ  test under 

genetic heterogeneity. 

4. The R Package Description and Examples  

The gLRTH R package is available on CRAN and the installation is standard. 
The purpose of this package is to implement the previously discussed two 
methods, i.e., LRT for genome-wide linkage analysis under genetic heterogeneity 
and Qian and Shao’s LRT-H for GWAS [15]. The gLRTH R package is 
composed of two main functions: gLRTH_L for linkage analysis under 
heterogeneity and gLRTH_A for association studies. 

The gLRTH_L function calculates the test statistic and asymptotic p-value for 
the likelihood ratio test for testing linkage. The gLRTH_L function in the 
package can be called with the following syntax: 

gLRTH_L(n0, n1, n2) 

The required arguments are:   
1) n0: Number of affected sibling pairs that both inherited A from their 

heterozygous parent Aa  
2) n1: Number of affected sibling pairs that one inherited A and the other 

inherited a from their heterozygous parent Aa  
3) n2: Number of affected sibling pairs that both inherited a from their 

heterozygous parent Aa  
To illustrate the gLRTH_L function, suppose we have hypothetical genetic 

marker M1/M2 information from a sample of 1000n =  independent families, 
with M2 be the marker of interest. Each family has one marker homozygous 
(M1/M1) parent, one marker heterozygous parent (M1/M2) and two diseased 
children. Suppose we have 0 100n =  families with both sibling inherited M1 
from their heterozygous parent (M1/M2), 1 650n =  families have one sibling 
inherited M2 and one sibling inherited M1 from their heterozygous parent 
(M1/M2), and 2 250n =  families have both siblings inherited M2 from their 
heterozygous parent (M1/M2). 
 
Table 3. Empirical power (significant level is set at 85 10−× ) when X has a mixture 
distribution with 2J = . 

Setup 1 2 3 4 5 6 7 8 9 10 

1α  0.45 0.4 0.35 0.25 0.45 0.4 0.45 0.35 0.5 0.25 

2α  0.55 0.6 0.65 0.75 0.55 0.6 0.55 0.65 0.5 0.75 

1θ  0.24 0.2 0.2 0.12 0.24 0.22 0.24 0.2 0.3 0.14 

2θ  0.72 0.69 0.66 0.63 0.69 0.69 0.69 0.66 0.72 0.63 

N 800 800 1000 1000 1000 1000 1200 1200 1200 1200 

Power           

LRT 0.80 0.83 0.68 0.72 0.80 0.87 0.93 0.86 0.72 0.75 
2
2χ  0.77 0.80 0.64 0.68 0.77 0.84 0.91 0.83 0.68 0.71 
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The LRT for linkage under transmission heterogeneity for this genetic marker 
can be done as following: 

gLRTH_L(n0 = 100, n1 = 650, n2 = 250)  

The output is:  
$test.stat 
[1] 45.17029 
$pval 
[1] 8.672153e-11 
In this example, for linkage analysis under transmission heterogeneity of 

marker M1/M2, the test statistic is 24.04 and the p-value is 118.7 10−× . 
The gLRTH_A function calculates the test statistic and asymptotic p-value for 

the likelihood ratio test for GWAS. The gLRTH_A function in the package can 
be called with the following syntax: 

gLRTH_A(n0, n1, n2, m0, m1, m2) 

The required arguments are:   
1) n0: AA genotype frequency in case  
2) n1: Aa genotype frequency in case  
3) n2: aa genotype frequency in case  
4) m0: AA genotype frequency in control  
5) m1: Aa genotype frequency in control  
6) m2: aa genotype frequency in control  
To illustrate the gLRTH_A function, we consider a SNP called SNP rs429358 

in gene Apolipoprotein E (ApoE), which is a well-known common variants that 
is associated with late-onset Alzheimer’s diseases (AD). We use APOE 4 
variants frequency in Han et al. [26] to determine SNP rs429358 in AD 
converters and AD non-converters. The LRT-H for SNP rs429358 can be done 
as following: 

gLRTH_A(n0 = 89, n1 = 139, n2 = 47, m0 = 266, m1 = 153, m2 = 39) 

The output is:  
$test.stat 
[1] 46.02864 
$pval 
[1] 5.640675e-11 
In this example, for SNP rs429358, the test statistic is 46.02 with a p-value 

115.6 10−× . We conclude that SNP rs429358 reaches genome-wide significance 
85 10−× . 

5. Conclusions 

The commonly used statistical methods in medical research often assume 
patients arise from one homogeneous population. However, the impact of 
heterogeneity is well known and has been document in much of the existing 
literature for common and complex diseases. Inadequate attention to the 

 

DOI: 10.4236/ojs.2018.83030 475 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2018.83030


X. X. Han, Y. Z. Shao 
 

heterogeneity inherent in the complexity of complex human disease could lead 
to increased number of false negatives and missed opportunities in research. To 
solve this problem, using finite mixture models to account for latent genetic 
heterogeneity is an intuitive strategy. However, there are well known difficulties 
associated with likelihood-based inference in the context of finite mixture due to 
issues regarding parameter identifiability and degenerate Fisher information 
[27]. The mixture likelihood often has many local maximum values making the 
numerical maximization complicated. Moreover, the likelihood irregularities 
lead to great challenges in deriving the limit distribution of the LRT statistic 
under loss of identifiability. The strength of the proposed method is that we are 
able to derive closed form formula for the LRT statistic and its simple closed 
form asymptotic distribution despite the loss of identifiability in parameters in 
the context of mixture likelihood. This leads to efficient computation of the test 
statistic and its asymptotic p-values; and thus, it is suitable for high throughput 
data and genome-wide studies. The proposed method also works for a single 
marker or a few markers. There are a few existing methods for linkage analysis 
that account for latent heterogeneity [13] [23] [24] [25], but the existing 
methods are computationally expensive for NGS and genome-wide studies. 

The rapid development of next generation whole-genome sequencing (WGS) 
has revived family-based linkage analysis for identification and characterization 
of functional variants. Our proposed LRT for linkage analysis under genetic 
heterogeneity will likely to be a powerful tool for genetic mapping of complex 
traits [20]. In the era of precision medicine, using individual variations in genes 
and environment to develop diagnostics, prognostics, and therapies is the 
primary approach for disease prevention and treatment. For example, instead of 
using “one-size-fits-all-approach”, “precision medicine” based on genetic 
markers can be used to optimize effectiveness of disease prevention and 
treatment as well as minimize side effects for persons less likely to respond to a 
particular therapeutic. Reliable disease associated SNPs could serve as predictive 
markers that inform our decisions about numerous aspects of medical care, 
including specific diseases, effectiveness of various drugs and adverse reactions 
to specific drugs. We believe that with the reduction in cost of whole-genome 
sequencing (WGS), genome-wide linkage analysis of family based WGS data as 
well as GWAS will facilitate the identification of causal variants and may 
contribute tremendously to the advancement of precision medicine. Our open 
source R package gLRTH is meant to be a valuable package to help researchers 
perform GWAS and genome-wide linkage analysis accounting for the 
ubiquitous genetic heterogeneity in common and complex human diseases 
without a lot of programming and computational burden. 
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