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Abstract 
Effect sizes are estimated from several study designs when the subjects are in-
dividually sampled. When the samples are the aggregate cluster of individuals, 
the within cluster correlation must be accounted for to construct correct con-
fidence intervals, and to conduct valid statistical inference. The purpose of 
this article is to propose and evaluate statistical procedures for the estimation 
of the variance of the estimated attributable risk in parallel groups of clusters, 
and in a design dividing each of k clusters into two segments creating multiple 
sub-clusters. The estimated variance is the first order approximation and is 
obtained by the delta method. We apply the methodology and propose a Wald 
type confidence interval on the difference between two correlated attributable 
risks. We also construct a test on the hypothesis of equality of two correlated 
attributable risks. We evaluate the power of the proposed test via Monte-Carlo 
simulations. 
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1. Introduction 

In the epidemiological research, it is important that the collected data are trans-
lated into interpretable results which can be easily communicated to clinicians. 
The need for “translatable” evidence from research studies is of prime impor-
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tance in the evaluation of clinical interventions, because they hold the potential 
to immediately influence the course of patient treatment. When evaluating these 
studies, the examination of “Effect Size” or (ES) can be a useful measure of the 
comparative efficacy of the treatment under investigation. In randomized clini-
cal trials, an effect size estimate quantifies the direction and magnitude of an ef-
fect of an intervention. 

When exposure and disease risk are measured on a binary scale, several meas-
ures of effect size are in current use [1]. The odds ratio (OR), the relative risk 
(RR), and the population attributable risk (AR) are the most commonly used 
measures of effect size in clinical as well as analytic epidemiology. 

The concept of AR was introduced in [2] and is a widely used measure of the 
amount of disease that can be attributed to a specific risk factor. The AR com-
bines the relative risk (RR) and the prevalence of exposure ( )P E  to measure 
the public health burden of a risk factor by estimating the proportion of cases of 
a disease that would not have occurred if we remove the risk factor.  

The concept of AR and its statistical characteristics have been reviewed in [3] 
and in several publications [4] [5]. Statistical inferences on AR require the avail-
ability of data from subjects randomly assigned to intervention groups. However, 
when the sampling strategy involves aggregate or clusters of individuals, adjust-
ing for the effect of intracluster correlation is essential in order to conduct valid 
statistical inferences [6] and the references therein. However, the statistical pro- 
perties of estimators of AR when clusters are sampled have not yet been fully ex-
plored. The fundamental objective of our work is to fill the gap of performing 
statistical inference on AR under the clustered binary data situation. 

In this paper, we obtain the variance of the estimated AR under cluster sam-
pling, focusing on cohort and cross-sectional designs. In Section 2, we construct 
an AR estimator, and in Section 3, we derive its large sample variance adjusted 
for the intracluster correlation (ICC). In Section 4, we consider the split cluster 
design, and describe situations where we compare two correlated AR parameters. 
In Section 5, we conduct a Monte-Carlo experiment to evaluate the empirical 
power of Wald’s test on the null hypothesis of equality of two correlated attri- 
butable risk parameters. At the end of each section, we provide an example. 

2. AR from Cluster Sampling 

We start with a parallel group design where k clusters are exposed to a specified 
risk factor, and l clusters are not exposed, as in the data layout given in Table 1. 

In Table 1, we assume that k  clusters have been selected at random from a 
well-defined population of exposed individuals, where the thj  cluster has jn  
units. All individuals in this sample are assumed to be exposed to the risk factor. 
Let ( )1, 2, , 1, 2,ij ix i k j n= =   with 1ijx =  and 0, denoting positive and ne- 
gative responses corresponding to the presence of the exposure with 

exposed clus1 ter i r ijP x iπ  = =  . Similarly we assume that l  clusters have 
been selected from the population of unexposed individuals, where the thl  

cluster has lm  units. All units in the clusters can serve as controls assuming the  
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Table 1. Typical data layout for clustered data in two groups: exposed and unexposed. 

Exposed ( )E  Non-Exposed ( )E  

1 2 


 k  1 2 


 l  

11x  21x  


 1kx  11y  21y   1ly  

12x  22x   2kx  12y  22y   2ly  

     
       

  

1 1nx  2 2nx  


 knkx  1 1my  2 2my  


 lmly  

 
absence of exposure. In the unexposed clusters, let ( )1, 2, , 1, 2,rs ry r l s m= =   
with 1rsy =  and 0 denote positive and negative responses with  

1 unexposed cluster r r rsQ P y r=  =   . Furthermore, let 1
in

i ijjX x
=

= ∑  and  

1
rm

r ijsY y
=

= ∑  denote respectively the total number of events in the exposed and 
non-exposed groups; provided that the misclassification error is zero. Therefore, 
conditional on iπ , iX  has binomial distribution with parameters ( ),i in π . 
Similarly, conditional on ,r rQ Y  has binomial distribution with parameters 
( ),r rm Q . To introduce a within cluster correlation, we assume that iπ  follows 
a beta distribution ( ),B a b  with probability density function (pdf) given in (1). 

( ) ( )
( ) ( ) ( ) 11, ba

i i i
a b

f a b i
a b

π π π −−Γ +
= −
Γ Γ

               (1) 

and that rQ  follows a similar beta distribution where pdf is denoted ( ),B α β . 
The effect of the intracluster correlation among the responses may be accounted 
for as follows. 

Under the transformations,  andaP
a b

=
+

, ( ) 1
1 1 a bρ −= + + , the mean and 

variance of iπ  are given respectively by ( )iE Pπ =  and ( ) ( ) 1ar 1 .V i P Pπ ρ= −  

Similarly, ( )α α β= +  and ( ) 1
2 1ρ α β −= + + . Therefore, we have  

( )iE Q Q= , ( ) ( ) 2Var 1iQ Q Q ρ= − . Consequently, the unconditional distribu-
tion of ix  is beta binomial with, ( )i iE x n ρ= , and  

( ) ( ) ( ) 1Var 1 1 1i i iX n P P n ρ = − + −  . Similarly; ( )i iE Y m Q= , and  

( ) ( ) ( ) 2Var 1 1 1 .i i iY m Q Q m ρ = − + −   

It should be noted that the beta distribution assumptions imposed on the 
model parameters is not necessary, and one may adopt a quasi-likelihood set-up, 
by specifying the first two moments for   and as showni iQπ  in [7] and [8]. This 
set-up, would lead to the same expressions for ( )Var iX  and ( )Var iY . The 
reason for introducing the beta distribution here is that while it serves as me-
chanism to create within cluster correlation, it will form the basis for generating 
data from beta binomial distribution using Monte-Carlo simulations in Section 
5.  

The parameters 1ρ  and 2ρ  are respectively interpreted as the within cluster 
correlations among all pairs of scores in the group of exposed and unexposed. 
We may obtain consistent estimators of ( )Var iX  and ( )Var iY  on replacing 
the parameters, Q , 1ρ , and 2ρ  with appropriate estimators from the data as 
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will be shown in the next sections. We shall now construct unbiased point esti-
mators for the parameters P  and Q . 

From [8] and [6], we have 1
k

iiX X
=

= ∑  has ( )E X NP= ,  
( ) ( ) ( )0 1Var 1 1 1X NP P n ρ = − + −  . Similarly, 1

l
irY Y

=
= ∑  has ( )E Y MQ= ,  

( ) ( ) ( ) 2Var 1 1 1oY MQ Q m ρ = − + −  , where 1
k

iiN n
=

= ∑ , 1
l

irM m
=

= ∑ ,  
2

0 1
k

iin n N
=

= ∑ , and 2l
o ir im m M

=
= ∑ . Clearly X N  and Y M  are unbiased 

point estimators for  and P Q  respectively. 
The data, under the above set up can then be summarized in a 2 × 2 table as 

shown in Table 2. 
Formally, the AR is defined in [2] as: 

( ) ( ){ } ( )AR P D P D E P D= −                  (2) 

where ( )P D  is the percentage of disease in the population, and ( )P D E  is 
the percentage of disease in the population in the absence of exposure to the risk 
factor. Levin [2] defines the Attributable Risk ( )AR  as “the amount of disease 
that can be attributed to a specific risk factor”.  

Using Bayes theorem, and from [[3]; page 73], Equation (2) may be written as: 

( )( )
( )( )

1
.

1 1
p E RR

AR
p E RR

−
=

+ −
                     (3) 

Here; RR is the relative risk or the risk ratio, and ( )P E  is the risk of expo-  

sure. The RR is defined by ( )
( )

p D E
RR

P D E
= . In terms of population parameters,  

the AR as defined in (3) is equivalent to: 

( ) ( )1 1
.

P Q Q P P QAR
P Q P Q

− − − −
= =

+ +
                (4) 

Under the transformation, 1
1

AR
AR

−
Ψ =

+
, we get Q P= Ψ . We shall use this  

transformation to facilitate the derivation of the large sample variance of AR. 
The sample estimator of AR, is obtained using the data in a 2 × 2 cross classi-

fication as given in Table 2. 
Epidemiologists use this statistic quite frequently to assess the consequences 

of an association between a binary outcome of interest ( )D  and exposure to a 
risk factor ( )E . The total number of observations in the non-exposed and the 
exposed groups are given respectively by M  and N , assumed fixed.  

For a cross sectional or cohort study designs the AR  estimator is from [3]  
 

Table 2. Disease-exposure cross classification in a 2 × 2 table. 

  Response ( )D   

  D+  D  Total 

Exposure 
E +  X  N X−  N  

E  Y  M Y−  M  

 Total X Y+  M N X Y+ − −  M N+  
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given by: 



( ) ( )
( )

.
X M Y Y N X

AR
X Y M
− − −

=
+

                    (5) 

Following [9], we shall derive the asymptotic variance of ( )ˆ ln 1 ARθ = − . 

We first write, ( ) ( ) 1Var 1X NP P c= − , and, ( ) ( ) 2Var 1Y MQ Q c= − ,  
where ( )1 0 11 1c n ρ= + − , ( )2 0 21 1c m ρ= + − , 2

0 1
k

iin n N
=

= ∑ , and  
2

0 1
l

iim m M
=

= ∑ . 
Using the delta method [10] we can show to the first order of approximation 

that: 

( ) ( )
( )

( )
( )

2
1 2

2 2

1 1
Var .

N P C N P C

P N M MP N M
θ

− − Ψ
= +

+ Ψ Ψ + Ψ



            (6) 

A consistent estimator of ( )Var θ


 may be obtained on replacing the para-  

meters 1 2  , , and P c c Ψ  by their moment estimators. An ( )1 100%α−  confi-
dence interval on AR is thus given as: 

( )( ) ( )( )( )2 21 exp var ,1 exp var .z zα αθ θ θ θ− + − −
   

 

The moment estimators of the intraclass correlations are obtained separately 
from the groups of exposed and unexposed clusters. The moment estimator of 

1ρ  is given by: 

( )1
0

ˆ
1

MSB MSW
MSB n MSW

ρ −
=

+ −
                    (7) 

where r, 

( )
1 1

1 i ij ij ijk n
i j

ij

x n x
MSW

n k n= =

−
=

− ∑ ∑                 (8)  

( )2

1 1

1 .
1

i ij ik n
i j

ij

x x
MSB

k n= =

−
=

− ∑ ∑                   (9) 

Similar expressions for the (MSW, MSB) are obtained for the clusters of un-
exposed. The quantities (MSW, MSB) are estimated from the one-way ANOVA 
model when the responses are measured on the binary scale. For details the 
readers are referred to [6].  

We now consider two examples, the first is from data arising from a cross sec-
tional study and the second example is on data from a randomized prospective 
trial. 

Example 1: Cross-Sectional Study: The effect of consanguinity on congenital 
heart defects (CHD). 

The Saudi Arabian CHD registry [11] was established in 1998, and by 2003 the 
registry evolved into Multi-Institutional research collaboration. The prime aim 
of this institution is to develop a registry whereby data from major referral hos-
pitals across the country can provide patient information. 
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The participating hospitals are from regions that cover the country making 
the registry a nationwide data repository for the Kingdom of Saudi Arabia [Con-
genital Heart Disease Registry 2013]. The present example uses data on a major 
congenital heart disease; Patent Ductus Arteriosus (PDA). The incidence of PDA 
has been reported to be approximately, 1 in 2000 births, which accounts for 5% 
to 10% of all congenital heart diseases with female to male ratio of almost 2:1 
[12]. The PDA was found to occur with increased frequency in several genetic 
syndromes, with precise mechanisms resulting in persistent PDA not yet clear 
[13] [14].  

Arab countries are notorious for consanguineous marriages, with first cousin 
types being the most common. For example in Jordan the prevalence of consan-
guinity was reported in [15] as 51.3%, Yemen, 40% as reported [16], and almost 
57% in Saudi Arabia as reported [17] [18]. More recently, a survey of Saudi fam-
ilies conducted in [19], estimated the prevalence of consanguinity to be as high 
as 56%.  

For illustrative purposes of the methodologies presented in this section, we 
sampled two children from the registry whose mother are non-diabetic, with ma-
ternal age less than 40 years. Each sampled child was classified according to the 
presence/absence of PDA, and the type of parental consanguinity (exposure varia-
ble). Therefore, for the exposed (children from consanguineous marriages re-
stricted to first degree cousin) and non-exposed (children from non-consangui- 
neous marriages) the cluster size is 2n m= = . The data are presented in Table 3. 

Direct applications using Equations (5), (8), (9), and (10) we get: 

( ) ( ) ( ) ( )
( ) ( )

53 66 30 99
AR 6.6%

83 96
−

= = , ( ) 0.61P E =  

1 0.325ρ = , 2 0.332ρ = , ( )Consanguineous 0.39rP P D= = , 

( ) 0.349Non Consanguineous 0.31,  and 1.11
0.313rQ P D RR= − = = = . 

The square root of Equation (6) gives ( )ˆ 0.085se θ = , and the 95% confidence 
interval of AR is: −0.104 < AR < 0.210. 

The AR estimate is interpreted as follow: if among infants born with CHD, gi- 
ven that PDA among infants with CHD is a preventable event, then prohibiting 
first degree relatives’ marriages will reduce the chance of having PDA by 6%. 

Example 2: Prospective Cohort study (Weil’s data) 
The data in this example was given first in [20] taken from [21], and gives the  
 

Table 3. Consanguinity and PDA. 

  PDA  

  Present Absent Total 

Consanguinity Yes 53 99 152 

 No 30 66 96 

 Total 83 165 248 
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results from an experiment comparing two treatments. One group of 16 preg-
nant female rats was fed a control diet during pregnancy and lactation, while the 
diet of a second group of 16 pregnant females was treated with a chemical. For 
each cluster (litter consisting of the pups born to a female rat), the number n of 
pups alive at 4 days and the number y of pups that survived at 31 day lactation 
period were recorded. The data are given as a fraction y n  in Table 4. 

In Table 4, the numerator is the number of dead pups during 21 days lacta-
tion period, and the numerator is the number who survived past 4 days. The pur-
pose of the experiment was to determine if the chemical treatment significantly 
affects the survival rate among the pups. That is, we need to test the null hypo-
thesis 0 :H P Q= . The data are presented in a 2 × 2 format in Table 5. 

0.24P =  and 0.10Q = , giving relative risk 2.4RR = . 

( )( ) ( )( )
( )( )

35 142 16 112
39.4%.

51 158
AR

−
= =  

( )control 0.029ρ = , ( )treated 0.040ρ = , 0 9.84n = , 0 9.16m = , and  

( )ˆ 0.0555se θ = , and the 95% confidence interval on AR is: 0.33 < AR < 0.45. 

3. Split Cluster Design 

Split-cluster experiments are being used by investigators in health sciences when 
naturally occurring aggregates of individuals with nested subgroups may be as-
signed to different treatments. Cited examples include split mouth trials, in 
which a subject’s mouth is divided into two segments that are randomly assigned 
to different treatment groups. In other situation, randomization to treatment 
conditions may be possible at the person level within the cluster. In this case, 
when the treatment conditions are available within each cluster, the design is re-
ferred to as a multisite or split cluster design (SCD). The major attractiveness of 
this design is that it removes a large portion of the inter-subject variation from 
the estimate of treatment effect; and hence has the potential to require a lesser 
number of subjects than a parallel arm design with the same power. When the 
response variable of interest is binary, statistical methods developed to evaluate 
the effect of intervention depends on non-parametric methods, as shown in [22].  

In this section we present the data layout for the SCD (see Table 6) and derive 
the large sample variance of the AR as a measure of effect size. 

Under a similar set up to that we presented in the previous section and with 
appropriate change in notations the random variables 1

in
i ijjX x

=
= ∑  and 

1
im

i ijjY y
=

= ∑  will have the same beta-binomial distributions, but they are no- 
longer independent. 

 
Table 4. Weil’s data: Mortality due to exposure is a two arms clinical trial. 

Control 
13/13 12/12 9/9 9/9 8/8 8/8 12/13 11/12 

9/10 9/10 8/9 11/13 4/5 5/7 7/10 7/10 

Treatment 
12/12 11/11 10/10 9/9 10/11 9/11 9/11 8/9 

8/9 4/5 7/9 4/7 5/10 3/6 3/10 0/7 
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Table 5. Weil’s data collapsed in a 2 × 2 table. 

Exposure 
Status 

Total 
Dead Alive 

Treated 35 112 147 

Control 16 142 158 

Total 51 254 305 

 
Table 6. Data layout for the split-cluster design. 

   Clusters    

Sub-Clusters 1 2 


 j  


 k  

1 11x  21x   1jx   1kx  

(Exposed) 12x  22x   2jx   2kx  

 
       

 1 1nx  2 2nx   jnjx   knkx  

2 11y  21y   1jy   1ky  

(Unexposed) 12y  22y   2jy   2ky  

 
       

 1 1my  2 2my   jmjy   kmky  

 

( ) ( ) ( )1 1Var 1 1 1X NP P u ρ= − + −    

( ) ( ) ( )2 2Var 1 1 1 .Y MQ Q u ρ= − + −    

The correlation parameters 1 2an d ρ ρ  are estimated as shown in Equations 
(7)-(9). 

Although the AR estimator maintains the same expression under split clusters, 
its variance is affected by the correlations within the sub-clusters, and between 
units in the exposed and the non-exposed sub-clusters. 

Using the delta method, we can therefore show that 

( ) ( )
[ ]

( )
[ ]

[ ]
( ) ( )

2
1 2

2 2

1 212
1 22

1 1ˆVar

2                1 1

N P c N P c
P N M M P N M

NP NM P P c c
M P N M

ψ
θ

ψ ψ ψ

ρ ψ ψ
ψ ψ

− −
= +

+ +

−
+ − −  
  
 
 +  

   (10) 

where ( )1 1 11 1c u ρ= + − , ( )2 2 21 1c u ρ= + − , 2
1 1

k
ii

u n N
=

= ∑  and  
2

2 1

k
ii

u m M
=

= ∑ . 

Here, 1ρ  is the intraclass correlation among the individuals in the sub-clus- 
ters of exposed, and 2ρ  is the intraclass correlation among the individuals in 
the sub-clusters of unexposed. Both correlations are estimated from the one-way 
ANOVA layout as explained in Equations (7)-(9). The cross-clusters correlation 
which is interpreted as an intercluster correlation denoted by 12ρ  is similarly 
estimated from the data by first ignoring the splitting structure of the data, and 
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then use the one-way ANOVA to obtain the within and between mean squares. 
Substituting these quantities in (7) we obtain a moment estimator of 12ρ .  

Example 3: Split-Mouth Trial 
For illustrating the proposed methodology, as a third example, we consider 

data from a split-mouth trial on 23 patients evaluating the effect of chlorhex-
idine in the treatment of gingivitis [22]. The data are presented in Table 7. The 
chlorhexidine and control treatments were randomly applied to four sites lo-
cated in the patient’s left and right sides of the upper and lower jaws. We are in-
terested here in testing the effect of treatment on the presence or absence of 
plaque, as based on the measurements taken two weeks after baseline and sum-
marized in Table 8. The sample estimates and standard errors (SE) of P and Q, 
the proportion of patients having plaque in the chlorhexidine and control 
groups, are estimated at 0.89 (SE = 0.0343), and 0.77 (SE = 0.0491), respectively. 
The intra-class and inter-class correlation coefficients are estimated as 

1ˆ 0.0395ρ = , 2ˆ 0.087ρ = , as shown in the previous section, pooled estimate 
ˆ 0.070ρ =  The sample estimate of the relative risk RR is 1.155.  

1 0.0395ρ = , 2 0.087ρ = , 12 0.039ρ = . 

( )( ) ( )( )
( )( )

82 21 10 71 1722 710 7.19%.
153 92 14076

AR
− −

= = =  

( )ˆ 0.092se θ = , and the 95% CI on AR is (−0.112, 0.225). 

4. Testing the Equality of Two Correlated AR Parameters 

Interest is focused on studying the change in disease-exposure etiology under va- 
rying conditions. We illustrate this situation using the published data [23]. 

For example in the case of family data we may be interested in evaluating the 
effect of disease status of a parental exposure variable on their siblings, which 
can be divided into males and females within the same family. In this case, we  
 
Table 7. Number of sites with plaque in four sites ( )4ijm =  treated with chlorhexidine 

and control in 23. The data are adapted from [22] and is given in Table 7. 

Treat Affected (+) Not Affected (−) Total 

Chloro. (1) 82 10 92 

Control (2) 71 21 92 

Total 153 31 184 

 
Table 8. Disease distribution among males and females according to father (exposure va-
riable) disease status. 

Exposure 
Males (b) Females (g) 

Total 
D+  D−  Subtotal D+  D−  Subtotal 

Father+ 43 144 187 61 134 195 382 

Father− 21 107 128 22 94 116 244 

Total 64 251 315 83 228 311 626 
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have two correlated attributable risk estimator, one describing the disease-ex- 
pose etiology for males, and the other for females. The main interest here is to 
compare the AR of males to that of females from the same sib-ship. 

Example 4: Correlated AR’s from Cross Sectional Study: Family Data 
We now consider a highly structured clustered familial data that has a two 

level hierarchy with blood measurements taken on parents (level two) and their 
offspring (level one) together with other anthropometric features [23]. Familial 
data sets are known to have considerable “within-cluster” correlation due to the 
homogeneous nature of family members. The goal is to classify the offspring 
blood pressure status based on parents BP and other anthropometric features. 
The data set contains 223 families with a mean number of siblings equal to 3 
siblings per family. The outcome variable in this data set is a binary variable de-
fined as offspring blood pressure status. If simultaneously SBP > 130 and DBP > 
80, then an offspring is considered diseased ( )  orD+  otherwise normal ( )D− . 
The exposure variable in this example is whether a parent (here we select the fa-
ther) has the condition (presence of exposure) or does not have the condition 
(absence of exposure). The data are presented in Table 8. 

We present the general methodology as follows: Testing for gender difference 
in the population AR  is formulated as testing the null hypothesis  

0 1 2:H AR AR=  against a general unspecified alternative 1 2 1:H AR AR= + ∆ . 
Note that testing this null hypothesis is equivalent to testing  

0 1 2 0: ,  or : 0H Hθ θ= ∆ = . 
Let the point estimators be denoted by 1̂θ  and 2̂θ . The difference  

1 2
ˆ ˆD θ θ= −  is asymptotically unbiased and has variance  

( ) ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆvar var var 2cov ,D θ θ θ θ= + − . 

Hence the null hypothesis is rejected whenever ( )varZ D D=  falls in the 
interval 2Z zα>  or 2Z zα< − , where 2zα  is the ( )1 2 100%α−  cut off 
point on the standard normal curve. With a slight difference in notation, 

( )ˆvar iθ  is similar to the expression in Equation (6). We derive ( )1 2
ˆ ˆcov ,θ θ  

using the delta method. In general, the data will have a structure similar to that 
given in Table 9. 

We define the moment estimator as before: 



( ) ( )
( )

1,2.j j j j j j
j

j j j

x M Y Y N X
AR j

M X Y

− − −
= =

+
 

Let ( )ˆ ln 1 jj ARθ = − , then similar to the first situation, we have: 

( ) ( )
( )

( )
( )

2
1 22

2 2

1 1ˆvar .j j j j j j j
j j

j j j j j j j j j j

N P c N P c

P N M M P N M

ψ
τ θ

ψ ψ ψ

− −
= = +

+ +
 

 
Table 9. Collapsed data for the analysis of correlated AR parameters. 

Exposure Condition (1) Condition (2) 

 D+  D−  D+  D−  

E +  1X  1 1N X−  2X  2 2N X−  

E −  1Y  1 1M Y−  2Y  2 2M Y−  
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Here; 

1
jk

j jiiN n
=

= ∑ , 1
jl

j jiiM m
=

= ∑ , ( )1 0 11 1j j jc n ρ= + − , ( )2 0 21 1j j jc m ρ= + − , 

and 2
0 1

1 jk
j jii

j

n n
N =

= ∑ , ( ) ( )2
0 1

1 ,  1 1jl
j ji j j ji

j

m m AR AR
M

ψ
=

= = − +∑ , and  

rate of exposure to the risk factor under the  conditionjP jth= . 
Moreover, 1 jρ  is the intracluster correlation of the exposed clusters under 

jth  condition, and 2 jρ  is the intracluster correlation of the unexposed clus-
ters under jth  condition. They two parameters are estimated as described in 
(7). 

For simplicity we assume that these correlations are constant among the ex-
posed and unexposed.  

Using the delta method we can show after some algebra that: 

( ) [ ]1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2
ˆ ˆcov , .θ θ ρ α α γ γ α β γ δ α β γ δ β β δ δ= + + +       (11) 

The correlation ρ  which, under both conditions is the average correlation 
among the responses, is estimated as described in Section 3. 

The values inside the square bracket are given by: 

( )
1j

j
j j j j jx P N M

θ
α

ψ
∂

= = −
∂ +

 

( )
j j

j
j j j j j j j

N
y M P N M
θ

β
ψ ψ

∂
= = −
∂ +

 

( ) ( )2
1var 1j j j j j jx N P P cγ = = −  

( ) ( )
( )

2
2

2       

var 1

1 1, 2.

j j j j j j

j j j j j j

y M Q Q c

M P P c j

δ

ψ ψ

= = −

= − =
 

Therefore; 

( ) [ ]2 2
1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2
ˆ ˆvar 2 .θ θ τ τ ρ α α γ γ α β γ δ α β γ δ β β δ δ− = + − + + +   (12) 

Using the data in Table 8 we get: 
Males: 1 .59P = , 1 1128, .19M AR= = , ( )1̂var .0142θ = . 
Females: 2 .63P = , 2 2244, .29M AR= = , ( )2̂var .00578θ =  

( )1 2
ˆ ˆvar .01987θ θ− = , .211 .342 0.929

.141
z − +
= = , and value 0.353p − = . 

Therefore there is not enough evidence in the data to support the hypothesis 
of presence of gender differences for the paternal effect on the siblings’ hyper-
tension status. 

5. Simulations 

We carried out a Monte-Carlo study generating the observations from bivariate 
beta binomial distribution. We restricted our simulations to the situation when 
the intracluster and the cross clusters correlation are equal. We also assumed a 
fixed number of observations within each cluster. The purpose was to limit the 
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number of scenarios under which we examine the properties of the proposed test 
statistic Z. The statistic ( )varZ D D=  is computed when both 1P  and 2P  
are strictly positive with additional restriction,  

( ) [ ]2 2
1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 22ρ τ τ α α γ γ α β γ δ α β γ δ β β δ δ< + + + + . If these conditions 

are not satisfied, the sample is replaced until a total of 1000 iterations are ob-
tained for each parameter combination. Table 10 shows the empirical levels and 
powers of the test assuming that the number of clusters is the same under both 
conditions and for the exposed and the non-exposed clusters. The main conclu-
sions from Table 10, is that the proposed test statistic hold its empirical Type I 
error rate levels. There is an increase in the test power when the correlation in-
creases, and when the prevalence of exposure parameters 1P  and 2P  are away 
from the boundaries of the interval (0, 1). We also note an appreciate increase in 
the power when the number of clusters is above 50, and naturally when the 
tested parameters are well separated. 

6. Discussion 

The population Attributable risk, like the odds ratio and relative risk is a meas-
ure of disease risk association. However it has a special appeal to public health 
epidemiologists as it measures the percent reduction in the chances of having the 
outcome among subjects who are exposed to the risk factor. Clearly, not every-
one in the population is exposed to the risk factor. For example, in evaluating 
the relationship between consanguinity and the risk of PDA, not all parents are 
relatives. We assume say that 55% of women in the population (as in the Saudi 
traditional society) are married to a first cousin. To determine how much of a 
reduction there would be in PDA among CHD newborns we have 0.55 × 0.06 = 
3.3%. 

We have developed estimators of the variance and the confidence interval on 
AR when the units of sampling are aggregates of individuals under three study 
designs. In all situations the estimation of the intraclass correlation is crucial to  
 
Table 10. Empirical type i error rates and powers based on 1000 replications from the bi-
variate beta binomial distribution. We set AR1 = 0.05, and therefore, 2 1AR AR= −∆ . 

  .1ρ = , 1 .1P = , 2 .2P =  .2ρ = , 1 .1P = , 2 .2P =  .2ρ = , 1 .6P = , 2 .7P =  

k = l 
n = 
m 0∆ =  0.05 0.10 0.25 0∆ =  0.05 0.10 0.25 0∆ =  0.05 0.10 0.25 

5 2 0.049 0.058 0.078 0.101 0.049 0.060 0.084 0.110 0.049 0.083 0.180 0.296 

 3 0.049 0.060 0.084 113 0.049 0.062 0.089 0.122 0.049 0.089 0.210 0.356 

 5 0.050 0.062 0.092 0.132 0.050 0.063 0.097 0.136 0.049 0.096 0.247 0.436 

50 2 0.049 0.081 0.183 0.350 0.049 0.090 0.22 0.42 0.049 0.218 1.00 1.00 

 3 0.050 0.087 0.221 0.444 0.050 0.095 0.260 0.512 0.050 0.257 1.00 1.00 

 5 0.051 0.097 0.281 0.595 0.050 0.104 0.312 0.635 0.050 0.309 1.00 1.00 

100 2 0.051 0.097 0.281 0.604 0.051 0.111 0.357 0.740 0.050 0.353 1.00 1.00 

 3 0.051 0.108 0.359 0.787 0.051 0.122 0.435 0.910 0.051 0.429 1.00 1.00 

 5 0.050 0.124 0.472 0.99 0.050 0.140 0.537 1.00 0.051 0.530 1.00 1.00 
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conduct valid statistical inferences. 
One of the objectives of this paper was to develop and evaluate simple test sta-

tistic that could be used to compare dependent attributable risks in the case of 
clustered dichotomous outcome variables.  

7. Conclusions 

1) Through simulations, a major finding of our work is that to test the equality 
of correlated attributable risks, either from cross sectional or cohort studies, one 
needs a much larger number of clusters than that expected to achieve high power.  

2) An interesting extension of our study is to construct model-based inference 
on the AR. This would require the development of a semi parametric model sim-
ilar to the generalized estimating equation, or a full probabilistic model such as 
generalized linear mixed model where the effect of multiple covariates may be 
accounted for.  

3) A limitation of the simulation study is the restrictions that the number of 
observations in all clusters is held constant (balanced design) and that the within 
cluster and the cross cluster correlations are equal. The reason for this assump-
tion is to limit the number of factors which affect the power so that reasonable 
conclusions can be made. But we believe that these restrictions should not affect 
the overall conclusions. 
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