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Abstract 
Through the ages, human life and happiness are affected much by wide spread 
diseases, an unpredictable phenomenon. And infectious disease spread is one 
of the most unsolvable problems. How infection evolves, how it spreads from 
person to person and mainly which pattern it follows are some questions 
which are always unanswerable. Out of many techniques, discrete epidemic 
models like the chain binomial model are ones which are applied to describe 
the physical phenomena of spreading infectious diseases in a household. In 
this paper, an attempt has been made to develop a modified epidemic chain 
model by assuming a beta distribution of third kind for the probability of be-
ing infected by contact with a given infection from the same household with 
closed population. This paper emphasized mainly on developing the prob-
abilities of all possible epidemic chains with two introductory cases for three-, 
four- and five-member household and three introductory cases for four- and 
five-member household. The key phenomenon towards developing this paper 
was to provide an extension of the modified chain binomial model and its 
possible probabilities. 
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1. Introduction 

In a time when it has become unfathomable to breathe fresh air, drink clean wa-
ter and live in an era, technological and industrial prosperity with all imaginable 
boons of life also brings with it the bane of a degraded environment and various 
ensuing health hazards. In the words of the Secretary General of UN, Mr. Ban 
Ki-Moon, “We must connect the dots between climate change, water scarcity, 
energy shortages, global health, food security and women’s empowerment. Solu-
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tions to one problem must be solutions for all.” In present days, apart from ter-
rorism, increasing health issues, variants of fatal diseases are probably the great-
est threat to the human race, irrespective of their nationality, ethnicity, religion 
or language. A country with a sick mass of people as its citizens can never im-
agine prospering, whatsoever might be its wealth. In that direction, each nation 
spends a huge chunk of its money towards the research and development in the 
health sector. In such a scenario, an investigation into the infection and propa-
gation of infectious disease with a proper statistical methodology is worthy. 

Some data from the past and some data on which Bailey (1957) [1] focused in 
his paper have ultimately shown us the exact scenario or status of infectious dis-
eases in the world. For example, in 14th century, Black death killed almost 50 
million (60 percent) of Europe’s entire population; the disastrous mortal disease 
known as Black Death spread across Europe in the years 1346-1353. In 1520, the 
Aztecs lost about half of their population, 3.5 million from the smallpox epi-
demic and the downfall of their empire in 1521 was more due to smallpox than 
that of any other causes. It was estimated that Russia suffered about 25 million 
cases of epidemic typhus in the years 1918 to 1921 with a death rate of approx-
imate 10 percent. The influenza pandemic of 1918-1919 killed more people than 
the Great War, known today as World War I, at somewhere between 20 and 40 
million people. 

Infectious diseases continue to be a serious health issue throughout the globe. 
Progress in controlling, eliminating or eradicating infectious diseases is a key 
part of the international health agenda. In fact, changing lifestyles, patterns of 
behaviour and several such complex factors has led to the emergence and spread 
of disease in India. And, people in India have been infected with infectious dis-
eases like SARS, dengue, chickungunya, malaria and bird flu in recent times. 
And day by day, education and information become the key factors in the man-
agement of infectious diseases. The distinction between the disease and the epi-
demic is the epidemic of the disease and the epidemic of anxiety. The later was 
significantly more infectious. In infectious disease the uncertainties can broadly 
be divided into two completely different but related issues. 

1) The Disease Process: What will happen to me if I get sick? 
2) The Epidemic Process: How likely am I to get sick now? 
Will that change in the future? 
This section describes the foundations and development of epidemic model-

ling, starting with an early model for smallpox. Daniel Bernoulli (1766) [2] was 
one of the first mathematicians to attempt to model the effects of disease in a po- 
pulation. He used a deterministic model to show that inoculation with a mild 
form of the smallpox virus would reduce the death rate of the population of 
France. An early reference to the non-linearity of epidemic models is made in a 
paper by Hamer (1906) [3]. Hamer postulated that the probability of an infec-
tion in the next period of time (in a discrete time model) was proportional to the 
number of infectious individuals multiplied by the number of susceptible indi-
viduals. This idea is called the mass action principle and has been used in many 
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areas of science, in particular to determine the rate of chemical reactions, in 
work as early as Boyle’s c. 1674 (Daley and Gani, 1999) [4]. Kermack and McKen-
drick (1927) [5] incorporated this idea into the Deterministic General Epidemic 
Model. 

McKendrick (1927) [5] suggested one of the first epidemic models to incor-
porate the randomness observed in real life outbreaks. This model is a stochastic 
continuous time version of the Deterministic General Epidemic Model. Heas-
man and Reid (1961) [6], for example, demonstrated that the Reed-Frost chain 
binomial model can provide an adequate fit to data on outbreaks of the common 
cold in households of size five. By comparing observed with expected frequen-
cies for the total number of cases, they also demonstrated that the stochastic ver-
sion of the Kermack-McKendrick epidemic model (Bailey, 1975) [7] may pro-
vide an even better fit. Ridler-Rowe (1967) [8] obtained some limit results for 
the duration time for an epidemic process with immigration of the susceptible 
and infective. And this work addresses itself to the question of obtaining the 
mean duration time for the general epidemic process. 

Another early discrete-time model is the chain Binomial model of Reed and 
Frost (Bailey, 1975) [7] in which the number of infectives to appear in the next 
time unit follows a binomial distribution, with the probability of infection de-
pendent on the number of infectives in the current time unit. It was not until 
Bartlett (1949) [9] studied McKendrick’s model, that stochastic models in con-
tinuous time were examined more extensively.  

Afterwards, in connection with applications in reliability theory and commu-
nication nets, Keilson (1974a) [10] considered stationary processes which could 
be modelled as Markov chains in continuous time. His underlying state space 
was partitioned into good and bad states. Among other results, Keilson derived 
mean sojourn times on the good set until the process entered the bad set. For the 
general epidemic process, Keilson identified the good set with the continuance 
of the epidemic and the bad set with the completion of the epidemic. And using 
these ideas only, he derived the mean duration time for the general epidemic 
process.  

A general epidemic process is said to be completed whenever the number of 
susceptibles or the number of infectives reduces to zero. Billard (1977) [11] de-
rived the mean duration time for this process to be completed. This work was an 
extension of Bailey’s work where the derivation of the probability distribution of 
the duration time of the epidemic process requires complicated and apparently 
intractable mathematics. Using generating functions, Bailey (1975) [7] has ob-
tained expressions for the mean duration time for the simple epidemic process. 

Classical epidemic models have invariably proved to be mathematically in-
tractable. By considering the distribution of the infectives in a simple epidemic 
process as a convolution of exponential waiting times, the solution to the classic-
al model is obtained easily by Billard et al. (1978) [12] by giving more insight 
into the underlying structures. Further the idea has been extended to other sim-
ple epidemic models.  
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Again Becker (1980) [13] had developed an epidemic chain model by assum-
ing a beta distribution for the probability of being infected by contact with a 
given infective from same household, and also formulated a multi-parameter 
chain binomial model to describe outbreaks of an infectious disease in house-
hold.  

Again in the later part, Jacquez (1987) [14] had analyzed the derivations of the 
Reed-Frost model in terms of the assumptions about the probabilistic process 
used and in terms of internal consistency. Demiris (2004) [15] had developed the 
statistical methodology for the analysis of stochastic SIR (Susceptible → Infective → 
Removed) epidemic models by adopting the Bayesian paradigm and also devel-
oped a suitable tailored Markov chain Monte Carlo (MCMC) algorithms. And 
the focus was mainly given on the methods that were easy to generalize in order 
to accommodate epidemic models with complex population structures. At first, 
Barbour and Utev (2004) [16] had done the refining of two well known appro- 
ximations to the Reed-Frost epidemic process. The first was the branching pro- 
cess approximation in the early stages of the epidemic; and extended its range of 
validity, and sharpen the estimates of the error incurred. And the second is the 
normal approximation to the distribution of the final size of a large epidemic, 
which they complement with a detailed local limit approximation, where he 
found the latter, in particular, to be relevant, if the approximations are to be 
used for statistical inference.  

Since then, research has been directed towards the study of a wide variety of 
models, and their statistical analysis. This paper aims to develop a solution to the 
problem of epidemic processes of infectious diseases. Specifically, the discrete 
time models are considered for the study. The study is entirely based on the 
spread of infectious diseases.  

The main objective of this paper is to give more emphasize on the theoretical 
development of a new discrete-time model named as modified epidemic chain 
model and its extensions. The model was developed from the Becker’s epidemic 
chain model (1980) [13], by assuming a beta distribution of third kind for the 
probability of being infected by contact with a given infective from the same 
household in our previous paper by Nath et al. (2015) [17]. Also, the paper aims 
in developing the general formula for the number of epidemic chains possible 
for the household of size three, four and five along with their chain probabilities 
for households with two and three introductory cases.  

2. Theory of Epidemics  

One of the most important applications of Stochastic Processes in the area of Bi-
ology and Medicine has been to the Mathematical theory of Epidemics. This is of 
interest, not only because of the biological and epidemiological implications, but 
also because a more complicated type of process is involved than those consi-
dered therein. 

Bailey (1975) [7] discussed that, in general an epidemic process can be cha-
racterized as a time-dependent process of transition by the members of a popu-
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lation, where the state transitions are caused by exposure to some influence 
called infectious material. The members of the population can belong to one of 
three basic states at a given point in time: 1) Infective, those members of the po- 
pulation who are host to the infectious material; 2) Susceptible, those members 
of the population who can become infectives given effective contact with infec-
tious material; 3) Removal, those members of the population who have been re-
moved from circulation for one of a variety of reasons such as death, immunity, 
hospitalization, etc. 

The epidemic processes is further classified into continuous-time and dis-
crete-time processes, where the continuous-time processes involved models in 
which the transition probabilities were at most linear functions of the population 
size. On the other hand, the discrete-time processes are those, for which the 
transition probabilities are usually non-linear functions of the population size. 
The two processes are elaborated as below in Section A and B: 

1) Continuous-time epidemic models (Bailey, 1975) [7]; 
The simplest continuous-time treatments are covered below in (a), (b) and (c) 
a) Simple epidemics: The simple epidemics is the most simplest possible kind 

of continuous-time epidemic model, in which we have the susceptibles in a 
group liable to catch current infection, but in which there is no removal from 
circulation by death, recovery, or isolation. Such a model might well be appro- 
ximately true for certain mild infections of the upper respiratory tract, where 
there is a comparatively long interval of time between the infection of the indi-
vidual and his actual removal from circulation. The bulk of the epidemic would 
then take place before anyone was removed. 

There occurs two versions for such situations one is a deterministic case and 
the other one is the stochastic case. It is more convenient to examine the ap-
proximate deterministic version of such a situation than that of the stochastic 
version because for a group with sufficiently large numbers, we can sometime 
use a deterministic component as a first approximation than that of a full sto-
chastic model and also because it is instructive to see how the stochastic mean in 
small groups differs from the corresponding deterministic value. 

b) General epidemics: It has been explained by Bailey that, there exists consi-
derable difficulties in theoretical handling of even a simple epidemic in which we 
have only infection and no removal. But in case of general epidemics, the more 
complicated general situation in which both of these latter possibilities are rea-
lized were looked upon thoroughly by the author. This theory somehow helped 
to find a way out for handling the distribution of the total number of cases of 
disease that may occur. But little is known about the exact form of the epidemic 
curve, or the distribution of the duration time. 

c) Recurrent Epidemics: It is a characteristics feature of many infectious dis-
eases that each outbreak has a kind of epidemic behavior investigated in the last 
part, but in addition these outbreaks tend to recur with certain regularity. The 
disease is then, in a sense, endemic as well as epidemic. And such situations are 
of considerable interest to explore mathematically, and there exists a fundamen-
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tal distinction between the properties of deterministic and stochastic models. 
And, in general, the stochastic formulation of the model for recurrent epidemics 
leads to a permanent succession of undamped outbreaks of disease, although not 
exhibiting a strict sequence of oscillations. 

2) Discrete-time epidemic model;  
This is the main area of the paper. It has many such models under this, but the 

most important discrete—time epidemic model was developed by Bailey in 1975 
which is explained in Section 2.1. And the further extension of the chain bino- 
mial model, i.e., epidemic chain binomial model developed by Becker in 1980 is 
explained in Section 2.2 

To start with, we assumed that, we have a group of susceptible individuals all 
mixing homogeneously together. One or more, of this group then contracts a 
certain disease which may in due course be passed on to the other susceptibles. 
In general, we assume that after the receipt of the infectious materials, there is 
latent period during which the disease develops purely internally within the in-
fected person. The latent period is followed by an infectious period, during 
which the infected person, or infective as he/she is then called, is able to dis-
charge infectious matter in some way and possibly communicate the disease to 
other susceptible i.e., the time during which the disease may be transmitted to 
other members of the population. This time period is contracted to a single point. 
The infected person may spread the disease upon “adequate contact” to suscep-
tibles in the population. This adequate contact is the probability of contact at 
any time between an infective and a susceptible sufficient to transmit the infec-
tion. Denote this parameter as “p” where 0 p l q l< − − < , and q is the probabil-
ity of no contact with the infection. 

Sooner or later actual symptoms appear in the infective and he/she is removed 
(isolated) from circulation amongst the susceptibles until he/she either recovers 
or dies i.e., removed from the rest of the population until recovery. This removal 
brings the infectious period effectively to an end (at least so far as the possibility 
of spreading the disease is concerned). The time interval between the receipt of 
infection and the appearance of symptoms is of course the incubation period. At 
each time step, a new generation or set of cases following a binomial distribution 
depending on the parameter “p” is presented. The epidemic continues until at 
some stage there are no new cases generated. An epidemic is defined as the tran-
sient outbreak of a disease which is terminated when there are no new infectives. 

As viewed by Bailey (1975) [17] in his book that, there exist certain special 
cases of the above general situation. In the simplest continuous-time models, the 
latent period is assumed to be zero, so that the infected individual becomes in-
fectious to others immediately after the receipt of the infection. On the other 
hand, in the simplest discrete-time models like chain-binomial model, the latent 
period is considered to be constant, and an infectious period is assumed to be 
short. 

Cairoli (1988) [18] in his work stated that, the mathematical formulation of 
discrete time epidemic models flows from attempts by several investigators to 
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present models which realistically describe the progress of a disease through a 
population. The usual starting point in model building is the set of assumptions 
about those factors which control the spread of a disease. These assumptions 
should create a model which describes actual disease patterns. The epidemic 
model is then useful as a predictive tool for epidemiologists. 

2.1. Chain-Binomial Models 

The chain binomial models (Bailey, 1975) [7] have met with reasonable accom-
plishment, when fitted to data on communicable diseases for households, for 
example diseases like common cold or influenza. Also, Heasman and Reid (1961) 
[6] have demonstrated that, the Reed-Frost chain binomial model can provide 
an adequate fit to data on outbreaks of the common cold in households of size 
five. And, by comparing the observed frequencies with the expected frequencies 
for the total number of cases, they also demonstrated that, the stochastic version 
of the Kermack-McKendrick epidemic model (Bailey, 1975) [7] may provide an 
even better fit. In the later stage, a detailed comparison of the fits provided by 
these two models was attempted by Becker (1980) [13] by formulating an epi-
demic chain model, that was developed by assuming a beta distribution of first 
kind, for the probability of being infected by contact with a given infective from 
the same household. This model includes, as a particular case, the epidemic 
chain model corresponding to the stochastic version of the Kermack-McKen- 
drick epidemic model (Bailey, 1975) [7] and, as a limiting case, the Reed-Frost 
chain binomial model. The advantages of the more general model were also illu-
strated with an application to household data for the common cold. Also the as-
sumptions made were similar in many ways to those used by Ludwig (1975) [19] 
in his derivations of the final size distributions for epidemics with arbitrary 
time-dependent infectiousness.  

The model should be relatively simple and mathematically accurate in de-
scribing essential features of the epidemic. Chain binomial models satisfy both 
these criteria. These models have been useful in describing viral diseases such as 
measles, chicken pox, influenza, and the common cold. Modeling the spread of 
these diseases among individuals in a population is a complex task. It is neces-
sary to make several mathematical and biological assumptions about the factors 
which control the disease process. Mathematically, the population under con-
sideration is assumed to be closed and homogeneously mixed. 

In this paper, we concentrated mainly upon the discrete-time type of epidemic 
model. In certain circumstances, we may prefer to employ a discrete-time model, 
and represent the epidemic process by some suitably defined Markov Chain. 
Such models have been used quite successfully in the statistical fitting of certain 
epidemic theories to data relating to small groups such as families in statistical 
theory. However, so far as the analysis of epidemic processes in large groups is 
concerned, the discrete-time models are rather difficult, and it is easy to rely on 
the insights provided by continuous-time models for understanding the beha-
vior of epidemics in reasonably large groups. 
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It is perhaps worth taking a quick look at the way in which the discrete-time 
models can be constructed, as future developments may enable them to be used 
as a basis for the investigation of the corresponding stochastic processes. The 
basic idea is that, the latent period is fixed, which may be used as a unit of time, 
and an infectious period is contracted to a single point. As the population con-
sists of two classes of individuals like the infectives, and susceptibles. The models 
assume that all individuals have equal susceptibility, capability to transmit the 
disease, and the ability to be removed from observation when the transmitting 
period is over. 

2.2. Epidemic Chain Binomial Model  

Becker (1980) [13] developed an epidemic chain model by assuming beta distri-
bution of first kind for the probability of being infected by contact with a given 
infective from the same household. This model includes, as a particular case, the 
epidemic chain model corresponding to the stochastic Kermack-McKendrick 
model and, as a limiting case, the Reed-Frost chain binomial model.  

A more detailed comparison of the fits provided by the two models namely, 
Reed-Frost chain binomial model and the stochastic version of the Kermack- 
McKendrick epidemic model was not attempted by Becker for any epidemic 
chain model developed by assuming any other kind of Beta distribution for the 
probability of being infected by contact with a given infective from the same 
household. In order to make a more exhaustive comparison, we formulate a 
modified epidemic chain model by assuming a beta distribution of third kind for 
the probability of being infected by contact with a given infective from the same 
household. Also, in Becker’s paper only the chain probabilities of the possible 
chains for a household of size three, four and five with one-introductory case 
was shown, but in this paper we have made an attempt to develop the chain 
probabilities of the possible chains for a household of size three, four and five 
with two and three introductory cases for the modified epidemic chain model.  

3. Probability of Escaping Infection 

As reviewed in the previous paper by Nath et al. (2015) [17], let us consider a 
disease say, influenza, which is able to spread from person in a household. Let the 
time at which the disease is introduced to the household as the time origin and 
suppose that the outbreak within the household is over by time t∗ . Assume that 
during the time interval ( )0, t∗  the chance of infection from outside the house-
hold is negligible compared with the chance of infection from within the house-
hold. Following a latent period of random duration, an infected person becomes 
infectious and remains so until his removal by isolation, death or recovery, with 
immunity for the duration of the outbreak. The probability that a given infected 
person A, say, transmits the disease to any given susceptible during the time in-
crement ( ),t t h+  is assumed to be 

( ) ( ).t h o hΛ +                            (1) 
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So, ( )tΛ  indicates how infectious A is at time t. By partitioning the interval 

( )0, t∗  into n small time increment ( )1,i it t−  of length 1i i ih t t −= − , 1, 2, ,i n=  , 
the probability that any given susceptible escapes infection by A during the inter-
val ( )0, t∗  is 

( ) ( ){ }1
1

1
n

i i i
i

t h o h−
=

− Λ +∏                      (2) 

which tends in the limit as n →∞  and the partition becomes finer, to 

( )exp Iε = −                           (3) 

where ( )
0

d .
t

I t t
∗

= Λ∫  

In particular case when Λ assumes the constant value λ when A is infectious, 
but assumes the value zero otherwise , we find that I Tλ= , where T is the dura-
tion of A’s infectious period and λ is A’s infection rate , so I indicates the poten-
tial that A has for transmitting the disease to any given susceptible of the house-
hold. 

ε, the probability that any given susceptible escapes infection by any given in-
fected person is constant. If both λ and T are constants then ε is a constant. 

4. Chains of Infection 

According to the chain of infection so developed by Becker (1980) [13], he ex-
plained that it is not always possible to determine which infective is responsible 
for a certain infection. It is easier by making use of the gaps between cases, to 
partition the cases of a household into generations: the susceptible infected by 
direct contact with the introductory cases are said to make up the first genera-
tion of cases; the susceptibles infected by direct contact with first generation 
cases are said to make up the second generation and so forth. By an epidemic 
chain we mean the enumeration of the number of cases in each generation.  

Let us take an example of a five member household with one introductory case, 
as per the formula (Equation (13)) explained in this paper, the total no. of possi-
ble epidemic chains are  

5 12 16.− =  

And out of the sixteen (16) possible epidemic chains, let 1-2-1-0 be one such 
chains out of all sixteen (16) combinations, where this chain 1-2-1-0 denotes as 
the chain consisting of one introductory case, two first generation cases, one 
second generation case and no cases in later generation. 

1-2-1-0.  

1: Introductory case; 
2: First generation case; 
1: Second generation case; 
0: Third generation case. 
Corresponding to a given infective A, the conditional probability that r out of 

k susceptibles of the household escape infection by A is 
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( )1 k rk r
rC ε ε −−                           (4) 

given the infection potential I of infective A. 
Corresponding to a given infective A, unconditional probability that r out of k 

susceptibles of the household escape infection A is given by 

( ){ }1 .k rk r
rC E ε ε −−                         (5) 

Becker (1980) [13] has considered ε being a beta distribution of first kind giv-
en by the density function     

( ) ( ){ } ( )1 11, 1 ,   1, , 0,f B oβαε α β ε ε ε α β
− −−= − < < >           (6) 

and ( ){ }1 k rrE ε ε −−  is given by Becker (1980) as  

( ){ } ( )
( )
,

1 .
,

k rr B r k r
E

B
α β

ε ε
α β

− + + −
− =                 (7) 

Again in the paper of Nath et al. (2015) [17], ε was considered to follow beta 
distribution of third kind by Nagar and Ramirez-Venagas (2012) [20] given by 
the density function     

( ) ( )
( )( )

112 1
,   1, , 0.

, 1
f o

B

βα α

α β

ε ε
ε ε α β

α β ε

−−

+

−
= < < >

+
           (8) 

Then ( ){ }1 k rrE ε ε −−  is given by 
( )

( )
( )( ) ( )

111

00

2 11 d
, 1

k rr k
k i

ir k r
i

C
B

βα α

α β

ε ε
ε ε

α β ε

+ − −+ −

+ + + −
=

−

+
∑∫ .  

Since, ε is the probability of being infected by contact with a given infective from 
the same household. So the higher herms of ε can be neglected. 

( ){ }1 k rrE ε ε −−  can further found to be as 

( )
( ) ( ) ( )

1

,
, ,   .

, , j

B r k r k B r j k r k r
B B

α β
α β

α β α β

∞

=

+ + −
+ + + + − ≥∑     (9) 

For the practical application the term ( ){ }1 k rrE ε ε −−  can be considered as  

( ){ } ( )
( )

( )
( )

, 1,
1 ,    if   1.

, ,
k rr B r k r B r k r

E k r
B B

α β α β
ε ε β

α β α β
− + + − + + + −

− = + > +  (10)
 

The above term is resulted after applying the test for convergence of the infinite  

series ( )
1

,
j

B r j k rα β
∞

=

+ + + −∑ . In this process Raabe’s test was proved to be  

stronger than the D’Alembert’s Ratio test and succeed when the Ratio test fails. 
For the test of convergence of the infinite beta series, the Raabe’s test is applied 
when the test fails for the Ratio test.  

Further, ( ){ }1 k rrE ε ε −−  can also be expressed as 

( ){ }
( ) ( )

( )( )
( )

( )
1 1

r k r
k rr

k

r
E k

k
αα βε ε

α βα β

−
−  + − = + + + +  

           (11) 

where ( ) ( )( ) ( )1 2 1 .r rα α α α α= + + + −  
Then expression (5) using Equation (11) is given by  



D. C. Nath et al. 
 

235 

( ){ }
( ) ( )

( )( )
( )

( )
1 1 .

r k r
k rk r k

r r k

r
C E C k

k
αα βε ε

α βα β

−
−  + − = + 

+ + +  
        (12) 

In our study, a theory has been developed for the number of household mem-
bers i.e., for say the household size be m and the number of introductory cases be j.  

In our case, let us consider that, m and j takes the values as m = 3, 4 or 5 and j = 
1, 2 or 3.  

Considering the expression (5), k, the number of susceptibles of the household 
who escape infection by A is also known as the number of final cases possible for 
a m-member household containing j-introductory cases. Therefore, k takes val-
ues as ( )0,1, , m j− . 

In general, for a binomial distribution, the total number of epidemic chains 
possible for the households of size m containing j-introductory cases is given as 

0 2 .m j m j
i

m j
iC−

=
− −=∑                          (13) 

Some particular cases: 
1) Number of epidemic chains possible for household of size, m = 5 contain-

ing j = 2 introductory cases are 5 22 8− = . 
2) Number of epidemic chains possible for household of size, m = 5 contain-

ing j= 3 introductory cases are 5 32 4− = . 
To illustrate the computation of the probabilities associated with the different 

possible epidemic chains we consider the chain 1-1-2-0 in a household of size 
five including one introductory case. The probability of this chain, conditional 
on the probabilities 1 2 3 4, , &ε ε ε ε  that a given susceptible escape infection by 
each of the four infected individuals, respectively found to be  

( ) ( ) ( ) ( )1 024 3 3 1 1
3 1 1 1 2 2 1 3 4 3 41 1 1 .C C Cε ε ε ε ε ε ε ε− − −              (14) 

The unconditional probability so obtained by taking the expectation of this 
conditional probability and using the fact that 1 2 3 4, , &ε ε ε ε  are independent 
random variables having the same beta distribution of third kind. Using the 
form of Equation (11), the probability of the chain 1-1-2-0 in a household of size 
five including one introductory case was found by Nath et al. (2015) [17] as, 

( ) ( ) ( ) ( ){ }
( ) ( )

( )( )
( )
( )

( ) ( )

( )( ) ( )
( ) ( )

( )( ) ( )

1 024 3 3 1 1
3 1 1 1 2 2 1 3 4 3 4

3 1 1 2

4 3

1 0

1

1 1 1

4 12 3 312 1 1
4 3

1   1 .
1

E C C Cε ε ε ε ε ε ε ε

αα β α β α
α β α βα β α β

α β α
α βα β

− − −

      + +      = + +   
+ + + +      + +      

  +  + 
+ +  +   

      (15) 

Since, ( ) ( )0 0 1α β= = , ( )1α α=  and ( )1β β= , so putting the values in the 
above equation we have 

( ) ( ) ( ) ( ){ }
( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( )

1 024 3 3 1 1
3 1 1 1 2 2 1 3 4 3 4

3 22

5 4 2

1 1 1

5 16 4 6 2 2
12 .

E C C Cε ε ε ε ε ε ε ε

α α β β α β α β α β

α β α β α β

− − −

+ + + + + +
=

+ + +

         (16) 
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5. Chain Probabilities for Two and Three Introductory Cases 

The probabilities of the possible chains given for household of sizes three, four 
and five with two introductory cases and for household of sizes four and five 
with three introductory cases has been developed in this paper are shown in the 
below Tables 1-5. 

The number of possible cases, i.e., the combination of the epidemic chains was 
calculated by using the formula (Equation (13)) and the probabilities are calcu-
lated by using the Equation (12). Using real life data, i.e., for some observed fre-
quencies of the possible chains, expected frequencies can be generated and 
goodness of fit can be tested. As this paper is restricted to development of theo-
ries and data collection for the application to real-life data is in progress, there-
fore it is planned for our next communication. 

6. Conclusions 

The paper aims to develop an alternative approach to the Becker’s epidemic chain 
binomial model (1980) [13] of infectious diseases and its extensions. Since, the 
modified epidemic chain binomial model developed in the Nath et al. (2015) [17] 
paper was a more complicated model than that of the epidemic chain binomial 
model of Becker (1980) [13], therefore, the chain probabilities so developed as a 
extension of the previous work of Nath et al. (2015) [17] for household of size 
three, four and five for two and three introductory cases in a closed population  
 
Table 1. Epidemic chain probabilities for households of size three with 2-introductory 
cases. 

Type of chain Probability assuming beta type III 

2-0 
( )
( )( )2

2 2α α β

α β

+ +

+
 

2-1 
( )
( )( )2

2 1β α β

α β

+ +

+
 

 
Table 2. Epidemic chain probabilities for households of size four with 2-introductory 
cases. 

Type of chain Probability assuming beta type III 

2-0 
( ) ( )
( )( )

2

3

3 6α α β

α β

+ +

+
 

2-1-0 
( )( )
( )( ) ( )( )

2

3 2

2 3 4 2 2α β α β α β

α β α β

+ + + +

+ +
 

2-1-1 
( )( )
( )( ) ( )( )

2

3 2

2 3 4 2 1αβ α β α β

α β α β

+ + + +

+ +
 

2-2 
( ) ( )
( )( )

2

3

3 2β α β

α β

+ +

+
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Table 3. Epidemic chain probabilities for households of size five with 2-introductory 
cases. 

Type of chain Probability assuming beta type III 

2-0 
( ) ( )
( )( )

3

4

4 12α α β

α β

+ +

+
 

2-1-0 
( ){ } ( )( )

( )( ) ( )( )

22

4 3

3 4 9 3 6α β α β α β

α β α β

+ + + +

+ +
 

2-1-1-0 
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

2 2 2

4 3 2

6 4 9 3 4 2 2α α β α β α β α β

α β α β α β

+ + + + + +

+ + +
 

2-1-1-1 
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

2 3

4 3 2

6 4 9 3 4 2 1α αβ α β α β α β

α β α β α β

+ + + + + +

+ + +
 

2-1-2 
( ) ( ) ( ) ( )

( )( ) ( )( )

2 2

4 3

3 4 9 3 2α β β α β α β

α β α β

+ + + +

+ +
 

2-2-0 
( ) ( ) ( )
( )( ) ( )( )

22

4 2

3 4 6 2 2α β α β α β

α β α β

+ + + +

+ +
 

2-2-1 
( ) ( ) ( )
( )( ) ( )( )

2

4 2

3 4 6 2 2αββ α β α β

α β α β

+ + + +

+ +
 

2-3 
( ) ( )
( )( )

3

4

4 3β α β

α β

+ +

+
 

 
Table 4. Epidemic chain probabilities for households of size four with 3-introductory 
cases. 

Type of chain Probability assuming beta type III 

3-0 
( )
( )( )2

2 2α α β

α β

+ +

+
 

3-1 
( )
( )( )2

2 1β α β

α β

+ +

+
 

 
Table 5. Epidemic chain probabilities for households of size five with 3-introductory 
cases. 

Type of chain Probability assuming beta type III 

3-0 
( ) ( )
( )( )

2

3

3 6α α β

α β

+ +

+
 

3-1-0 
( )( )
( )( ) ( )( )

2

3 2

2 3 4 2 2α β α β α β

α β α β

+ + + +

+ +
 

3-1-1 
( )( )
( )( ) ( )( )

2

3 2

2 3 4 2 1αβ α β α β

α β α β

+ + + +

+ +
 

3-2 
( ) ( )
( )( )

2

3

3 2β α β

α β

+ +

+
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also came out as complicated expressions. Though the probabilities come out to 
be complicated and application to real life data may be laborious, but in modern 
era, such difficulties may be easily sorted out with the help of the advanced 
computer techniques and various statistical softwares like, R-programming, SPSS/ 
PASW, SAS, etc.  

Hence, the application of this purely academic investigation can be pursued 
further with proper thinking and dedication by using various statistical methods 
and techniques, and a more in-depth inference of the theory can be drawn. And 
this phenomenon may greatly help to alleviate and prevent at least some of the 
human sufferings which exist in the present time due to infectious diseases. 
However, our work in this paper restricts to the development of the theoretical 
concepts only, but we are in a process of illustrating the application of this me-
thod to the real life data on common cold for three-, four-, and five-member 
household with closed population. And we are expecting to present that in our 
next communication. 
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