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Abstract 
The study endeavors to provide statistical inference for a (1 + 1) cascade system for 
exponential distribution under joint effect of stress-strength attenuation factors. Es-
timators of reliability function are obtained using Maximum Likelihood Estimator 
(MLE) and Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the 
parameters. Asymptotic distribution of the parameters is also obtained. Comparison 
between estimators is made using data obtained through simulation experiment. 
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1. Introduction 

As the complexity of a system increases, its reliability decreases unless compensatory 
measures are taken. System reliability can be increased by increasing the reliability of its 
associated components, but sometimes this cannot be achieved beyond certain limits. 
An alternative way to increase the reliability in such situation is to have redundant con-
figuration of components in the system.  

Cascade system is one such special type of standby system. Cascade redundancy is a 
hierarchical standby redundancy, where an array of components (finite in number) are 
arranged in the order of activation. Here, the first component is active and the remain-
ing components are at standby. The brunt of attack, in the first instance is borne by the 
active component. If it survives the attack, the system also survives with no loss and is 
ready to face the next attack. However, if the active component fails then the next 
component in the array has to face and withstand the “cushioned” attack on it. The 
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stress acting on the subsequent active component will be “k” times the stress of the pre-
vious failed components, where “k” denotes stress attenuation factor. 

Research works on reliability modelling and assessment related to cascade model as 
studied in the literature are quite exhaustive, Pandit and Sriwastav (1975) have featured 
relevance of geometric distribution in the study of behavior of a cascade system [1]. 
Raghavachar, Rao and Ramacharyulu (1983) presented a closed form solution of stress 
attenuated reliability function for n-cascade system when both stress and strength fol-
low identical distributions [2]. Maheshwari, Rekha, Rao and Raghavachar (1993) stu-
died stress attenuated reliability for n-cascade system whose stress and strength follow 
normal and exponential distributions respectively [3]. Rekha and Shyam Sunder (1997) 
have also highlighted a similar cascade system where stress and strength follow gamma 
and exponential distributions respectively. They showed that for higher parametric 
values and lower attenuation factors a high degree of reliability could be attained [4]. 
Rekha and ChechuRaju (1999) endeavored to present a closed form solution of stress 
attenuated reliability function for n-cascade system with exponential stress and standby 
strengths following Rayleigh and exponential distributions [5]. Shyam Sunder (2012) 
has studied stress attenuation for cascade system when both stress and strength follow 
Rayleigh distribution [6]. In most of the works mentioned in the literature on cascade 
model, study is carried out by considering the influence of stress attenuation factor on-
ly. This observation has motivated the present study of attempting to design reliability 
model for a cascade system under joint effect of stress as well as strength attenuation 
factors. Further, reliability assessment (estimation of reliability function) is carried us-
ing the standard methods [7]-[10]. 

2. Estimation of Reliability for a (1 + 1) Cascade Model 
2.1. Stress-Strength Cascade Model 

Let 1 2, , , nX X X  denote the strengths of n-components in the order of activation 
and let 1 2, , , nY Y Y  be the corresponding stresses acting on them. In a n-cascade sys-
tem after every failure the stress gets modified by a factor “k” (stress attenuation factor) 
such that 2 1

2 1 3 2 1 1, , , i
iY kY Y kY k Y Y k Y−= = = =  here, 1k >  and we assume that the 

strength gets modified by a factor “m” (strength attenuation factor) such that  
2 1

2 1 3 2 1 1, , , i
iX mX X mX m X X m X−= = = =  here, 0 1m< < . 

The reliability function nR  of the system with ‘n’ components is defined as, 

( ) ( ) ( )1 2nR R R R n= + + +  

where, 

( ) 2 2 1 1
1 1 1 1 1 1 1 1, , , ,r r r rR r P X Y mX kY m X k Y m X k Y− − − −= < < < ≥    for 1,2, ,r n=   

Cascade model with more number of standby components is not recommended as 
the strength goes on depleting with the order of standby which leads to dead invest-
ment. In view of this fact, we have considered estimation of reliability for a (1 + 1) cas-
cade model. 
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2.2. Reliability Function for a (1 + 1) Cascade Model 

To determine reliability function for the model under study, let us consider the strength 
of the two components (basic and standby) to be 1X  and 2X  respectively, where 

1 2,X X  are independently and identically distributed (i.i.d) exponential random va-
riables with parameter “ λ ”. Let 1Y  and 2Y  be the stress acting on the two compo-
nents respectively, where 1 2,Y Y  are i.i.d exponential random variables with parameter 
‘ µ ’. To obtain the expression for reliability function, consider, 

( ) [ ] [ ] ( ) ( )11 1 1 1 1 10
1 dYR P X Y P X y g y y µ

λ µ
∞

= ≥ = ≥ =
+∫           (1) 

( ) [ ] [ ]
[ ] [ ] ( )

1

1 1 2 2 1 1 1 1

1 1 1 1 1 10

2

d

, ,

1

Y

R P X Y X Y P X Y mX kY

P X y P mX ky g y y

k k
m m

µλ

µ λ µ λ

∞

= < ≥ = < ≥

= < ≥

=
    + + +    

    

∫               (2) 

Using results of (1) and (2), we obtain reliability function for the proposed (1 + 1) 
cascade model as, 

( ) ( ) ( )2 1 2
1

R R R
k k
m m

µ µλ
λ µ

µ λ µ λ
= + = +

+     + + +    
    

          (3) 

2.3. Life Testing Experiment 

To obtain the estimators of “ 2R ”, suppose “n” systems whose reliability function is de-
fined as in expression (3) are put on life testing experiment. Here,  

( )1 2, 1, 2, ,i iX X i n=   are observed and 1 2,i iX X  are i.i.d exponential random variables 

with parameters “ λ ” and “
m
λ ” respectively. Also, the data of stress ( )1 2, 1, 2, ,i iY Y i n=   

are obtained separately from simulation of conditions of the operating environment 

and 1 2,i iY Y  are i.i.d exponential random variables with parameter “ µ ” and “
k
µ ”  

respectively. The joint probability density function of the random variables 
( )1 2, 1, 2, ,i iX X i n=   and ( )1 2, 1, 2, ,i iY Y i n=   is given by, 

( ) ( )2 21 1

1 2 1 21 1 1 1

2 2
1 1

1 1

1 12 2

2 2

e e e e

e e

e e

i ii i

n n n n
i i i ii i i i

n nx yx ym k

i i

n nx x y y
m k

n n

x yn nx y
m k

n n

L
m k

m k

m k

λ µ
λ µ

λ µ

λ µ

λ µλ µ

λ µ

λ µ

= = = =

− −− −

= =

   − + − +      

′ ′   ′ ′− + − +      

∑ ∑ ∑ ∑

      
=                   

=

=

∏ ∏

            (4) 

where,  

1 1 2 2 1 1 2 2
1 1 1 1

, , ,
n n n n

i i i i
i i i i

x x x x y y y y
= = = =

′ ′ ′ ′= = = =∑ ∑ ∑ ∑
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The log-likelihood function of Equation (4) is obtained as, 

2 2
1 1log 2 log log 2 log log

x yL n n m x n n k y
m k

λ λ µ µ
′ ′   ′ ′= − − + + − − +      

     (5) 

2.4. Estimators of Reliability Function (MLE & UMVUE) 

Differentiating the log-likelihood function given in Equation (5) partially with respect 
to λ , m  and equating it to zero, we get, 

2
1

log 20 0
xL n x
mλ λ
′∂  ′= ⇒ − + = ∂  

                         (6) 

2 2
2

log 0 0 0
x xL n n

m m mm
λ λ′ ′∂ −

= ⇒ + = ⇒ − + =
∂

                (7) 

Solving Equations ((6) and (7)) simultaneously, we get the Maximum Likelihood Es-
timator (MLE) of λ  and m  as, 

1

ˆ n
x

λ =
′

                               (8) 

2

1

ˆ xm
x
′

=
′

                               (9) 

Similarly, differentiating the log-likelihood function given in Equation (5) with re-
spect to µ , k  and equating it to zero, we get, 

2
1

log 20 0
yL n y
kµ µ
′∂  ′= ⇒ − + = ∂  

                       (10) 

2 2
2

log 0 0 0
y yL n n

k k kk
µ µ′ ′∂ −

= ⇒ + = ⇒ − + =
∂

              (11) 

Solving Equations ((10) and (11)) simultaneously, we get the MLE of µ  and k  as, 

1

ˆ n
y

µ =
′

                              (12) 

2

1

ˆ yk
y
′

=
′

                              (13) 

Using the invariance property of MLE, the MLE of reliability function ‘ 2R ’ is ob-
tained by substituting the MLEs of , , ,m kλ µ  in Equation (3) and is given by,  



( )2

ˆˆ ˆ
ˆ ˆ ˆˆ ˆ ˆˆ ˆ 1

ˆ ˆ

R
k k
m m

µ µλ
λ µ

µ λ µ λ

= +
    +  + + +            

               (14) 

Here, 2R  denotes the estimator of reliability function obtained through MLE of the 
parameters. Further, estimator of the reliability function “ 2R∗ ” attained through the 
Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the parameters is ob-
tained as follows. 

We know that, ( )1 ~ Exponentialix λ , implies ( )1 11
,ma~ Gamn

ii
x x n λ

=
′ = ∑  
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( ) ( )( )1
1

1
1 11

1 1 10 0
1 1

e1 1 d e d
Γ Γ

nxn n
nxx

E x x x
x x n n

λ
λλ λ

−′−
∞ ∞ − −′−′ 

′ ′ ′⇒ = = ′ ′ 
∫ ∫

 

( )
1

1n
E

x
λ

− 
⇒ = ′   

( )*

1

1
is the UMVUE of parameter

n
x

λ λ
− 

⇒ =  ′ 
                  (15) 

Also, ( )1 Exponent al~ iiy µ , implies ( )1 11
,ma~ Gamn

ii
y y n µ

=
′ = ∑  

On similar grounds we have, 

( )*

1

1
is the UMVUE of parameter 

n
y

µ µ
− 

=  ′ 
              (16) 

Similarly, 2 Exponent~ ialix
m
λ 

 
 

, implies 2 21
Gamma~ ,n

ii
x x n

m
λ

=

 ′ =  
 

∑  

[ ]
( )

( )( )

2

2

1

1 1

0

2

2 2 2 2 20

e
d e d

Γ Γ

n n
x nm

x nm

x
m mE x x x x x

n n

λ

λ
λ λ′− −

′−∞ ∞ + −

   ′   
   ′ ′ ′ ′ ′⇒ = =∫ ∫

 

[ ]2
mnE x
λ

′⇒ =
 

Substituting *λ λ=  [result as mentioned in Equation (15)], we get,  

[ ]2
1

1
mnxE x
n

′
′⇒ =

−  

( ) 2

1

1n x
E m

nx
′− 

⇒ = ′   

( ) 2*

1

1
is the UMVUE of parameter

n x
m m

nx
′− 

⇒ =  ′ 
            (17) 

Also, 2 Exponent~ ialiy
k
µ 

 
 

, implies 2 21
Gamma~ ,n

ii
y y n

k
µ

=

 ′ =  
 

∑  

On similar grounds we have,  

( ) 2*

1

1
is the UMVUE of parameter

n y
k k

ny
′− 

=  ′ 
             (18) 

Substituting the UMVUEs of , , ,m kλ µ  in Equation (3), we get estimator of the re-
liability function “ 2R∗ ” obtained through the UMVUE of the parameters. 

2.5. Asymptotic Distribution 

To obtain the asymptotic distribution of ˆˆ ˆ ˆ, , ,m kλ µ , let us denote the Fisher Informa-
tion Matrix of , , ,m kλ µ  as ( ), , ,I m kλ µ . 



R. R. Mutkekar, S. B. Munoli 
 

878 

( )

2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2

, , ,

L L L LE E E E
m k

L L L LE E E E
m m m km

I m k
L L L LE E E E

m k

L LE E
k k m

λ λ µ λλ

λ µ
λ µ

µ λ µ µµ

λ

       ∂ ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂ ∂∂       

       ∂ ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂ ∂∂       

= −
       ∂ ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂ ∂∂       

  ∂ ∂
  ∂ ∂ ∂ ∂  

( )

2 2

2

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

say

L LE E
k k

I I I I

I I I I

I I I I

I I I I

µ

 
 
 
 
 
 
 
 
 
 
 

     ∂ ∂
     ∂ ∂ ∂     

 
 
 =  
 
  

 

where, 

2

11 2 2
2L nI E

λ λ
  ∂

= − =  ∂    
2

22 2 2
L nI E

m m
  ∂

= − =  ∂    
2

33 2 2
2L nI E

µ µ
  ∂

= − =  ∂    
2

44 2 2
L nI E

k k
  ∂

= − =  ∂    
2 2

12 21
L L nE E I I
m m mλ λ λ

   ∂ ∂ −
− = − ⇒ = =   ∂ ∂ ∂ ∂     

2 2

34 43
L L nE E I I
k k kµ µ µ

   ∂ ∂ −
− = − ⇒ = =   ∂ ∂ ∂ ∂     

2 2

13 310 0L LE E I I
λ µ µ λ

   ∂ ∂
− = − = ⇒ = =   ∂ ∂ ∂ ∂     

2 2

14 410 0L LE E I I
k kλ λ

   ∂ ∂
− = − = ⇒ = =   ∂ ∂ ∂ ∂     

2 2

23 320 0L LE E I I
m mµ µ

   ∂ ∂
− = − = ⇒ = =   ∂ ∂ ∂ ∂     

2 2

24 420 0L LE E I I
m k k m

   ∂ ∂
− = − = ⇒ = =   ∂ ∂ ∂ ∂     

Thus, we have the Fisher Information Matrix as, 
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( )

2

2

2

2

2 0 0

0 0
, , , 20 0

0 0

n n
m

n n
m m

I m k n n
k

n n
k k

λλ

λ
λ µ

µµ

µ

− 
 
 
− 

 
=  − 
 
 − 
    

From the asymptotic properties of MLE under regularity conditions and multivariate 
central limit theorem we have, 

( ) ( ) ( ) ( ) ( )1ˆˆ ˆ ˆ, , , 0,m m k k Normal Iλ λ µ µ − − − − − →   
1I −  is inverse of Fisher Information Matrix “ ( ), , ,I m kλ µ ” 

where, 

2

2

1
2

2

0 0

2 0 0

0 0

20 0

m
n n

m m
n nI

k
n n

k k
n n

λ λ

λ

µ µ

µ

−

 
 
 
 
 
 =
 
 
 
 
    

3. Simulation Experiment 

For the thi  system, the random variables 1 2,i ix x  (with respect to strength) and ran-
dom variables 1 2,i iy y  (with respect to stress) are generated independently as follows: 

Step 1: Initialize 1 0 0 01, , ,i n n m mλ λ= = = =  for the 1st and 2nd component of the 
system. Uniform random numbers [ ]1 1U i  is generated from ( )0,1U . Further, expo- 

nential random variable [ ]( )1 1 1
0

1 log 1ix U i
λ

 −
= − 
 

 is obtained for the 1st component of 

the thi  system. Another uniform random numbers [ ]2 1U i  is generated from 

( )0,1U . Further, exponential random variable [ ]( )0
2 2 1

0

log 1i
m

x U i
λ

 −
= − 
 

 is obtained 

for the 2nd component of the thi  system.  
Step 2: The whole procedure in Step 1 is repeated for 0n n=  number of systems and 

the statistics 1 1 2 21 1
,n n

i ii i
x x x x

= =
′ ′= =∑ ∑  are obtained. 

Step 3: Initialize 2 0 0 01, , ,i n n k kµ µ= = = =  for the 1st and 2nd component of the 
system. Uniform random numbers [ ]1 2V i  are generated from ( )0,1U . Further, ex- 

ponential random variable [ ]( )1 1 2
0

1 log 1iy V i
µ

 −
= − 
 

 is obtained for the 1st component 

of the thi  system. Another uniform random numbers [ ]2 2V i  are generated from 
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( )0,1U . Further, exponential random variable [ ]( )0
2 2 2

0

log 1i
k

y V i
µ

 −
= − 
 

 is obtained 

for the 2nd component of the thi  system.  
Step 4: The whole procedure in Step 3 is repeated for 0n n=  number of systems and 

the statistics 1 1 2 21 1
,n n

i ii i
y y y y

= =
′ ′= =∑ ∑  are obtained. 

Step 5: With the help of the statistics 1 2 1, ,x x y′ ′ ′  and 2y′  the MLE of parameters 
, , ,m kλ µ  of the model are obtained. Using these MLEs in the expression of reliability 

function, the MLE of reliability function is obtained.  
Step 6: With the help of the statistics 1 2 1, ,x x y′ ′ ′  and 2y′  the UMVUE of parameters 
, , ,m kλ µ  are obtained. Using these UMVUEs in the expression of reliability function, 

estimator of the reliability function based on UMVUE of the parameters is obtained. 
Table 1 and Table 2 give the results of the above simulation experiment for different 

values of , , ,m kλ µ  and n. 

4. Conclusion 

From the above results (as shown in Table 1 and Table 2), we observe that reliability of 
 
Table 1. 0.5, 1.0, 5.nλ µ= = =  

m  k  R  1x′  2x′  1y′  2y′  R̂  MLE R̂  UMVUE MSE MLE MSE UMVUE 

0.25 1.00 0.810 13.412501 6.562061 6.706251 3.124121 0.855 0.818 2.03 × 10−3 6.40 × 10−5 

0.25 1.25 0.792 10.290507 2.620377 5.145254 3.800942 0.831 0.799 1.52 × 10−3 4.90 × 10−5 

0.25 1.50 0.778 09.181533 2.998768 5.590766 3.368335 0.816 0.784 1.44 × 10−3 3.60 × 10−5 

0.50 1.00 0.867 09.778324 3.125278 4.889162 1.915278 0.909 0.860 1.76 × 10−3 4.90 × 10−5 

0.50 1.25 0.848 15.892459 6.225975 6.912290 1.256218 0.885 0.853 1.37 × 10−3 2.50 × 10−5 

0.50 1.50 0.833 12.241618 9.066720 6.120809 3.797080 0.868 0.837 1.23 × 10−3 1.60 × 10−5 

0.75 1.00 0.897 14.691534 6.720832 5.345767 2.380555 0.931 0.892 1.16 × 10−3 2.50 × 10−5 

0.75 1.25 0.881 13.931526 7.937316 5.965763 1.581096 0.913 0.877 1.03 × 10−3 1.60 × 10−5 

0.75 1.50 0.867 15.716419 6.075062 6.428210 1.075062 0.898 0.870 9.61 × 10−4 9.00 × 10−6 

 
Table 2. 0.5, 1.0, 10.nλ µ= = =  

m  k  R  1x′  2x′  1y′  2y′  R̂  MLE R̂  UMVUE MSE MLE MSE UMVUE 

0.25 1.00 0.810 18.036022 04.895907 09.018011 08.965815 0.833 0.816 5.29 × 10−4 3.60 × 10−5 

0.25 1.25 0.792 18.058302 04.234054 09.029151 09.985135 0.810 0.796 3.24 × 10−4 1.60 × 10−5 

0.25 1.50 0.778 15.606312 07.447487 09.303156 15.842461 0.795 0.781 2.89 × 10−4 9.00 × 10−6 

0.50 1.00 0.867 20.403873 06.592115 10.201937 05.012115 0.886 0.862 3.61 × 10−4 2.50 × 10−5 

0.50 1.25 0.848 26.671318 12.450741 13.335659 05.463426 0.865 0.844 2.89 × 10−4 1.60 × 10−5 

0.50 1.50 0.833 22.037254 08.622803 11.018627 07.934204 0.849 0.835 2.56 × 10−4 4.00 × 10−6 

0.75 1.00 0.897 23.010950 10.241815 11.505475 02.827877 0.915 0.893 3.24 × 10−4 1.60 × 10−5 

0.75 1.25 0.881 16.283512 08.869339 10.941756 02.691160 0.898 0.878 2.89 × 10−4 9.00 × 10−6 

0.75 1.50 0.867 21.313683 11.199248 10.656841 07.099248 0.883 0.865 2.56 × 10−4 4.00 × 10−6 
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the system improves for larger values of strength attenuation factor (m) and for lower 
values of stress attenuation factor (k). Here, we also observed the estimates of reliability 
improves for larger value of the sample size “n”. This indicates that reliability of a sys-
tem can be enhanced by strengthening the inbuilt mechanism of the system, which ul-
timately withstands the effects of the external environment in which it operates. 

Further, on comparing the efficiencies of MLE of reliability function with reliability 
estimator obtained using UMVUEs of the parameters, we observed reliability estimator 
obtained from the UMVUEs of the perform better than the MLE of reliability function 
in terms of Mean Square Error (MSE) for the given data set. This emphasizes the need 
to strengthen the processes such that they are least affected by effects of the variation 
factors which intern boost the reliability of the operating system. 
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