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Abstract 
A multivariate Student’s t-distribution is derived by analogy to the derivation of a multivariate 
normal (Gaussian) probability density function. This multivariate Student’s t-distribution can 
have different shape parameters iν  for the marginal probability density functions of the multi-
variate distribution. Expressions for the probability density function, for the variances, and for the 
covariances of the multivariate t-distribution with arbitrary shape parameters for the marginals 
are given. 
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1. Introduction 
An expression for a multivariate Student’s t-distribution is presented. This expression, which is different in form 
than the form that is commonly used, allows the shape parameter ν  for each marginal probability density 
function (pdf) of the multivariate pdf to be different. 

The form that is typically used is [1]  
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This “typical” form attempts to generalize the univariate Student’s t-distribution and is valid when the n 
marginal distributions have the same shape parameter ν . The shape of this multivariate t-distribution arises 
from the observation that the pdf for [ ] [ ] σ=x y  is given by Equation (1) when [ ]y  is distributed as a 
multivariate normal distribution with covariance matrix [ ]Σ  and 2σ  is distributed as chi-squared. 

The multivariate Student’s t-distribution put forth here is derived from a Cholesky decomposition of the scale 
matrix by analogy to the multivariate normal (Gaussian) pdf. The derivation of the multivariate normal pdf is 
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given in Section 2 to provide background. The multivariate Student’s t-distribution and the variances and 
covariances for the multivariate t-distribution are given in Section 3. Section 4 is a conclusion.  

2. Background Information 
2.1. Cholesky Decomposition  
A method to produce a multivariate pdf with known scale matrix [ ]sΣ  is presented in this section. For nor- 
mally distributed variables, the covariance matrix [ ] [ ]sΣ = Σ  since the scale factor for a normal distribution is 
the standard deviation of the distribution. An example with 4n =  is used to provide concrete examples. 

Consider the transformation [ ] [ ][ ]M=y x  where [ ]y  and [ ]x  are 4 1×  column matrices, [ ]M  is 4 4×  
square matrix, and the elements of [ ]x  are independent random variables. The off-diagonal elements of [ ]M  
introduce correlations between the elements of [ ]y . 
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The scale matrix [ ] [ ][ ]Ts M MΣ = . The covariance matrix [ ]Σ  has elements { }, Ei jΣ = i jy y  where  
{ }E i jy y  is the expectation of i jy y  and , ,i j j iΣ = Σ . If the [ ]x  are normally distributed, then  

[ ] [ ] [ ][ ]Ts M MΣ = Σ = , where the superscript T indicates a transpose of the matrix. If [ ]sΣ  is known, then 
[ ]M  is the Cholesky decomposition of the matrix [ ]sΣ  [2]. 

For the 4 4×  example of Equation (2),  
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From linear algebra, [ ]( ) [ ] [ ] [ ]( )2TTdet det det detM M M M M  = =  . For [ ]M  as defined in Equation (2),  

[ ] 1,1 2,2 3,3 4,4det M m m m m=  and [ ] [ ]( )22 2 2 2
1,1 2,2 3,3 4,4det dets m m m m MΣ = =  whereas { } 2

, Ei i σΣ = =
ii i yy y  is the va- 

riance of the zero-mean random variable iy  and { } 2
, Ei j σΣ = =

i ji j y yy y  is the covariance of the zero-mean  

random variables iy  and jy .  

2.2. Multivariate Normal Probability Density Function  
To create a multivariate normal pdf, start with the joint pdf [ ]( )f xN  for n unit normal, zero mean, independent 
random variables [ ]x :  
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where [ ]x  is an n-row column matrix: [ ] [ ]T
1 2, , , nx x x x=  . [ ]( ) 1 2d d d nf x x x xN   gives the probability that 

the random variables [ ]x  lie in the interval [ ] [ ] [ ] [ ]dx x x< ≤ +x . 
The requirement for zero mean random variables is not a restriction. If { }E iµ=ix , then iµ′ = −i ix x  is a 

zero mean random variable with the same shape and scale parameters as ix . 
Use Equation (2) to transform the variables. The Jacobian determinant of the transformation relates the 

products of the infinitesimals of integration such that  
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The magnitude of the Jacobian determinant of the transformation [ ] [ ][ ]y M x=  is (Appendix)  

( )
( ) [ ] [ ]

1 2

1 2

, , , 1 1
, , , det det

n

n s

x x x
y y y M

∂
= =

∂ Σ





                             (6) 

where the equality [ ] [ ]( )2
det dets MΣ =  has been used. 

Since [ ] [ ][ ]Ts M MΣ = , [ ] [ ]( ) [ ]
11 T 1

s M M
−− −Σ = , and since [ ] [ ] [ ]1x M y−= , the multivariate “z-score”  

[ ] [ ]Tx x  becomes [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]
1 1T T 1 T

sy M M y y y
− −− = Σ , which equals [ ] [ ] [ ]T 1y y−Σ  since [ ] [ ]sΣ = Σ  for  

normally distributed variables. 
The result is that the unit normal, independent, multivariate pdf, Equation (4), becomes under the trans- 

formation Equation (2)  
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where [ ]y  is a n-row column matrix: [ ] [ ]T
1 2, , , ny y y y=   and [ ] [ ]sΣ = Σ . 

For the 4 4×  example,  
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from which [ ] [ ]( ) [ ]
11 T 1

s M M
−− −Σ =  can be calculated. In Equation (8),  
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The denominator in the expression for 1
1,4m−  is [ ]det M .  

3. Multivariate Student’s t Probability Density Function  
A similar approach can be used to create a multivariate Student’s t pdf. Assume truncated or effectively truncated 
t-distributions, so that moments exist [3] [4]. For simplicity, assume that support is [ ],b bµ β µ β− +  where b 
is a positive, large number, β  is the scale factor for the distribution, and µ  is the location parameter for the 
distribution. If b is a large number, then a significant portion of the tails of the distribution are included. If 
b = ∞  then all of the tails are included. 

Start with the joint pdf for n independent, zero-mean (location parameters [ ] 0µ = ) Student’s t pdfs with 
shape parameters [ ]ν , and scale parameters [ ] 1β = :  
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with ix−∞ ≤ ≤ +∞ . [ ] [ ]( ) 1 2; d d d nf x x x xνt   gives the probability that a random draw of the column matrix 
[ ]x  from the joint Student’s t-distribution lies in the interval [ ] [ ] [ ] [ ]dx x x< ≤ +x . The pdf ( );i i ig x ν  is a 
function of only ix  and the shape parameter iν , and thus is independent of any other ( );j j jg x ν , j i≠ . 
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Use the transformation of Equation (2) to create a multivariate pdf  
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= ∑  of the transformation Equation (2) was used. The elements of the inverse  

matrix [ ] 1M − , 1
,i jm− , are given in terms of the ,i jm  by Equation (8) for the 4n =  example. Note that the 

shape parameters iν  of the constituent distributions need not be the same in the multivariate t-distribution 
given by [ ] [ ]( );f y νt . 

[ ] [ ]( ) 1 2; d d d nf y y y yνt   gives the probability that a random draw of the column matrix [ ]y  from the 
multivariate Student’s t-distribution with shape parameters [ ]ν  lies in the interval [ ] [ ] [ ] [ ]dy y y< ≤ +y . 

From the definition of the exponential function ( )e lim 1 nx
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In the limit as [ ]ν → ∞ , the multivariate Student’s t-distribution [ ] [ ]( );f y νt , Equation (11), becomes a 
multivariate normal distribution.  

3.1. Some i j,Σ  for the n 4=  Example  
In this subsection some examples for the variances and covariances of a multivariate Student’s t-distribution 
using the 4n =  example of Equation (2) are given. 

The variance of the random variable 3y  is  

{ } [ ] [ ] [ ]( )12 2
3 3 4 3 2 1; d d d dE y f M y y y y yν−= ∫∫∫∫ ty                          (14) 

with the limits of the integrations equal to i ibµ β−  and i ibµ β+ , 1, 2,3, 4i = .  
Perform the integrations as listed. The integral over 4dy  is unity since only 4x  depends on 4y  (c.f. Equation 

(2)) and [ ] [ ]( );f x νt  factors into a product ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4g x g x g x g x —see Equation (10). Write  
1 1 1 1

4 4,4 4 4,3 3 4,2 2 4,1 1x m y m y m y m y− − − −= + + +                              (15) 

1
4,4 4 4m y µ−= −                                        (16) 

where the 1
,i jm−  are the elements of the inverse of matrix [ ]M  and are as given by [ ] 1M − , Equation (8), and 

4µ  is a constant as far as the integral over 4y  is concerned. 
Repeat the procedure for the integrals for 3dy , 2dy , and 1dy . These integrals are not equal to unity owing to 

the presence of the 2
3y  term. 
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The variance of the random variable iy  for the multivariate Student's t-distribution with support [ ],−∞ ∞  
and with iν ν=  for all i is given by  

{ }2 2 2
,

1 2

i

j j
j

E m νσ
ν=

= =
−∑ii yy                                   (17) 

The expression for 2σ
iy  is valid only for 2ν > . The expression would be valid for 1ν ≥  if the region of 

support was [ ],i i i ib bµ β µ β− +  rather than [ ],−∞ ∞  where iβ  is a scale factor and b < ∞  [3]-[5]. Note 
that the scale factors for the multivariate t-distribution are ,i i imβ = . 

Truncation or effective truncation of the pdf keeps the moments finite [3]-[5]. For example, the second central 
moment for a 1ν =  Student’s t-distribution with scale factor β  and support [ ],b bµ β µ β− +  is  
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which is finite provided that b < ∞ . 
In the interest of brevity, only variances and covariances that were calculated for support of [ ],−∞ ∞  will be 

discussed. The requirement that 2iν >  will be understood to be waived if the pdf is truncated or effectively 
truncated. It is also to be understood that the variances and covariances as calculated for support of [ ],−∞ ∞  
provide upper limits for variances and covariances calculated for truncation or effective truncation of the pdf. 

If the iν  are not equal, then for the 4n =  example of Equation (2)  
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The covariance { }2 3E y y  for the iν ν=  for all i is given by  
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If the iν  are not equal, then the covariance { }2 3E y y   
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The expression for { }1 3E y y , which is valid for the iν  not equal, is  
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The expressions for { }3 3E y y , { }2 3E y y , and { }1 3E y y  show a simple pattern for the relationship between 
the covariance matrix Σ , the scale matrix [ ]sΣ  Equation (3), and the matrix [ ]M  Equation (2). 

3.2. General Expressions for i j,Σ   
Given a matrix [ ]M  that is an n n×  square matrix with elements ,i jm , an expression for the variance (assuming 
support [ ],−∞ ∞ , 2iν >  for all i, and i n≤ ) for the multivariate Student’s t-distribution [ ] [ ]( );f y νt  is  
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A general expression for the covariance (assuming support [ ],−∞ ∞ , 2iν >  for all i, and ,i n j n≤ ≤ ) for 
the multivariate Student’s t-distribution [ ] [ ]( );f y νt  is  

{ }
( )min ,

, ,
1

E .
2

i j
k

i k j k
k k

m mν
ν=

= ×
−∑i jy y                              (24) 

If support is [ ],b bµ β µ β− + , then the general expressions need to be multiplied by functions that depend 
on b and ν . Truncation or effective truncation keeps the moments finite and defined for all 1ν ≥  [3]-[5]. The 
general expressions for the covariance, Equation (24), yields, when i j= , the general expression for the 
variance, Equation (23). The general expression for the variance, Equation (23), is given to emphasize the 2

,j jm  



D. T. Cassidy 
 

 
448 

nature of the variance. 
Unlike normally distributed random variables, the correlation matrix [ ]Σ  for random variables that are 

distributed as Student’s t is not equal to [ ][ ]TM M . For normally distributed variables, the scale parameter β  
equals the standard deviation σ . For Student’s t distributed variables, the standard deviation σ  does not 
equal the scale parameter β . For a Student’s t distribution with shape parameter ν , scale parameter β , and 
support [ ],−∞ ∞ , ( )2 2 2σ β ν ν= × − . If the region of support for the Student’s t distribution is truncated to 
[ ],b bµ β µ β− +  then the variance ( )2 2 2σ β ν ν< × −  for all 2ν ≥  and is finite for all 1ν ≥  [3]-[5]. 

Given a matrix of the variances and the covariances, [ ]Σ , and a column matrix of the shape parameters [ ]ν  
associated with each variable, the scale matrix [ ] [ ][ ]Ts M MΣ =  would in principle be determined sequentially, 
starting with 1,1m  and 1,2m . The shape parameters [ ]ν  would be obtained from the marginal distributions or 
from other knowledge. 

4. Conclusion  
A multivariate Student’s t-distribution is derived by analogy to the derivation for a multivariate normal (or 
Gaussian) pdf. The variances and covariances for the multivariate t-distribution are given. It is noteworthy that 
the shape parameters [ ]ν  of the constituent Student’s t-distributions of the multivariate t-distribution, Equation 
(11), need not be the same. 
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Appendix: The Jacobian  
The Jacobian determinant is used in physics, mathematics, and statistics. Many of these uses can be traced to the 
Jacobian determinate as a measure of the volume of an infinitesimially small, n-dimensional parallelepiped. 

1. Volume of a Parallelepiped  
The volume of an n-dimensional parallelepiped is given by the absolute value of the determinant of the com- 
ponents of the edge vectors that form the parallelepiped. 

The area of a parallelogram with edge vectors a  and b  is ×a b . 
The volume of a parallelepiped with edge vectors ( )1 2 3, ,a a a=a , ( )1 2 3, ,b b b=b , and ( )1 2 3, ,c c c=c  is 

given by the determinant  

( )
1 2 3

1 2 3

1 2 3

.
c c c
a a a
b b b

⋅ × =c a b                                  (25) 

2. Inversion Exists  
Assume that there are n functions ( )1 2, , ,i i nx f q q q=  . The necessary and sufficient condition that the func- 
tions can be inverted to find ( )1

1 2, , ,i i nq f x x x−=   is that the Jacobian determinant is nonzero, i.e.,  
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To simplify the notation, assume that 3n =  so that ( )1 2 3, ,i ix f q q q= , 1, ,3i =  . The total differential is  
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These equations can be put in matrix form  
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                             (29) 

These three equations can be solved for the d iq  if the determinant of the 3 3×  matrix is non-zero. This is a 
standard result from linear algebra. The determinant of the 3 3×  matrix is called the Jacobian determinant of 
the transformation. 

3. Change of Variables  
The Jacobian determinant of the transformation is used in change of variables in integration:  
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( )
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The absolute value sign is required since the determinant could be negative (i.e., the volume could decrease). 
The Jacobian determinant for the inverse transformation (to obtain [ ]x  as functions of [ ]y ) given by Eq- 

uation (8) is  
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which equals  

[ ]1,1 2,2 3,3 4,4

1 1 1 1 1 .
detm m m m M
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