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Abstract

A multivariate Student’s t-distribution is derived by analogy to the derivation of a multivariate
normal (Gaussian) probability density function. This multivariate Student’s t-distribution can
have different shape parameters v, for the marginal probability density functions of the multi-

variate distribution. Expressions for the probability density function, for the variances, and for the
covariances of the multivariate ¢-distribution with arbitrary shape parameters for the marginals
are given.
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1. Introduction

An expression for a multivariate Student’s t-distribution is presented. This expression, which is different in form
than the form that is commonly used, allows the shape parameter v for each marginal probability density
function (pdf) of the multivariate pdf to be different.

The form that is typically used is [1]

r'((v+n)/2) (1+ 5 [X])—(v+n)/2 |

r(v/2)(a )]

This “typical” form attempts to generalize the univariate Student’s t-distribution and is valid when the n
marginal distributions have the same shape parameter v . The shape of this multivariate t-distribution arises
from the observation that the pdf for [x]=[y]/o is given by Equation (1) when [y] is distributed as a
multivariate normal distribution with covariance matrix [Z] and o is distributed as chi-squared.

The multivariate Student’s t-distribution put forth here is derived from a Cholesky decomposition of the scale
matrix by analogy to the multivariate normal (Gaussian) pdf. The derivation of the multivariate normal pdf is
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given in Section 2 to provide background. The multivariate Student’s t-distribution and the variances and
covariances for the multivariate t-distribution are given in Section 3. Section 4 is a conclusion.

2. Background Information
2.1. Cholesky Decomposition

A method to produce a multivariate pdf with known scale matrix [25] is presented in this section. For nor-
mally distributed variables, the covariance matrix [Z]=[Z,] since the scale factor for a normal distribution is
the standard deviation of the distribution. An example with n =4 is used to provide concrete examples.

Consider the transformation [y]=[M][x] where [y] and [x] are 4x1 column matrices, [M] is 4x4
square matrix, and the elements of [x] are independent random variables. The off-diagonal elements of [M]
introduce correlations between the elements of [y].

Y m, O 0 0 | x
Y, my, m, 0 0 || x,
Y3 My, My, My 0 X
Y4 My, My, My My, | X,
The scale matrix [=,]=[M][M]". The covariance matrix [Z] haselements %, ; :Eéyi yj} where
EWViY, } is the expectatlon of y;y; and X, =%,;. If the [x] are normally distributed, then
) :[ J=[M ][M] where the superscrlpt T indicates a transpose of the matrix. If [Z,] is known, then

M] is the Cholesky decomposition of the matrix [Z,] [2].
Forthe 4x4 example of Equation (2),

2
m;, m;,m,, m,ms, m,m,,
2 2
[Z ] | MMy, my, +m,, m,, My, +M,,M,, my,M,, +M,,M,, @A)
s|= 2 2 2 :
m,Ms;  My,My, +M,,M,, My, + My, + Mg M3, M,y + My ,M, 5 + My M,

ml,1m4,l m2,1m4,1 + m2,2m4,2 m3,1m4,1 + m3,2m4,2 + m3,3m4,3 mil + miZ + mf,3 + mf,A
From linear algebra, det([M ][MTJ) =det[M |det[M ]T =(det[M ])2 For [M] as defined in Equation (2),
det[M]=m,m,,m;,m,, and det[S ]=m?mZ,mi,m;, =(det[M ]) whereas %, =E{y,y,} =0} is the va-

riance of the zero-mean random variable y; and X;; = {yi yj} :a;yj is the covariance of the zero-mean

random variables y; and ;.

2.2. Multivariate Normal Probability Density Function

To create a multivariate normal pdf, start with the joint pdf f ([x]) for n unit normal, zero mean, independent
random variables |[x]:

1 1, 1
ex —exp| ——|X| |X 4
() ~[1 gyl ) =500 @
where [x] is an n-row column matrix: [x]" =[x, %,,--,x,]. fy ([x])dxdx,--dx, gives the probability that
the random variables [x] lie in the interval [x]<[x]<[x]+[dx].

The requirement for zero mean random variables is not a restriction. If E{x;} =z, then X/ =x, -y isa
zero mean random variable with the same shape and scale parameters as X; .

Use Equation (2) to transform the variables. The Jacobian determinant of the transformation relates the
products of the infinitesimals of integration such that

(% %11 %,)
(yllyz! "ryn)

dx; dx,---dx, dy, dy,---dy,. (5)
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The magnitude of the Jacobian determinant of the transformation [y]=[M][x] is (Appendix)

|6(xl,x2,---,xn)
)

L
|6(y1,y2,---,yn |_ (6)

|1
_|det[M]

where the equality det[x,]=(det[M ])2 has been used.

Since [z,]=[M][M]", [zs]‘lz([M]T)fl[M]‘l, and since [x]=[M]"[y], the multivariate “z-score”

[x]"[x] becomes [y]T([M]T) [MT[y]=[y] [Z.][y]. which equals [y] [£]"[y] since [Z,]=[Z] for

normally distributed variables.
The result is that the unit normal, independent, multivariate pdf, Equation (4), becomes under the trans-
formation Equation (2)

—;EX _E T -1
()= (2z)" det[25]| p( Z[y] %] Mj )

where [y] isan-row column matrix: [y]' =[y;,Y,.-- v,] and [2,]=[2].
Forthe 4x4 example,

1
— 0 0 0
My
My 1 0 0
[M ]71 B MM, m,, @
My, My, =My My, My, 1 0
m,;m,,Ms, My 2 My 3 M35
m-L MysMyp =My, My My 1
14 —
L My 2 Mg 3My MgsM,, My, |

fromwhich [2,]" = ([M I )71[M | can be calculated. In Equation (8),

-1 _ m2,1 ms,z m4,3 B m4,2 mZ,l m3,3 B mz,z m3,1 m4,3 + m4,1 mz,z m3,3 9
m1,4 - . ( )

rnl,l m2,2 m3,3 m4,4

The denominator in the expression for m;; is det[M].

3. Multivariate Student’s ¢ Probability Density Function

A similar approach can be used to create a multivariate Student’s t pdf. Assume truncated or effectively truncated
t-distributions, so that moments exist [3] [4]. For simplicity, assume that support is [/J—bﬂ,,u+bﬂ] where b
is a positive, large number, g is the scale factor for the distribution, and x is the location parameter for the
distribution. If b is a large number, then a significant portion of the tails of the distribution are included. If
b= then all of the tails are included.

Start with the joint pdf for n independent, zero-mean (location parameters [,u] =0) Student’s t pdfs with
shape parameters [v], and scale parameters [S]=1:

nD((+D)/2) (e

f([xiv]) =] | —————=|1+— = (v 10
(X)) gr(vi/z) e [Tg (xivi) (10)
with —o0 <X <+e0. f ([x];[v])dx,dx,--dx, gives the probability that a random draw of the column matrix
[x] from the joint Student’s t-distribution lies in the interval [x]<[x]<[x]+[dx]. The pdf g,(x;v;) isa
function of only x, and the shape parameter v,, and thus is independent of any other gj(xj;v.), j#I.

]
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Use the transformation of Equation (2) to create a multivariate pdf

—(vj+1)/2

1 o r((v+1)2) 1+(§mi’}yij
|det[M ]| i1 F(Vi/Z)\/a v,

(11)

f([yL[v])

The solution X :Zijzlmif }yj of the transformation Equation (2) was used. The elements of the inverse

matrix [M]’l, m;;, are given in terms of the m,;, by Equation (8) for the n=4 example. Note that the
shape parameters v, of the constituent distributions need not be the same in the multivariate t-distribution
givenby f ([y]:[v]).
f ([y]:[v])dy,dy,---dy, gives the probability that a random draw of the column matrix [y] from the
multivariate Student’s t-distribution with shape parameters [v] lies in the interval [y]<[y]<[y]+[dy].
From the definition of the exponential function e* =lim___ (1+x/n)" where e=2.718281828:- is Euler’s
number, then

t2 7(v+1)/2
Iim[l+—j =exp(-t*/2) (12)
V—0 V
and
. _ 1 o1 LY
lm ft ([y]’[ ]) = |det[M ]| = TneXp{_O'S(,Z_llm' Jylj J

 Jdet[M{2n) eXp{_O'S[ggm;}yj] J (13)

In the limit as [v — oo], the multivariate Student’s t-distribution f, ([y];[v]), Equation (11), becomes a
multivariate normal distribution.
3.1.Some %, ; forthe n=4 Example

In this subsection some examples for the variances and covariances of a multivariate Student’s t-distribution
using the n=4 example of Equation (2) are given.
The variance of the random variable vy, is

E{y2} = [1[]y3 1 ([MT" [y]: (1) dysdy, d, 14)

with the limits of the integrations equal to 4 —bg and g +bg, 1=1234.
Perform the integrations as listed. The integral over dy, is unity since only x, dependson vy, (c.f. Equation
(2)and f,([x]:[v]) factors intoa product g,(x,)d,(X,)ds(X;)9. (x,)—see Equation (10). Write

Xy = ma Y, + m;,laya + m;,lz Y, + m;iy1 (15)
= m;il Yo — Hy (16)

where the m;; are the elements of the inverse of matrix [M] and are as given by [M ]’1, Equation (8), and
M, 1saconstant as far as the integral over y, is concerned.
Repeat the procedure for the integrals for dy,, dy,, and dy,. These integrals are not equal to unity owing to

the presence of the yZ term.
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The variance of the random variable y, for the multivariate Student's t-distribution with support [—oo,oo]
and with v, =v forall i is given by
i v
E{y'}=0} =>m},— (17)
j= V- 2
The expression for aji is valid only for v >2. The expression would be valid for v >1 if the region of
support was [,ui -bg, +b/3i] rather than [—oo,oo] where p is a scale factor and b <o [3]-[5]. Note
that the scale factors for the multivariate t-distribution are g, =|m; | .
Truncation or effective truncation of the pdf keeps the moments finite [3]-[5]. For example, the second central
moment fora v =1 Student’s t-distribution with scale factor B and support [x—bg, u+bp] is

(b—arctan (b))

arctan(b) (18)

# (v =1,8,b)= B x
which is finite provided that b <oo.

In the interest of brevity, only variances and covariances that were calculated for support of [—o0,c0] will be
discussed. The requirement that v; >2 will be understood to be waived if the pdf is truncated or effectively
truncated. It is also to be understood that the variances and covariances as calculated for support of [—oo,oo]
provide upper limits for variances and covariances calculated for truncation or effective truncation of the pdf.

If the v, are notequal, then for the n=4 example of Equation (2)

Vs 5% s (19)

v v

Ely?l=—2—xmi +—2—xm’, +
3 31 3,2

v, —2 v, =2 v, —

The covariance E{y,y,} forthe v, =v foralliis given by

14

E { Y, ya} = (mz,l My, + My, My, )VT (20)
If the v, are not equal, then the covariance E{y,Y,}
V. V.
E{yz ys}zvlizxmz‘lma,l"' zizxmz,zma,z- (21)
The expression for E{y, y,}, which is valid for the v, notequal, is
V.
E { Y1 ys} = v, i > XMy, My, (22)

The expressions for E{y,y,}, E{y,ys;},and E{y,y;} show asimple pattern for the relationship between
the covariance matrix X, the scale matrix [%,] Equation (3), and the matrix [M] Equation (2).
3.2. General Expressions for %, ,

Given a matrix |M ] thatisan nxn square matrix with elements m, ; , an expression for the variance (assuming
support [-oo,0], v, >2 foralli,and i<n) for the multivariate Student’s t-distribution f, ([y][v]) is

i V.
Ely?l= L xm?.. 23
v ;Vj_z (23)
A general expression for the covariance (assuming support [—oo, oo], v, >2 foralli,and i<n,j<n) for

the multivariate Student’s t-distribution f, ([y][v]) is

min(i, j)

E{y, Y=

Vi
xm.,m., . 24
= ) ik Tk ( )

If support is [,u—bﬁ,,u+bﬁ], then the general expressions need to be multiplied by functions that depend
onband v. Truncation or effective truncation keeps the moments finite and defined for all v >1 [3]-[5]. The
general expressions for the covariance, Equation (24), yields, when i= j, the general expression for the
variance, Equation (23). The general expression for the variance, Equation (23), is given to emphasize the mfi
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nature of the variance.

Unlike normally distributed random variables, the correlation matrix [Z] for random variables that are
distributed as Student’s t is not equal to [ ][M] For normally distributed variables, the scale parameter S
equals the standard deviation o . For Student’s t distributed variables, the standard deviation o does not
equal the scale parameter ﬁ For a Student’s t distribution with shape parameter v, scale parameter £, and
support [—oo,oo], o’ = ><v/ v 2 If the region of support for the Student’s t distribution is truncated to
[—bB, u+bp] then the variance o- < p xv/(v 2) forall v>2 andisfinite forall v>1 [3]-[5].

Given a matrix of the variances and the covariances, [2] and a column matrix of the shape parameters [v]
associated with each variable, the scale matrix [Z,]=[M][M ] would in principle be determined sequentially,
starting with m;, and m,,. The shape parameters [v] would be obtained from the marginal distributions or
from other knowledge.

4. Conclusion

A multivariate Student’s t-distribution is derived by analogy to the derivation for a multivariate normal (or
Gaussian) pdf. The variances and covariances for the multivariate t-distribution are given. It is noteworthy that
the shape parameters [v] of the constituent Student’s t-distributions of the multivariate t-distribution, Equation
(11), need not be the same.
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Appendix: The Jacobian

The Jacobian determinant is used in physics, mathematics, and statistics. Many of these uses can be traced to the
Jacobian determinate as a measure of the volume of an infinitesimially small, n-dimensional parallelepiped.

1. Volume of a Parallelepiped

The volume of an n-dimensional parallelepiped is given by the absolute value of the determinant of the com-
ponents of the edge vectors that form the parallelepiped.

The area of a parallelogram with edge vectors a and b is |a>< b| .

The volume of a parallelepiped with edge vectors a=(a,,a,,8;), b=(b,b,,b;), and c=(c,c,,c;) is
given by the determinant

Cl C2 C3
c-(axb)=la, a, a (25)
b b, b

2. Inversion Exists

Assume that there are n functions x, = f;(q,,q,,---,d,). The necessary and sufficient condition that the func-
tions can be inverted to find @, = f; (X, X,,-++,X,) is that the Jacobian determinant is nonzero, i.e.,

A Xeriky) g (26)
(0, %1 Gy)
where
2 2
oq, oq, o,
k) |06 0% %) 27)
(4.9, q,) |00, 0q, aq,

To simplify the notation, assume that n=3 sothat x, = f; (ql,qz,q3), i=1---,3. The total differential is
dx, = ﬂdq1 + a—f‘dq2 + a—f‘dqa. (28)
g, aq, 00,

These equations can be put in matrix form

o o o ]
dx1 aql an aq3 dq
1
d)(2 — % i % dqz . (29)
g, 0d, 00,
dx, dd,
|09, 04, 0O, |

These three equations can be solved for the dg;, if the determinant of the 3x3 matrix is non-zero. This is a
standard result from linear algebra. The determinant of the 3x3 matrix is called the Jacobian determinant of
the transformation.

3. Change of Variables

The Jacobian determinant of the transformation is used in change of variables in integration:
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Iliav = flexdxde = 115, "0

X1 X2,X3
(., 05)

dg, dg, dg,.

(30)

The absolute value sign is required since the determinant could be negative (i.e., the volume could decrease).
The Jacobian determinant for the inverse transformation (to obtain [x] as functions of [y]) given by Eg-

uation (8) is

,

G

N

o

which equals

o
o,
ax

ox,

X,
%Y,
Xy
Y,
OX,

¥,

ax

%Y,

o

s

x

%Y,

0 0
0 0
, 31
1 ey
m3,3
m,, 1
m3,3 m4,4 m4,4
(32)
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