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Abstract 
For multi-way tables with ordered categories, the present paper gives a decomposition of the 
point-symmetry model into the ordinal quasi point-symmetry and equality of point-symmetric 
marginal moments. The ordinal quasi point-symmetry model indicates asymmetry for cell proba-
bilities with respect to the center point in the table. 
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1. Introduction 
Consider an 1 2 TR R R× × ×  table with ordered categories. Let ( )1, , Ti i i=   for 1, ,k ki R=   and k =  
1, ,T , and let ip  denote the probability that an observation will fall in ith cell of the table. Let kX  denote 
the kth variable of the table for 1, ,k T=  . Denote the hth-order ( 1, , 1h T= − ) marginal probability  
( )1 1

, ,
h hk k k kP X i X i= =

 by ( )1

1

, ,
, ,

h
k kh

k k
i ip 



 with 11 hk k T≤ < < ≤ . 

In the case of 1 TR R= =  ( )R= , the symmetry (ST) model is defined by  

for any ,i ip iψ=  

where i jψ ψ=  for any permutation ( )1, , Tj j j=   of i (Bhapkar and Darroch, [1]; Agresti, [2], p. 439). We 
may also refer to this model as the permutation-symmetry model. 

The hth-order marginal symmetry ( MST
h ) model is defined by, for a fixed h ( 1, , 1h T= − ),  
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( ) ( ) ( ) ( )1 1 1
1 1 1

, , , , , ,
, , , , , , 1for any , , ,h h h

h h h

s s s s t t
i i j j i i hp p p i i= =  

  

  

where ( )1, , hj j  is any permutation of ( )1, , hi i , and for any ( )1, , hs s  and ( )1, , ht t  (Bhapkar and 
Darroch, [1]). The hth-order quasi symmetry ( QST

h ) model is defined by, for a fixed h ( 1, , 1h T= − ),  

( ) ( ) ( )1 2 1 2 1 1
11 2

, ,
1 11

, , for any ,
h h

h

T

i k k k k k k k k k k i
k k k Tk k T

p i i i i i iµ α α α ψ
= ≤ < < ≤≤ < ≤

    =            
∏ ∏ ∏∏∏ 



    

where i jψ ψ=  for any permutation j of i (Bhapkar and Darroch, [1]). Bhapkar and Darroch [1] gave the 
theorem that: 

1) For the TR  table and a fixed h ( 1, , 1h T= − ), the ST model holds if and only if both the QST
h  and 

MST
h  models hold.  

Tahata, Yamamoto and Tomizawa [3] considered the hth-linear ordinal quasi symmetry ( LQST
h ) model, 

which was defined by, for a fixed h ( 1, , 1h T= − ),  

11 2
1 2 1

11 2

, ,
1 11

for any ,k kk kk h
h

h

T i ii ii
i k k k k k i

k k k Tk k T

p iµ α α α ψ
= ≤ < < ≤≤ < ≤

    =            
∏ ∏ ∏∏∏







   

where i jψ ψ=  for any permutation j of i. This model is a special case of the QST
h  model. The LQST

h  model 
is the ordinal quasi symmetry model when 1h =  (Agresti, [4], p. 244). Tahata et al. [3] also considered the 
hth-order marginal moment equality ( MMET

h ) model, which was expressed as, for a fixed h ( 1, , 1h T= − ),  

( )
1, , 1, , 1, , ,

lk k l l hµ µ …= =


  

where ( )1 1, , l lk k k kE X Xµ =



 for 11 lk k T≤ < < ≤ . Tahata et al. [3] obtained the theorem that: 

2) For the TR  table and a fixed h ( 1, , 1h T= − ), the ST model holds if and only if both the LQST
h  and 

MMET
h  models hold.  

Various decompositions of the symmetry model are given by several statisticians, e.g. Caussinus [5], Bishop, 
Fienberg and Holland ([6], Ch.8), Read [7], Kateri and Papaioannou [8], and Tahata and Tomizawa [9]. 

For the 1 2 TR R R× × ×  table, the point-symmetry (PT) model is defined by  

for any ,i ip iγ=  

where *i i
γ γ=  and ( )* * *

1 , , Ti i i=   with * 1k k ki R i= + −  for 1, ,k T=   (Wall and Lienert, [10]; Tomizawa, 
[11]). This model indicates the point-symmetry of cell probabilities with respect to the center point of multi-way 
table. 

For the TR  table, Tahata and Tomizawa [12] considered the hth-order marginal point-symmetry ( MPT
h ) 

model defined by, for a fixed h ( 1, , 1h T= − ),  
( ) ( ) ( )1 1

* *
1 1

, , , ,
, , 1 1, ,

1 ; 1, , ; , , .h h
k kh k kh

k k k k
i i h l l hi i

p p k k T i R l k k= ≤ < < ≤ = = 





    

Tahata and Tomizawa [12] also considered the hth-order quasi point-symmetry ( T
hQP ) model defined by, for a 

fixed h ( 1, , 1h T= − ),  

( ) ( ) ( )1 2 1 2 1 1
1 2 1

, ,
1 1 < 1 < <

, , for any ,
h h

h

T

i k k k k k k k k k k i
k k k T k k T

p i i i i i iµ α α α γ
= ≤ ≤ ≤ ≤

   =          
∏ ∏∏ ∏ ∏





    

where *i i
γ γ= . Tahata and Tomizawa [12] gave the theorem that: 

3) For the TR  table and a fixed h ( 1, , 1h T= − ), the PT model holds if and only if both the QPT
h  and 

MPT
h  models hold.  

Theorem 3) is Theorem 1) with structures in terms of permutation-symmetry, i.e. the ST, QST
h  and MST

h  
models, replaced by structures in terms of point-symmetry, i.e. the PT, QPT

h  and MPT
h  models. However, a 

theorem in terms of point-symmetry corresponding to Theorem 2) is not obtained yet. So we are now interested 
in the decomposition of the PT model. 

In the present paper, Section 2 proposes three models. Section 3 gives a new decomposition of the PT model. 
Section 4 provides the concluding remarks. 



Y. Saigusa et al. 
 

 
383 

2. Models  

Let | 2 1, 1, ,
2
TS h h m m  = = − =    

 , where x    denotes the largest integer less than or equal to x.  

Consider the model defined by, for a fixed odd number h ( h S∈ ),  

( )
1 2 1 2

*
, , , , 1 21 ; 1,3, , ,

l lk k k k k k lk k k T l hµ µ= ≤ < < < ≤ =
 

   

where  

( ) ( )1 2 1 2 1 2 1 2

* * * *
, , , ,, ,

l l l lk k k k k k k k k k k kE X X X E X X Xµ µ= =
 

 
 

and * 1k k kX R X= + −  for 1, ,k T=  . We shall refer to this model as the hth-order marginal moment 
point-symmetry ( MMPT

h ) model. Note that if the MPT
h  model holds then the MMPT

h  model holds. Under the 
1MMPT  model, we see, for any k ( 1, ,k T=  ),  

1.
2

k
k

Rµ +
=  

Then we obtain, for any 1k  and 2k  ( 1 21 k k T≤ < ≤ ),  

( ) ( )

( ) ( ) ( ) ( )

1 2
1 2

1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 2 1

,* * *

1 1

1 1 1 1 0.

k k

k k
k k

R R
k k

k k k k k k k k i i
i i

k k k k k k

i i i i p

R R R R

µ µ

µ µ

= =

− = −

= − + + + + + + =

∑∑
 

Under the 3MMPT  model, we see, for any 1k , 2k  and 3k  ( 1 2 31 k k k T≤ < < ≤ ),  

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 2 1 3 3 1 2

1 1 1 1 1 1 1 1 .
2 2k k k k k k k k k k k k k k kR R R R R Rµ µ µ µ = − + + + − + − + − + 
 

 

Then we obtain, for any 1k , 2k , 3k  and 4k  ( 1 2 3 41 k k k k T≤ < < < ≤ ),  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

31 2 4
1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4

1 2 3 4 1 2 3 4

1 3 2 4 1 4 2 3 2 3 1 4

2

, , ,* * * * *

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

kk k k

k k k k
k k k k

RR R R
k k k k

k k k k k k k k k k k k k k k k i i i i
i i i i

k k k k k k k k

k k k k k k k k k k k k

k

i i i i i i i i p

R R R R R R

R R R R R R

R

µ µ

µ

µ µ µ

= = = =

− = −

= + + + + − + +

− + + − + + − + +

− +

∑∑ ∑ ∑

( )( ) ( ) ( ) ( )
( ) ( ) ( )

4 1 3 3 4 1 2 1 2 3 4

2 1 3 4 3 1 2 4 4 1 2 3

1 1 1 1 1

1 1 1

0.

k k k k k k k k k k k

k k k k k k k k k k k k

R R R R

R R R

µ µ µ

µ µ µ

+ − + + + +

+ + + + + +

=

 

Thus we are not interested in the MMPT
h  model with h being even. Therefore we shall consider the MMPT

h  
model with h being odd. 

Consider the model defined by  

1
for any ,k

T
i

i k i
k

p iµ α γ
=

 =  
 
∏  

where *i i
γ γ= . We shall refer to this model as the ordinal quasi point-symmetry (OQPT) model. In the case of 

2T = , this model is identical to the model proposed by Tahata and Tomizawa [13]. The special case of the 
OQPT model obtained by putting 1 1Tα α= = =  is the PT model. Also the OQPT model is the special case of 
the 1QPT  model obtained by putting ( ){ }ki

k k kiα α= . The OQPT model may be expressed as  

*
0

1
log for any ,

T
i

k k
ki

p i i
p

β β
=

= +∑  

with ( )0 1 logk kk Rβ α= − +∑  and 2logk kβ α= . From this equation, we can see the log-odds that an ob- 
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servation falls in ith cell instead of in the point-symmetric i*th cell, i.e. ( )*log i i
p p , is described as a linear 

combination with intercept 0β  and slope kβ  for the category indicator ki  under the OQPT model. Thus the 
parameter kβ  can be interpreted as the effect of a unit increase in the kth variable on the log-odds. 

Consider the model being more general than the OQPT model as follows, for a fixed odd number h ( h S∈ ),  

1 2 3 1
1 2 3 1

11 2 3

, ,
1 11

for any ,k k k k kk h
h

h

T i i i i ii
i k k k k k k i

k k k Tk k k T

p iµ α α α γ
= ≤ < < ≤≤ < < ≤

    =            
∏ ∏ ∏∏∏∏







   

where *i i
γ γ= . We shall refer to this model as the hth-linear ordinal quasi point-symmetry ( LQPT

h ) model. 
Especially, when 1h = , the LQPT

h  model is identical to the OQPT model. Also the LQPT
h  model is the 

special case of the QPT
h  model obtained by putting 

( ){ } ( ){ } ( ){ }1 2 3 1
1 2 3 1 2 3 1 2 3 1 1 1, , , ,, , , , ,k k k k kk h

h h h

i i i i ii
k k k k k k k k k k k k k k k k k ki i i i i iα α α α α α= = = 

 

  , and ( ){ }1 2 1 2
1 ,k k k ki iα =   

( ){ } ( ){ }1 2 3 4 1 2 3 4 1 1 1 1, ,1 , , , , 1
h hk k k k k k k k k k k ki i i i i iα α
− −

= =


 
. 

Figure 1 shows the relationships among models.  

3. Decomposition of Point-Symmetry  
We obtain the following theorem: 

Theorem 1. For the 1 2 TR R R× × ×  table and a fixed odd number h ( h S∈ ), the PT model holds if and 
only if both the T

hLQP  and T
hMMP  models hold.  

Proof. If the PT model holds, then both the T
hLQP  and T

hMMP  models hold. Assuming that both the 
T

hLQP  and T
hMMP  models hold, then we shall show the PT model holds. Let { }iq q=  denote cell pro- 

babilities which satisfy both the T
hLQP  and T

hMMP  models. The T
hLQP  model is expressed as  

1 2 3 1 2 3 1 1
1 2 3 1

, ,
1 1 1

log log log log log ,
h h

h

T

i i k k k k k k k k k k k k
k k k k T k k T

q i i i i i iµγ α α α
= ≤ < < ≤ ≤ < < ≤

= + + + +∑ ∑∑∑ ∑ ∑ 



 



 

where *i i
γ γ= . Let  

1

1 1 1
, .

T

T

R R
i

i i
i i

c
c
γγ π

= =

= =∑ ∑  

Note that { }iπ π=  satisfy 0 1iπ< < , 
1

1
T ii i π =∑ ∑  and *i i

π π= . Then the LQPT
h  model is also ex-  

pressed as  

1 2 3 1 2 3
1 2 3

1 1
1

1 1

, ,
1

log log log log

log .
h h

h

T
i

k k k k k k k k
k k k k Ti

k k k k
k k T

q c i i i i

i i

µ α α
π

α

= ≤ < < ≤

≤ < < ≤

 
= + + 

 
+ +

∑ ∑∑∑

∑ ∑ 



 



                   (1) 

 

 
Figure 1. Relationships among various models. Note: “ 1 2M M→ ” indicates that model 1M  
implies model 2M .                                                                            
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The MMPT
h  model is expressed as  

( )
1 2 1 2

*
, , , , 1 21 ; 1,3, , ,

l l

q q
k k k k k k lk k k T l hµ µ= ≤ < < < ≤ =

 

                    (2) 

where  

( ) ( )1 1
1 1

1 2 1 1 2 11 1
1 1

, , , ,* * *
, , , , , , , ,

1 1 1 1
, .

k kk kl l
l l

l l k k l l k kl l
k k k kl l

R RR R
k k k kq q

k k k k k i i k k k k k i i
i i i i

i i q i i qµ µ …
= = = =

= =∑ ∑ ∑ ∑ 

  

     

Then we denote 
1 2 , , l

q
k k kµ



 (
1 2

*
, , l

q
k k kµ=



) by 
1 2

0
, , lk k kµ


. 

Consider arbitrary cell probabilities { }ip p=  which satisfy the MMPT
h  model and  

( )
1 2 1 2 1 2

* 0
, , , , , , 1 21 ; 1,3, , ,

l l l

p p
k k k k k k k k k lk k k T l hµ µ µ= = ≤ < < < ≤ =

  

                (3) 

where  

( ) ( )1 1
1 1

1 2 1 1 2 11 1
1 1

, , , ,* * *
, , , , , , , ,

1 1 1 1
, .

k kk kl l
l l

l l k k l l k kl l
k k k kl l

R RR R
k k k kp p

k k k k k i i k k k k k i i
i i i i

i i p i i pµ µ
= = = =

= =∑ ∑ ∑ ∑ 

   

     

From (1), (2) and (3),  

( )
1

1 1 1
log 0.

T

T

R R
i

i i
i i i

qp q
π= =

 
− = 

 
∑ ∑                                (4) 

Let ( );K ⋅ ⋅  denote the Kullback-Leibler information, e.g., it between q and π  is  

( )
1

1 1 1
; log .

T

T

R R
i

i
i i i

qK q qπ
π= =

 
=  

 
∑ ∑  

From (4),  

( ) ( ) ( ); ; ; .K p K p q K qπ π= +  

Thus, for fixed π ,  

( ) ( ); min ; ,
p

K q K pπ π=  

and then q uniquely minimize ( );K p π  (see Darroch and Ratcliff, [14]). 
Let { }*

*
i

q q= . Then, in a similar way as described above, we obtain  

( ) ( )*; min ; ,
p

K q K pπ π=  

and then *q  uniquely minimize ( );K p π , hence *q q= . Namely q satisfy the PT model. The proof is 
completed.  

For the analysis of data, the test of goodness-of-fit of the LQPT
h  model is achieved based on, e.g., the 

likelihood ratio chi-square statistic which has a chi-square distribution with the number of degrees of freedom  

( )

( )

1
2

11

1
2

11

1 1 : odd for 1, , ,
2 12

1 otherwise .
2 12

h
T

k k
ik

h
T

k
ik

T
R R k T

i

T
R

i

+

==

+

==


   − − =   −   


   −  −  

∑∏

∑∏



 

Also the number of degrees of freedom for the MMPT
h  model is  

1
2

1
.

2 1

h

i

T
i

+

=

 
 − 

∑  
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We point out that, for a fixed h, the number of degrees of freedom for the PT model is equal to sum of those 
for the LQPT

h  and MMPT
h  models.  

4. Concluding Remarks  
For multi-way contingency tables, we have proposed the MMPT

h , OQPT and LQPT
h  models. Under the OQPT 

model, the log-odds that an observation falls in a cell instead of in its point-symmetric cell is described as a 
linear combination of category indicators. For a fixed odd number h ( h S∈ ), the LQPT

h  model implies the 
QPT

h  model. 
We have gave the theorem that the PT model holds if and only if both the LQPT

h  and MMPT
h  models. For 

the analysis of data, the decomposition given in the present paper may be useful for determining the reason 
when the PT model fits data poorly. 
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